L(s) = 1 | + (−0.909 + 1.08i)2-s + 2.68i·3-s + (−0.347 − 1.96i)4-s + (2.10 + 0.747i)5-s + (−2.90 − 2.43i)6-s + 0.590·7-s + (2.44 + 1.41i)8-s − 4.18·9-s + (−2.72 + 1.60i)10-s + 5.24·11-s + (5.28 − 0.931i)12-s + 2.44·13-s + (−0.536 + 0.639i)14-s + (−2.00 + 5.65i)15-s + (−3.75 + 1.36i)16-s + (4.03 − 0.839i)17-s + ⋯ |
L(s) = 1 | + (−0.642 + 0.766i)2-s + 1.54i·3-s + (−0.173 − 0.984i)4-s + (0.942 + 0.334i)5-s + (−1.18 − 0.994i)6-s + 0.223·7-s + (0.866 + 0.500i)8-s − 1.39·9-s + (−0.861 + 0.507i)10-s + 1.58·11-s + (1.52 − 0.268i)12-s + 0.679·13-s + (−0.143 + 0.170i)14-s + (−0.517 + 1.45i)15-s + (−0.939 + 0.342i)16-s + (0.979 − 0.203i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.790 - 0.612i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.790 - 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.464092 + 1.35684i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.464092 + 1.35684i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.909 - 1.08i)T \) |
| 5 | \( 1 + (-2.10 - 0.747i)T \) |
| 17 | \( 1 + (-4.03 + 0.839i)T \) |
good | 3 | \( 1 - 2.68iT - 3T^{2} \) |
| 7 | \( 1 - 0.590T + 7T^{2} \) |
| 11 | \( 1 - 5.24T + 11T^{2} \) |
| 13 | \( 1 - 2.44T + 13T^{2} \) |
| 19 | \( 1 - 2.57iT - 19T^{2} \) |
| 23 | \( 1 + 7.58T + 23T^{2} \) |
| 29 | \( 1 - 3.32T + 29T^{2} \) |
| 31 | \( 1 - 4.11iT - 31T^{2} \) |
| 37 | \( 1 + 8.73iT - 37T^{2} \) |
| 41 | \( 1 + 10.8iT - 41T^{2} \) |
| 43 | \( 1 - 6.08T + 43T^{2} \) |
| 47 | \( 1 + 5.98iT - 47T^{2} \) |
| 53 | \( 1 + 10.8T + 53T^{2} \) |
| 59 | \( 1 - 7.40iT - 59T^{2} \) |
| 61 | \( 1 + 6.60T + 61T^{2} \) |
| 67 | \( 1 + 7.40T + 67T^{2} \) |
| 71 | \( 1 - 0.239iT - 71T^{2} \) |
| 73 | \( 1 + 5.97T + 73T^{2} \) |
| 79 | \( 1 + 10.4iT - 79T^{2} \) |
| 83 | \( 1 + 6.83T + 83T^{2} \) |
| 89 | \( 1 + 13.4T + 89T^{2} \) |
| 97 | \( 1 - 17.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38861813390281173768845441866, −9.928522778162720320329551378168, −9.154319938983780514622761452329, −8.637103754356445259068081410500, −7.32927329281265038940304296835, −6.10198271552593675243691511079, −5.70110174544547783659589252179, −4.49428077213521966540209825730, −3.55170778374056652362730436197, −1.62842253375359474751341242755,
1.17706382138462477985310584381, 1.65435295485133619354675965351, 2.96482206889641107776153337110, 4.42001244046732315670841364459, 6.13832322066717815185773598115, 6.53024160442094951204037465686, 7.80704902990973470292908962837, 8.348825328251334562766900541192, 9.330494103621363309104939348720, 9.976619374517014779288098105419