L(s) = 1 | + (0.483 − 1.32i)2-s − 0.980i·3-s + (−1.53 − 1.28i)4-s + (−2.20 − 0.380i)5-s + (−1.30 − 0.474i)6-s − 2.74·7-s + (−2.44 + 1.41i)8-s + 2.03·9-s + (−1.57 + 2.74i)10-s + 1.05·11-s + (−1.26 + 1.50i)12-s − 2.44·13-s + (−1.32 + 3.64i)14-s + (−0.372 + 2.16i)15-s + (0.694 + 3.93i)16-s + (−2.07 + 3.56i)17-s + ⋯ |
L(s) = 1 | + (0.342 − 0.939i)2-s − 0.566i·3-s + (−0.766 − 0.642i)4-s + (−0.985 − 0.170i)5-s + (−0.531 − 0.193i)6-s − 1.03·7-s + (−0.866 + 0.499i)8-s + 0.679·9-s + (−0.496 + 0.867i)10-s + 0.318·11-s + (−0.363 + 0.433i)12-s − 0.679·13-s + (−0.354 + 0.975i)14-s + (−0.0962 + 0.557i)15-s + (0.173 + 0.984i)16-s + (−0.503 + 0.864i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0681723 + 0.0571972i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0681723 + 0.0571972i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.483 + 1.32i)T \) |
| 5 | \( 1 + (2.20 + 0.380i)T \) |
| 17 | \( 1 + (2.07 - 3.56i)T \) |
good | 3 | \( 1 + 0.980iT - 3T^{2} \) |
| 7 | \( 1 + 2.74T + 7T^{2} \) |
| 11 | \( 1 - 1.05T + 11T^{2} \) |
| 13 | \( 1 + 2.44T + 13T^{2} \) |
| 19 | \( 1 + 1.36iT - 19T^{2} \) |
| 23 | \( 1 + 0.720T + 23T^{2} \) |
| 29 | \( 1 + 5.30T + 29T^{2} \) |
| 31 | \( 1 - 6.33iT - 31T^{2} \) |
| 37 | \( 1 + 2.52iT - 37T^{2} \) |
| 41 | \( 1 - 8.39iT - 41T^{2} \) |
| 43 | \( 1 + 8.91T + 43T^{2} \) |
| 47 | \( 1 + 6.52iT - 47T^{2} \) |
| 53 | \( 1 + 0.0463T + 53T^{2} \) |
| 59 | \( 1 + 7.30iT - 59T^{2} \) |
| 61 | \( 1 + 3.65T + 61T^{2} \) |
| 67 | \( 1 + 8.22T + 67T^{2} \) |
| 71 | \( 1 + 7.91iT - 71T^{2} \) |
| 73 | \( 1 + 4.96T + 73T^{2} \) |
| 79 | \( 1 + 8.93iT - 79T^{2} \) |
| 83 | \( 1 + 7.61T + 83T^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.941582480354551744102865400090, −9.130628090403649166949878948197, −8.171238460894600852176182079358, −7.07054312194855577095816181845, −6.31520452254754314504373671947, −4.90930268575942591407058811350, −3.98858016818569030678345029854, −3.11181309017895146935503465732, −1.65404126817085001824070241055, −0.04223658646663795998103764071,
3.03759888588052639801022908072, 3.97478340133385580129812206640, 4.62723444407761094260488797968, 5.82877203060304774546338120901, 7.01718445812403571621758972096, 7.30400726077802236176423831445, 8.492895313200754889448958137105, 9.463632900308659755274241508356, 9.946932575888683356346926541173, 11.22504345116257325066932650084