L(s) = 1 | + (0.483 + 1.32i)2-s + 2.44i·3-s + (−1.53 + 1.28i)4-s + (−0.380 + 2.20i)5-s + (−3.24 + 1.18i)6-s + 2.45·7-s + (−2.44 − 1.41i)8-s − 2.97·9-s + (−3.11 + 0.560i)10-s − 2.47·11-s + (−3.14 − 3.74i)12-s − 2.44·13-s + (1.18 + 3.25i)14-s + (−5.38 − 0.929i)15-s + (0.694 − 3.93i)16-s + (4.12 − 0.0180i)17-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)2-s + 1.41i·3-s + (−0.766 + 0.642i)4-s + (−0.170 + 0.985i)5-s + (−1.32 + 0.482i)6-s + 0.926·7-s + (−0.866 − 0.499i)8-s − 0.991·9-s + (−0.984 + 0.177i)10-s − 0.746·11-s + (−0.907 − 1.08i)12-s − 0.679·13-s + (0.316 + 0.870i)14-s + (−1.39 − 0.239i)15-s + (0.173 − 0.984i)16-s + (0.999 − 0.00436i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.622082 - 1.32017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.622082 - 1.32017i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.483 - 1.32i)T \) |
| 5 | \( 1 + (0.380 - 2.20i)T \) |
| 17 | \( 1 + (-4.12 + 0.0180i)T \) |
good | 3 | \( 1 - 2.44iT - 3T^{2} \) |
| 7 | \( 1 - 2.45T + 7T^{2} \) |
| 11 | \( 1 + 2.47T + 11T^{2} \) |
| 13 | \( 1 + 2.44T + 13T^{2} \) |
| 19 | \( 1 - 1.36iT - 19T^{2} \) |
| 23 | \( 1 - 1.43T + 23T^{2} \) |
| 29 | \( 1 - 7.23T + 29T^{2} \) |
| 31 | \( 1 - 6.21iT - 31T^{2} \) |
| 37 | \( 1 - 2.43iT - 37T^{2} \) |
| 41 | \( 1 + 7.78iT - 41T^{2} \) |
| 43 | \( 1 - 5.04T + 43T^{2} \) |
| 47 | \( 1 - 0.293iT - 47T^{2} \) |
| 53 | \( 1 + 9.16T + 53T^{2} \) |
| 59 | \( 1 + 12.4iT - 59T^{2} \) |
| 61 | \( 1 + 5.56T + 61T^{2} \) |
| 67 | \( 1 - 8.90T + 67T^{2} \) |
| 71 | \( 1 - 10.8iT - 71T^{2} \) |
| 73 | \( 1 + 4.79T + 73T^{2} \) |
| 79 | \( 1 - 8.84iT - 79T^{2} \) |
| 83 | \( 1 - 13.7T + 83T^{2} \) |
| 89 | \( 1 - 13.8T + 89T^{2} \) |
| 97 | \( 1 + 3.27T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74667383405262849081365621842, −10.20328903641171276659324064595, −9.369452618862332301751065725456, −8.233269294273846017056376095213, −7.64072471942285893691445910935, −6.58817691929414922528940332455, −5.32030227322855715415979749779, −4.86375475225402161961564446088, −3.77825159395330021030612310235, −2.86896306677190051723288802706,
0.72763326613925328357969881112, 1.72504650181059018054243617226, 2.80125935457172385429967634544, 4.48067932960082773206103513502, 5.17822897381845691505595645994, 6.16461972093132565805362924842, 7.70327357245367052174311684220, 7.998032957890357305260840489032, 9.054880029702167663903825350190, 10.03539043317173654313302675595