Properties

Label 680.2.h.c.509.32
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.32
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.c.509.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483690 + 1.32893i) q^{2} +2.44428i q^{3} +(-1.53209 + 1.28558i) q^{4} +(-0.380200 + 2.20351i) q^{5} +(-3.24827 + 1.18227i) q^{6} +2.45108 q^{7} +(-2.44949 - 1.41421i) q^{8} -2.97453 q^{9} +(-3.11220 + 0.560555i) q^{10} -2.47628 q^{11} +(-3.14231 - 3.74486i) q^{12} -2.44949 q^{13} +(1.18556 + 3.25730i) q^{14} +(-5.38600 - 0.929318i) q^{15} +(0.694593 - 3.93923i) q^{16} +(4.12307 - 0.0180128i) q^{17} +(-1.43875 - 3.95293i) q^{18} +1.36808i q^{19} +(-2.25027 - 3.86475i) q^{20} +5.99113i q^{21} +(-1.19775 - 3.29080i) q^{22} +1.43193 q^{23} +(3.45674 - 5.98725i) q^{24} +(-4.71090 - 1.67555i) q^{25} +(-1.18479 - 3.25519i) q^{26} +0.0622655i q^{27} +(-3.75527 + 3.15104i) q^{28} +7.23197 q^{29} +(-1.37016 - 7.60710i) q^{30} +6.21204i q^{31} +(5.57091 - 0.982302i) q^{32} -6.05274i q^{33} +(2.01822 + 5.47054i) q^{34} +(-0.931901 + 5.40097i) q^{35} +(4.55724 - 3.82398i) q^{36} +2.43556i q^{37} +(-1.81808 + 0.661726i) q^{38} -5.98725i q^{39} +(4.04753 - 4.85979i) q^{40} -7.78600i q^{41} +(-7.96177 + 2.89785i) q^{42} +5.04731 q^{43} +(3.79389 - 3.18345i) q^{44} +(1.13092 - 6.55439i) q^{45} +(0.692608 + 1.90292i) q^{46} +0.293016i q^{47} +(9.62860 + 1.69778i) q^{48} -0.992220 q^{49} +(-0.0519291 - 7.07088i) q^{50} +(0.0440284 + 10.0779i) q^{51} +(3.75284 - 3.14900i) q^{52} -9.16076 q^{53} +(-0.0827463 + 0.0301172i) q^{54} +(0.941484 - 5.45651i) q^{55} +(-6.00389 - 3.46635i) q^{56} -3.34398 q^{57} +(3.49803 + 9.61075i) q^{58} -12.4453i q^{59} +(9.44654 - 5.50031i) q^{60} -5.56012 q^{61} +(-8.25535 + 3.00470i) q^{62} -7.29079 q^{63} +(4.00000 + 6.92820i) q^{64} +(0.931297 - 5.39747i) q^{65} +(8.04364 - 2.92765i) q^{66} +8.90074 q^{67} +(-6.29375 + 5.32811i) q^{68} +3.50003i q^{69} +(-7.62824 + 1.37396i) q^{70} +10.8712i q^{71} +(7.28607 + 4.20662i) q^{72} -4.79712 q^{73} +(-3.23668 + 1.17806i) q^{74} +(4.09552 - 11.5148i) q^{75} +(-1.75877 - 2.09602i) q^{76} -6.06956 q^{77} +(7.95661 - 2.89597i) q^{78} +8.84615i q^{79} +(8.41604 + 3.02824i) q^{80} -9.07577 q^{81} +(10.3470 - 3.76601i) q^{82} +13.7781 q^{83} +(-7.70205 - 9.17894i) q^{84} +(-1.52790 + 9.09206i) q^{85} +(2.44133 + 6.70750i) q^{86} +17.6770i q^{87} +(6.06563 + 3.50199i) q^{88} +13.8497 q^{89} +(9.25731 - 1.66739i) q^{90} -6.00389 q^{91} +(-2.19384 + 1.84085i) q^{92} -15.1840 q^{93} +(-0.389397 + 0.141729i) q^{94} +(-3.01458 - 0.520145i) q^{95} +(2.40103 + 13.6169i) q^{96} -3.27942 q^{97} +(-0.479926 - 1.31859i) q^{98} +7.36577 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 96 q^{9} - 48 q^{15} + 24 q^{34} - 96 q^{36} + 96 q^{49} + 48 q^{60} + 192 q^{64} - 144 q^{66} - 96 q^{70} + 96 q^{76} - 192 q^{84} - 192 q^{86} - 48 q^{89} - 144 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483690 + 1.32893i 0.342020 + 0.939693i
\(3\) 2.44428i 1.41121i 0.708606 + 0.705604i \(0.249324\pi\)
−0.708606 + 0.705604i \(0.750676\pi\)
\(4\) −1.53209 + 1.28558i −0.766044 + 0.642788i
\(5\) −0.380200 + 2.20351i −0.170031 + 0.985439i
\(6\) −3.24827 + 1.18227i −1.32610 + 0.482662i
\(7\) 2.45108 0.926420 0.463210 0.886249i \(-0.346698\pi\)
0.463210 + 0.886249i \(0.346698\pi\)
\(8\) −2.44949 1.41421i −0.866025 0.500000i
\(9\) −2.97453 −0.991509
\(10\) −3.11220 + 0.560555i −0.984163 + 0.177263i
\(11\) −2.47628 −0.746627 −0.373314 0.927705i \(-0.621778\pi\)
−0.373314 + 0.927705i \(0.621778\pi\)
\(12\) −3.14231 3.74486i −0.907107 1.08105i
\(13\) −2.44949 −0.679366 −0.339683 0.940540i \(-0.610320\pi\)
−0.339683 + 0.940540i \(0.610320\pi\)
\(14\) 1.18556 + 3.25730i 0.316854 + 0.870550i
\(15\) −5.38600 0.929318i −1.39066 0.239949i
\(16\) 0.694593 3.93923i 0.173648 0.984808i
\(17\) 4.12307 0.0180128i 0.999990 0.00436874i
\(18\) −1.43875 3.95293i −0.339116 0.931713i
\(19\) 1.36808i 0.313859i 0.987610 + 0.156930i \(0.0501596\pi\)
−0.987610 + 0.156930i \(0.949840\pi\)
\(20\) −2.25027 3.86475i −0.503177 0.864184i
\(21\) 5.99113i 1.30737i
\(22\) −1.19775 3.29080i −0.255362 0.701600i
\(23\) 1.43193 0.298577 0.149289 0.988794i \(-0.452302\pi\)
0.149289 + 0.988794i \(0.452302\pi\)
\(24\) 3.45674 5.98725i 0.705604 1.22214i
\(25\) −4.71090 1.67555i −0.942179 0.335110i
\(26\) −1.18479 3.25519i −0.232357 0.638395i
\(27\) 0.0622655i 0.0119830i
\(28\) −3.75527 + 3.15104i −0.709679 + 0.595491i
\(29\) 7.23197 1.34294 0.671472 0.741030i \(-0.265662\pi\)
0.671472 + 0.741030i \(0.265662\pi\)
\(30\) −1.37016 7.60710i −0.250155 1.38886i
\(31\) 6.21204i 1.11572i 0.829936 + 0.557858i \(0.188377\pi\)
−0.829936 + 0.557858i \(0.811623\pi\)
\(32\) 5.57091 0.982302i 0.984808 0.173648i
\(33\) 6.05274i 1.05365i
\(34\) 2.01822 + 5.47054i 0.346122 + 0.938189i
\(35\) −0.931901 + 5.40097i −0.157520 + 0.912930i
\(36\) 4.55724 3.82398i 0.759540 0.637330i
\(37\) 2.43556i 0.400404i 0.979755 + 0.200202i \(0.0641599\pi\)
−0.979755 + 0.200202i \(0.935840\pi\)
\(38\) −1.81808 + 0.661726i −0.294931 + 0.107346i
\(39\) 5.98725i 0.958727i
\(40\) 4.04753 4.85979i 0.639970 0.768400i
\(41\) 7.78600i 1.21597i −0.793949 0.607985i \(-0.791978\pi\)
0.793949 0.607985i \(-0.208022\pi\)
\(42\) −7.96177 + 2.89785i −1.22853 + 0.447147i
\(43\) 5.04731 0.769708 0.384854 0.922978i \(-0.374252\pi\)
0.384854 + 0.922978i \(0.374252\pi\)
\(44\) 3.79389 3.18345i 0.571950 0.479923i
\(45\) 1.13092 6.55439i 0.168587 0.977071i
\(46\) 0.692608 + 1.90292i 0.102119 + 0.280571i
\(47\) 0.293016i 0.0427408i 0.999772 + 0.0213704i \(0.00680293\pi\)
−0.999772 + 0.0213704i \(0.993197\pi\)
\(48\) 9.62860 + 1.69778i 1.38977 + 0.245054i
\(49\) −0.992220 −0.141746
\(50\) −0.0519291 7.07088i −0.00734388 0.999973i
\(51\) 0.0440284 + 10.0779i 0.00616520 + 1.41119i
\(52\) 3.75284 3.14900i 0.520425 0.436688i
\(53\) −9.16076 −1.25833 −0.629163 0.777273i \(-0.716602\pi\)
−0.629163 + 0.777273i \(0.716602\pi\)
\(54\) −0.0827463 + 0.0301172i −0.0112603 + 0.00409843i
\(55\) 0.941484 5.45651i 0.126950 0.735756i
\(56\) −6.00389 3.46635i −0.802303 0.463210i
\(57\) −3.34398 −0.442921
\(58\) 3.49803 + 9.61075i 0.459314 + 1.26195i
\(59\) 12.4453i 1.62024i −0.586265 0.810119i \(-0.699402\pi\)
0.586265 0.810119i \(-0.300598\pi\)
\(60\) 9.44654 5.50031i 1.21954 0.710087i
\(61\) −5.56012 −0.711900 −0.355950 0.934505i \(-0.615843\pi\)
−0.355950 + 0.934505i \(0.615843\pi\)
\(62\) −8.25535 + 3.00470i −1.04843 + 0.381597i
\(63\) −7.29079 −0.918554
\(64\) 4.00000 + 6.92820i 0.500000 + 0.866025i
\(65\) 0.931297 5.39747i 0.115513 0.669474i
\(66\) 8.04364 2.92765i 0.990104 0.360368i
\(67\) 8.90074 1.08740 0.543699 0.839280i \(-0.317023\pi\)
0.543699 + 0.839280i \(0.317023\pi\)
\(68\) −6.29375 + 5.32811i −0.763229 + 0.646128i
\(69\) 3.50003i 0.421355i
\(70\) −7.62824 + 1.37396i −0.911749 + 0.164220i
\(71\) 10.8712i 1.29017i 0.764109 + 0.645087i \(0.223179\pi\)
−0.764109 + 0.645087i \(0.776821\pi\)
\(72\) 7.28607 + 4.20662i 0.858672 + 0.495754i
\(73\) −4.79712 −0.561461 −0.280730 0.959787i \(-0.590577\pi\)
−0.280730 + 0.959787i \(0.590577\pi\)
\(74\) −3.23668 + 1.17806i −0.376257 + 0.136946i
\(75\) 4.09552 11.5148i 0.472910 1.32961i
\(76\) −1.75877 2.09602i −0.201745 0.240430i
\(77\) −6.06956 −0.691691
\(78\) 7.95661 2.89597i 0.900909 0.327904i
\(79\) 8.84615i 0.995270i 0.867387 + 0.497635i \(0.165798\pi\)
−0.867387 + 0.497635i \(0.834202\pi\)
\(80\) 8.41604 + 3.02824i 0.940942 + 0.338567i
\(81\) −9.07577 −1.00842
\(82\) 10.3470 3.76601i 1.14264 0.415886i
\(83\) 13.7781 1.51234 0.756169 0.654377i \(-0.227069\pi\)
0.756169 + 0.654377i \(0.227069\pi\)
\(84\) −7.70205 9.17894i −0.840362 1.00150i
\(85\) −1.52790 + 9.09206i −0.165724 + 0.986172i
\(86\) 2.44133 + 6.70750i 0.263255 + 0.723289i
\(87\) 17.6770i 1.89517i
\(88\) 6.06563 + 3.50199i 0.646598 + 0.373314i
\(89\) 13.8497 1.46806 0.734032 0.679115i \(-0.237636\pi\)
0.734032 + 0.679115i \(0.237636\pi\)
\(90\) 9.25731 1.66739i 0.975807 0.175758i
\(91\) −6.00389 −0.629379
\(92\) −2.19384 + 1.84085i −0.228723 + 0.191922i
\(93\) −15.1840 −1.57451
\(94\) −0.389397 + 0.141729i −0.0401633 + 0.0146182i
\(95\) −3.01458 0.520145i −0.309289 0.0533657i
\(96\) 2.40103 + 13.6169i 0.245054 + 1.38977i
\(97\) −3.27942 −0.332974 −0.166487 0.986044i \(-0.553242\pi\)
−0.166487 + 0.986044i \(0.553242\pi\)
\(98\) −0.479926 1.31859i −0.0484799 0.133197i
\(99\) 7.36577 0.740288
\(100\) 9.37156 3.48912i 0.937156 0.348912i
\(101\) 1.56858i 0.156080i 0.996950 + 0.0780398i \(0.0248661\pi\)
−0.996950 + 0.0780398i \(0.975134\pi\)
\(102\) −13.3715 + 4.93311i −1.32398 + 0.488450i
\(103\) 9.63770i 0.949631i 0.880085 + 0.474815i \(0.157485\pi\)
−0.880085 + 0.474815i \(0.842515\pi\)
\(104\) 6.00000 + 3.46410i 0.588348 + 0.339683i
\(105\) −13.2015 2.27783i −1.28833 0.222293i
\(106\) −4.43096 12.1740i −0.430373 1.18244i
\(107\) 7.16085i 0.692266i 0.938185 + 0.346133i \(0.112505\pi\)
−0.938185 + 0.346133i \(0.887495\pi\)
\(108\) −0.0800470 0.0953963i −0.00770253 0.00917951i
\(109\) −15.7018 −1.50396 −0.751978 0.659188i \(-0.770900\pi\)
−0.751978 + 0.659188i \(0.770900\pi\)
\(110\) 7.70668 1.38809i 0.734803 0.132350i
\(111\) −5.95321 −0.565054
\(112\) 1.70250 9.65536i 0.160871 0.912346i
\(113\) 6.91519 0.650526 0.325263 0.945624i \(-0.394547\pi\)
0.325263 + 0.945624i \(0.394547\pi\)
\(114\) −1.61745 4.44390i −0.151488 0.416209i
\(115\) −0.544419 + 3.15526i −0.0507673 + 0.294230i
\(116\) −11.0800 + 9.29724i −1.02875 + 0.863227i
\(117\) 7.28607 0.673598
\(118\) 16.5389 6.01965i 1.52253 0.554154i
\(119\) 10.1060 0.0441507i 0.926411 0.00404729i
\(120\) 11.8787 + 9.89331i 1.08437 + 0.903131i
\(121\) −4.86802 −0.442548
\(122\) −2.68937 7.38899i −0.243484 0.668967i
\(123\) 19.0312 1.71599
\(124\) −7.98605 9.51740i −0.717169 0.854688i
\(125\) 5.48317 9.74345i 0.490430 0.871481i
\(126\) −3.52648 9.68893i −0.314164 0.863158i
\(127\) 1.30318i 0.115638i 0.998327 + 0.0578192i \(0.0184147\pi\)
−0.998327 + 0.0578192i \(0.981585\pi\)
\(128\) −7.27231 + 8.66680i −0.642788 + 0.766044i
\(129\) 12.3371i 1.08622i
\(130\) 7.62330 1.37307i 0.668607 0.120427i
\(131\) −18.7031 −1.63410 −0.817051 0.576566i \(-0.804393\pi\)
−0.817051 + 0.576566i \(0.804393\pi\)
\(132\) 7.78125 + 9.27334i 0.677271 + 0.807140i
\(133\) 3.35327i 0.290765i
\(134\) 4.30520 + 11.8284i 0.371912 + 1.02182i
\(135\) −0.137203 0.0236734i −0.0118085 0.00203748i
\(136\) −10.1249 5.78677i −0.868202 0.496212i
\(137\) 10.0090i 0.855124i −0.903986 0.427562i \(-0.859373\pi\)
0.903986 0.427562i \(-0.140627\pi\)
\(138\) −4.65129 + 1.69293i −0.395944 + 0.144112i
\(139\) 9.40241 0.797502 0.398751 0.917059i \(-0.369444\pi\)
0.398751 + 0.917059i \(0.369444\pi\)
\(140\) −5.51560 9.47279i −0.466153 0.800597i
\(141\) −0.716216 −0.0603162
\(142\) −14.4470 + 5.25829i −1.21237 + 0.441266i
\(143\) 6.06563 0.507233
\(144\) −2.06608 + 11.7173i −0.172174 + 0.976445i
\(145\) −2.74960 + 15.9357i −0.228342 + 1.32339i
\(146\) −2.32032 6.37502i −0.192031 0.527601i
\(147\) 2.42527i 0.200033i
\(148\) −3.13110 3.73150i −0.257375 0.306727i
\(149\) 6.92001i 0.566910i −0.958986 0.283455i \(-0.908519\pi\)
0.958986 0.283455i \(-0.0914806\pi\)
\(150\) 17.2832 0.126929i 1.41117 0.0103637i
\(151\) −17.1983 −1.39957 −0.699787 0.714351i \(-0.746722\pi\)
−0.699787 + 0.714351i \(0.746722\pi\)
\(152\) 1.93476 3.35110i 0.156930 0.271810i
\(153\) −12.2642 + 0.0535795i −0.991499 + 0.00433165i
\(154\) −2.93578 8.06600i −0.236572 0.649977i
\(155\) −13.6883 2.36182i −1.09947 0.189706i
\(156\) 7.69706 + 9.17300i 0.616258 + 0.734428i
\(157\) 8.48882 0.677482 0.338741 0.940880i \(-0.389999\pi\)
0.338741 + 0.940880i \(0.389999\pi\)
\(158\) −11.7559 + 4.27879i −0.935248 + 0.340402i
\(159\) 22.3915i 1.77576i
\(160\) 0.0464471 + 12.6490i 0.00367196 + 0.999993i
\(161\) 3.50976 0.276608
\(162\) −4.38986 12.0610i −0.344900 0.947604i
\(163\) 9.90706i 0.775981i 0.921663 + 0.387991i \(0.126831\pi\)
−0.921663 + 0.387991i \(0.873169\pi\)
\(164\) 10.0095 + 11.9288i 0.781610 + 0.931486i
\(165\) 13.3373 + 2.30125i 1.03830 + 0.179152i
\(166\) 6.66430 + 18.3100i 0.517250 + 1.42113i
\(167\) 21.1938 1.64003 0.820013 0.572345i \(-0.193966\pi\)
0.820013 + 0.572345i \(0.193966\pi\)
\(168\) 8.47274 14.6752i 0.653686 1.13222i
\(169\) −7.00000 −0.538462
\(170\) −12.8217 + 2.36727i −0.983380 + 0.181561i
\(171\) 4.06939i 0.311194i
\(172\) −7.73293 + 6.48870i −0.589630 + 0.494758i
\(173\) 0.675738i 0.0513754i 0.999670 + 0.0256877i \(0.00817755\pi\)
−0.999670 + 0.0256877i \(0.991822\pi\)
\(174\) −23.4914 + 8.55018i −1.78088 + 0.648187i
\(175\) −11.5468 4.10690i −0.872854 0.310453i
\(176\) −1.72001 + 9.75465i −0.129650 + 0.735284i
\(177\) 30.4198 2.28649
\(178\) 6.69894 + 18.4052i 0.502107 + 1.37953i
\(179\) 3.55235i 0.265515i 0.991149 + 0.132757i \(0.0423831\pi\)
−0.991149 + 0.132757i \(0.957617\pi\)
\(180\) 6.69350 + 11.4958i 0.498904 + 0.856846i
\(181\) 7.46849 0.555128 0.277564 0.960707i \(-0.410473\pi\)
0.277564 + 0.960707i \(0.410473\pi\)
\(182\) −2.90402 7.97872i −0.215260 0.591422i
\(183\) 13.5905i 1.00464i
\(184\) −3.50749 2.02505i −0.258575 0.149289i
\(185\) −5.36678 0.926002i −0.394574 0.0680811i
\(186\) −7.34434 20.1784i −0.538513 1.47955i
\(187\) −10.2099 + 0.0446047i −0.746620 + 0.00326182i
\(188\) −0.376695 0.448927i −0.0274733 0.0327414i
\(189\) 0.152618i 0.0111013i
\(190\) −0.766885 4.25774i −0.0556357 0.308889i
\(191\) 12.0831 0.874305 0.437152 0.899388i \(-0.355987\pi\)
0.437152 + 0.899388i \(0.355987\pi\)
\(192\) −16.9345 + 9.77714i −1.22214 + 0.705604i
\(193\) 12.8832 0.927350 0.463675 0.886005i \(-0.346530\pi\)
0.463675 + 0.886005i \(0.346530\pi\)
\(194\) −1.58622 4.35810i −0.113884 0.312893i
\(195\) 13.1930 + 2.27636i 0.944767 + 0.163013i
\(196\) 1.52017 1.27557i 0.108584 0.0911124i
\(197\) 13.9686i 0.995224i 0.867400 + 0.497612i \(0.165790\pi\)
−0.867400 + 0.497612i \(0.834210\pi\)
\(198\) 3.56274 + 9.78856i 0.253193 + 0.695643i
\(199\) 21.4009i 1.51707i −0.651634 0.758533i \(-0.725916\pi\)
0.651634 0.758533i \(-0.274084\pi\)
\(200\) 9.16970 + 10.7665i 0.648396 + 0.761303i
\(201\) 21.7559i 1.53455i
\(202\) −2.08453 + 0.758706i −0.146667 + 0.0533823i
\(203\) 17.7261 1.24413
\(204\) −13.0234 15.3837i −0.911821 1.07707i
\(205\) 17.1565 + 2.96024i 1.19826 + 0.206752i
\(206\) −12.8078 + 4.66165i −0.892361 + 0.324793i
\(207\) −4.25930 −0.296042
\(208\) −1.70140 + 9.64911i −0.117971 + 0.669045i
\(209\) 3.38775i 0.234336i
\(210\) −3.35836 18.6456i −0.231749 1.28667i
\(211\) 16.3619 1.12640 0.563201 0.826320i \(-0.309570\pi\)
0.563201 + 0.826320i \(0.309570\pi\)
\(212\) 14.0351 11.7768i 0.963934 0.808837i
\(213\) −26.5723 −1.82070
\(214\) −9.51625 + 3.46363i −0.650517 + 0.236769i
\(215\) −1.91899 + 11.1218i −0.130874 + 0.758500i
\(216\) 0.0880567 0.152519i 0.00599150 0.0103776i
\(217\) 15.2262i 1.03362i
\(218\) −7.59478 20.8665i −0.514383 1.41326i
\(219\) 11.7255i 0.792338i
\(220\) 5.57232 + 9.57021i 0.375685 + 0.645223i
\(221\) −10.0994 + 0.0441221i −0.679360 + 0.00296798i
\(222\) −2.87951 7.91138i −0.193260 0.530977i
\(223\) 26.3574i 1.76502i 0.470291 + 0.882512i \(0.344149\pi\)
−0.470291 + 0.882512i \(0.655851\pi\)
\(224\) 13.6547 2.40770i 0.912346 0.160871i
\(225\) 14.0127 + 4.98397i 0.934179 + 0.332264i
\(226\) 3.34480 + 9.18977i 0.222493 + 0.611295i
\(227\) 3.49638i 0.232063i −0.993246 0.116031i \(-0.962983\pi\)
0.993246 0.116031i \(-0.0370173\pi\)
\(228\) 5.12327 4.29894i 0.339297 0.284704i
\(229\) 21.9131i 1.44806i −0.689771 0.724028i \(-0.742289\pi\)
0.689771 0.724028i \(-0.257711\pi\)
\(230\) −4.45644 + 0.802674i −0.293849 + 0.0529267i
\(231\) 14.8357i 0.976120i
\(232\) −17.7146 10.2276i −1.16302 0.671472i
\(233\) −1.45722 −0.0954658 −0.0477329 0.998860i \(-0.515200\pi\)
−0.0477329 + 0.998860i \(0.515200\pi\)
\(234\) 3.52420 + 9.68265i 0.230384 + 0.632975i
\(235\) −0.645664 0.111405i −0.0421185 0.00726726i
\(236\) 15.9994 + 19.0673i 1.04147 + 1.24117i
\(237\) −21.6225 −1.40453
\(238\) 4.94682 + 13.4087i 0.320655 + 0.869158i
\(239\) 14.0395 0.908143 0.454071 0.890965i \(-0.349971\pi\)
0.454071 + 0.890965i \(0.349971\pi\)
\(240\) −7.40188 + 20.5712i −0.477789 + 1.32787i
\(241\) 6.51814i 0.419870i 0.977715 + 0.209935i \(0.0673253\pi\)
−0.977715 + 0.209935i \(0.932675\pi\)
\(242\) −2.35461 6.46924i −0.151360 0.415859i
\(243\) 21.9970i 1.41111i
\(244\) 8.51859 7.14795i 0.545347 0.457601i
\(245\) 0.377243 2.18636i 0.0241011 0.139682i
\(246\) 9.20519 + 25.2911i 0.586902 + 1.61250i
\(247\) 3.35110i 0.213225i
\(248\) 8.78516 15.2163i 0.557858 0.966239i
\(249\) 33.6775i 2.13422i
\(250\) 15.6005 + 2.57392i 0.986661 + 0.162789i
\(251\) 26.4287i 1.66816i −0.551640 0.834082i \(-0.685998\pi\)
0.551640 0.834082i \(-0.314002\pi\)
\(252\) 11.1701 9.37286i 0.703653 0.590435i
\(253\) −3.54585 −0.222926
\(254\) −1.73183 + 0.630334i −0.108665 + 0.0395506i
\(255\) −22.2236 3.73462i −1.39169 0.233871i
\(256\) −15.0351 5.47232i −0.939693 0.342020i
\(257\) 30.8915i 1.92696i −0.267784 0.963479i \(-0.586291\pi\)
0.267784 0.963479i \(-0.413709\pi\)
\(258\) −16.3950 + 5.96731i −1.02071 + 0.371508i
\(259\) 5.96975i 0.370943i
\(260\) 5.51202 + 9.46666i 0.341841 + 0.587097i
\(261\) −21.5117 −1.33154
\(262\) −9.04652 24.8551i −0.558896 1.53555i
\(263\) 14.3910i 0.887385i 0.896179 + 0.443692i \(0.146332\pi\)
−0.896179 + 0.443692i \(0.853668\pi\)
\(264\) −8.55987 + 14.8261i −0.526823 + 0.912485i
\(265\) 3.48292 20.1858i 0.213954 1.24000i
\(266\) −4.45625 + 1.62194i −0.273230 + 0.0994477i
\(267\) 33.8526i 2.07174i
\(268\) −13.6367 + 11.4426i −0.832996 + 0.698966i
\(269\) 12.3788 0.754750 0.377375 0.926061i \(-0.376827\pi\)
0.377375 + 0.926061i \(0.376827\pi\)
\(270\) −0.0349033 0.193783i −0.00212415 0.0117932i
\(271\) 25.9852 1.57849 0.789243 0.614081i \(-0.210473\pi\)
0.789243 + 0.614081i \(0.210473\pi\)
\(272\) 2.79290 16.2542i 0.169344 0.985557i
\(273\) 14.6752i 0.888184i
\(274\) 13.3012 4.84123i 0.803553 0.292470i
\(275\) 11.6655 + 4.14914i 0.703457 + 0.250202i
\(276\) −4.49956 5.36236i −0.270842 0.322776i
\(277\) 8.30576i 0.499045i −0.968369 0.249522i \(-0.919726\pi\)
0.968369 0.249522i \(-0.0802736\pi\)
\(278\) 4.54785 + 12.4951i 0.272762 + 0.749406i
\(279\) 18.4779i 1.10624i
\(280\) 9.92080 11.9117i 0.592881 0.711861i
\(281\) 21.5720 1.28688 0.643439 0.765498i \(-0.277507\pi\)
0.643439 + 0.765498i \(0.277507\pi\)
\(282\) −0.346426 0.951797i −0.0206294 0.0566787i
\(283\) 13.2294i 0.786403i −0.919452 0.393202i \(-0.871367\pi\)
0.919452 0.393202i \(-0.128633\pi\)
\(284\) −13.9757 16.6556i −0.829308 0.988331i
\(285\) 1.27138 7.36848i 0.0753102 0.436471i
\(286\) 2.93388 + 8.06077i 0.173484 + 0.476644i
\(287\) 19.0841i 1.12650i
\(288\) −16.5708 + 2.92188i −0.976445 + 0.172174i
\(289\) 16.9994 0.148536i 0.999962 0.00873740i
\(290\) −22.5073 + 4.05392i −1.32168 + 0.238054i
\(291\) 8.01582i 0.469896i
\(292\) 7.34962 6.16706i 0.430104 0.360900i
\(293\) −19.3453 −1.13016 −0.565082 0.825035i \(-0.691155\pi\)
−0.565082 + 0.825035i \(0.691155\pi\)
\(294\) 3.22300 1.17308i 0.187969 0.0684152i
\(295\) 27.4233 + 4.73170i 1.59665 + 0.275490i
\(296\) 3.44441 5.96589i 0.200202 0.346760i
\(297\) 0.154187i 0.00894684i
\(298\) 9.19619 3.34714i 0.532721 0.193895i
\(299\) −3.50749 −0.202843
\(300\) 8.52840 + 22.9067i 0.492387 + 1.32252i
\(301\) 12.3713 0.713073
\(302\) −8.31862 22.8552i −0.478683 1.31517i
\(303\) −3.83406 −0.220261
\(304\) 5.38919 + 0.950259i 0.309091 + 0.0545011i
\(305\) 2.11396 12.2518i 0.121045 0.701534i
\(306\) −6.00325 16.2723i −0.343183 0.930223i
\(307\) −5.10218 −0.291197 −0.145598 0.989344i \(-0.546511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(308\) 9.29911 7.80288i 0.529866 0.444610i
\(309\) −23.5573 −1.34013
\(310\) −3.48220 19.3331i −0.197775 1.09805i
\(311\) 4.35179i 0.246767i 0.992359 + 0.123384i \(0.0393745\pi\)
−0.992359 + 0.123384i \(0.960625\pi\)
\(312\) −8.46725 + 14.6657i −0.479364 + 0.830282i
\(313\) −20.8861 −1.18055 −0.590275 0.807202i \(-0.700981\pi\)
−0.590275 + 0.807202i \(0.700981\pi\)
\(314\) 4.10595 + 11.2810i 0.231712 + 0.636625i
\(315\) 2.77196 16.0653i 0.156182 0.905178i
\(316\) −11.3724 13.5531i −0.639747 0.762421i
\(317\) 20.4837i 1.15048i 0.817985 + 0.575240i \(0.195091\pi\)
−0.817985 + 0.575240i \(0.804909\pi\)
\(318\) 29.7566 10.8305i 1.66867 0.607346i
\(319\) −17.9084 −1.00268
\(320\) −16.7872 + 6.17993i −0.938430 + 0.345468i
\(321\) −17.5032 −0.976931
\(322\) 1.69763 + 4.66421i 0.0946055 + 0.259926i
\(323\) 0.0246429 + 5.64069i 0.00137117 + 0.313856i
\(324\) 13.9049 11.6676i 0.772494 0.648199i
\(325\) 11.5393 + 4.10424i 0.640085 + 0.227662i
\(326\) −13.1658 + 4.79194i −0.729184 + 0.265401i
\(327\) 38.3796i 2.12240i
\(328\) −11.0111 + 19.0717i −0.607985 + 1.05306i
\(329\) 0.718206i 0.0395960i
\(330\) 3.39290 + 18.8373i 0.186773 + 1.03696i
\(331\) 6.60254i 0.362908i 0.983399 + 0.181454i \(0.0580804\pi\)
−0.983399 + 0.181454i \(0.941920\pi\)
\(332\) −21.1092 + 17.7127i −1.15852 + 0.972112i
\(333\) 7.24465i 0.397004i
\(334\) 10.2512 + 28.1650i 0.560922 + 1.54112i
\(335\) −3.38407 + 19.6129i −0.184891 + 1.07156i
\(336\) 23.6004 + 4.16140i 1.28751 + 0.227023i
\(337\) 26.9787 1.46962 0.734811 0.678272i \(-0.237271\pi\)
0.734811 + 0.678272i \(0.237271\pi\)
\(338\) −3.38583 9.30248i −0.184165 0.505988i
\(339\) 16.9027i 0.918028i
\(340\) −9.34765 15.8941i −0.506947 0.861977i
\(341\) 15.3828i 0.833024i
\(342\) 5.40792 1.96832i 0.292427 0.106435i
\(343\) −19.5895 −1.05774
\(344\) −12.3633 7.13797i −0.666586 0.384854i
\(345\) −7.71235 1.33071i −0.415219 0.0716433i
\(346\) −0.898006 + 0.326847i −0.0482771 + 0.0175714i
\(347\) 8.20630i 0.440537i 0.975439 + 0.220269i \(0.0706934\pi\)
−0.975439 + 0.220269i \(0.929307\pi\)
\(348\) −22.7251 27.0827i −1.21819 1.45179i
\(349\) 25.1107i 1.34415i 0.740485 + 0.672073i \(0.234596\pi\)
−0.740485 + 0.672073i \(0.765404\pi\)
\(350\) −0.127282 17.3313i −0.00680352 0.926395i
\(351\) 0.152519i 0.00814085i
\(352\) −13.7952 + 2.43246i −0.735284 + 0.129650i
\(353\) 28.8119i 1.53350i 0.641944 + 0.766752i \(0.278128\pi\)
−0.641944 + 0.766752i \(0.721872\pi\)
\(354\) 14.7137 + 40.4257i 0.782027 + 2.14860i
\(355\) −23.9548 4.13324i −1.27139 0.219369i
\(356\) −21.2189 + 17.8048i −1.12460 + 0.943653i
\(357\) 0.107917 + 24.7018i 0.00571157 + 1.30736i
\(358\) −4.72080 + 1.71823i −0.249502 + 0.0908114i
\(359\) −6.11200 −0.322579 −0.161290 0.986907i \(-0.551565\pi\)
−0.161290 + 0.986907i \(0.551565\pi\)
\(360\) −12.0395 + 14.4556i −0.634536 + 0.761875i
\(361\) 17.1284 0.901492
\(362\) 3.61243 + 9.92507i 0.189865 + 0.521650i
\(363\) 11.8988i 0.624527i
\(364\) 9.19849 7.71845i 0.482132 0.404557i
\(365\) 1.82387 10.5705i 0.0954657 0.553285i
\(366\) 18.0608 6.57359i 0.944052 0.343607i
\(367\) 20.2183 1.05539 0.527695 0.849434i \(-0.323057\pi\)
0.527695 + 0.849434i \(0.323057\pi\)
\(368\) 0.994605 5.64069i 0.0518474 0.294041i
\(369\) 23.1597i 1.20564i
\(370\) −1.36527 7.57996i −0.0709769 0.394063i
\(371\) −22.4537 −1.16574
\(372\) 23.2632 19.5202i 1.20614 1.01207i
\(373\) 35.3438 1.83003 0.915016 0.403419i \(-0.132178\pi\)
0.915016 + 0.403419i \(0.132178\pi\)
\(374\) −4.99769 13.5466i −0.258424 0.700478i
\(375\) 23.8158 + 13.4024i 1.22984 + 0.692099i
\(376\) 0.414388 0.717741i 0.0213704 0.0370147i
\(377\) −17.7146 −0.912350
\(378\) −0.202817 + 0.0738195i −0.0104318 + 0.00379687i
\(379\) −17.6653 −0.907404 −0.453702 0.891153i \(-0.649897\pi\)
−0.453702 + 0.891153i \(0.649897\pi\)
\(380\) 5.28728 3.07856i 0.271232 0.157927i
\(381\) −3.18534 −0.163190
\(382\) 5.84448 + 16.0576i 0.299030 + 0.821578i
\(383\) 28.5067i 1.45662i −0.685246 0.728312i \(-0.740305\pi\)
0.685246 0.728312i \(-0.259695\pi\)
\(384\) −21.1841 17.7756i −1.08105 0.907107i
\(385\) 2.30765 13.3743i 0.117609 0.681619i
\(386\) 6.23145 + 17.1208i 0.317172 + 0.871424i
\(387\) −15.0134 −0.763172
\(388\) 5.02436 4.21594i 0.255073 0.214032i
\(389\) 18.5485i 0.940445i −0.882548 0.470223i \(-0.844174\pi\)
0.882548 0.470223i \(-0.155826\pi\)
\(390\) 3.35619 + 18.6335i 0.169947 + 0.943544i
\(391\) 5.90393 0.0257930i 0.298574 0.00130441i
\(392\) 2.43043 + 1.40321i 0.122755 + 0.0708729i
\(393\) 45.7158i 2.30606i
\(394\) −18.5633 + 6.75648i −0.935204 + 0.340387i
\(395\) −19.4926 3.36331i −0.980777 0.169227i
\(396\) −11.2850 + 9.46925i −0.567093 + 0.475848i
\(397\) 10.8537i 0.544732i −0.962194 0.272366i \(-0.912194\pi\)
0.962194 0.272366i \(-0.0878062\pi\)
\(398\) 28.4402 10.3514i 1.42558 0.518867i
\(399\) −8.19635 −0.410331
\(400\) −9.87253 + 17.3935i −0.493627 + 0.869674i
\(401\) 35.9604i 1.79578i −0.440222 0.897889i \(-0.645100\pi\)
0.440222 0.897889i \(-0.354900\pi\)
\(402\) −28.9120 + 10.5231i −1.44200 + 0.524846i
\(403\) 15.2163i 0.757980i
\(404\) −2.01653 2.40320i −0.100326 0.119564i
\(405\) 3.45061 19.9985i 0.171462 0.993735i
\(406\) 8.57394 + 23.5567i 0.425517 + 1.16910i
\(407\) 6.03114i 0.298953i
\(408\) 14.1445 24.7481i 0.700258 1.22521i
\(409\) −2.08221 −0.102959 −0.0514794 0.998674i \(-0.516394\pi\)
−0.0514794 + 0.998674i \(0.516394\pi\)
\(410\) 4.36449 + 24.2316i 0.215547 + 1.19671i
\(411\) 24.4648 1.20676
\(412\) −12.3900 14.7658i −0.610411 0.727459i
\(413\) 30.5044i 1.50102i
\(414\) −2.06018 5.66030i −0.101252 0.278188i
\(415\) −5.23842 + 30.3600i −0.257144 + 1.49032i
\(416\) −13.6459 + 2.40614i −0.669045 + 0.117971i
\(417\) 22.9822i 1.12544i
\(418\) 4.50208 1.63862i 0.220204 0.0801476i
\(419\) 39.7488 1.94186 0.970928 0.239373i \(-0.0769418\pi\)
0.970928 + 0.239373i \(0.0769418\pi\)
\(420\) 23.1542 13.4817i 1.12981 0.657839i
\(421\) 24.6387i 1.20082i −0.799694 0.600408i \(-0.795005\pi\)
0.799694 0.600408i \(-0.204995\pi\)
\(422\) 7.91410 + 21.7438i 0.385252 + 1.05847i
\(423\) 0.871585i 0.0423779i
\(424\) 22.4392 + 12.9553i 1.08974 + 0.629163i
\(425\) −19.4535 6.82355i −0.943634 0.330991i
\(426\) −12.8527 35.3126i −0.622718 1.71090i
\(427\) −13.6283 −0.659519
\(428\) −9.20582 10.9711i −0.444980 0.530306i
\(429\) 14.8261i 0.715812i
\(430\) −15.7082 + 2.82930i −0.757518 + 0.136441i
\(431\) 18.3142i 0.882162i 0.897467 + 0.441081i \(0.145405\pi\)
−0.897467 + 0.441081i \(0.854595\pi\)
\(432\) 0.245278 + 0.0432492i 0.0118010 + 0.00208083i
\(433\) 9.79590i 0.470761i −0.971903 0.235381i \(-0.924366\pi\)
0.971903 0.235381i \(-0.0756336\pi\)
\(434\) −20.2345 + 7.36475i −0.971287 + 0.353520i
\(435\) −38.9514 6.72080i −1.86758 0.322238i
\(436\) 24.0565 20.1858i 1.15210 0.966724i
\(437\) 1.95899i 0.0937112i
\(438\) 15.5824 5.67152i 0.744554 0.270996i
\(439\) 12.7651i 0.609245i 0.952473 + 0.304622i \(0.0985302\pi\)
−0.952473 + 0.304622i \(0.901470\pi\)
\(440\) −10.0228 + 12.0342i −0.477819 + 0.573708i
\(441\) 2.95138 0.140542
\(442\) −4.94361 13.4000i −0.235144 0.637374i
\(443\) −24.8545 −1.18087 −0.590437 0.807084i \(-0.701044\pi\)
−0.590437 + 0.807084i \(0.701044\pi\)
\(444\) 9.12085 7.65330i 0.432856 0.363210i
\(445\) −5.26566 + 30.5179i −0.249616 + 1.44669i
\(446\) −35.0271 + 12.7488i −1.65858 + 0.603673i
\(447\) 16.9145 0.800027
\(448\) 9.80431 + 16.9816i 0.463210 + 0.802303i
\(449\) 23.8359i 1.12489i −0.826836 0.562443i \(-0.809862\pi\)
0.826836 0.562443i \(-0.190138\pi\)
\(450\) 0.154464 + 21.0325i 0.00728152 + 0.991482i
\(451\) 19.2803i 0.907876i
\(452\) −10.5947 + 8.88999i −0.498332 + 0.418150i
\(453\) 42.0374i 1.97509i
\(454\) 4.64643 1.69116i 0.218068 0.0793701i
\(455\) 2.28268 13.2296i 0.107014 0.620214i
\(456\) 8.19104 + 4.72910i 0.383581 + 0.221460i
\(457\) 31.5870i 1.47758i 0.673937 + 0.738789i \(0.264602\pi\)
−0.673937 + 0.738789i \(0.735398\pi\)
\(458\) 29.1208 10.5991i 1.36073 0.495264i
\(459\) 0.00112158 + 0.256725i 5.23506e−5 + 0.0119829i
\(460\) −3.22223 5.53403i −0.150237 0.258026i
\(461\) 25.4407i 1.18489i −0.805610 0.592447i \(-0.798162\pi\)
0.805610 0.592447i \(-0.201838\pi\)
\(462\) 19.7156 7.17589i 0.917252 0.333853i
\(463\) 6.77616i 0.314915i −0.987526 0.157457i \(-0.949670\pi\)
0.987526 0.157457i \(-0.0503297\pi\)
\(464\) 5.02327 28.4884i 0.233200 1.32254i
\(465\) 5.77297 33.4581i 0.267715 1.55158i
\(466\) −0.704843 1.93654i −0.0326512 0.0897085i
\(467\) 0.322265 0.0149126 0.00745632 0.999972i \(-0.497627\pi\)
0.00745632 + 0.999972i \(0.497627\pi\)
\(468\) −11.1629 + 9.36679i −0.516006 + 0.432980i
\(469\) 21.8164 1.00739
\(470\) −0.164252 0.911925i −0.00757638 0.0420640i
\(471\) 20.7491i 0.956068i
\(472\) −17.6003 + 30.4846i −0.810119 + 1.40317i
\(473\) −12.4986 −0.574685
\(474\) −10.4586 28.7347i −0.480379 1.31983i
\(475\) 2.29229 6.44488i 0.105177 0.295712i
\(476\) −15.4265 + 13.0596i −0.707071 + 0.598586i
\(477\) 27.2489 1.24764
\(478\) 6.79078 + 18.6575i 0.310603 + 0.853375i
\(479\) 2.74216i 0.125292i −0.998036 0.0626462i \(-0.980046\pi\)
0.998036 0.0626462i \(-0.0199540\pi\)
\(480\) −30.9178 + 0.113530i −1.41120 + 0.00518190i
\(481\) 5.96589i 0.272021i
\(482\) −8.66213 + 3.15276i −0.394549 + 0.143604i
\(483\) 8.57885i 0.390351i
\(484\) 7.45824 6.25821i 0.339011 0.284464i
\(485\) 1.24684 7.22622i 0.0566159 0.328126i
\(486\) 29.2324 10.6397i 1.32601 0.482627i
\(487\) 12.7568 0.578064 0.289032 0.957319i \(-0.406667\pi\)
0.289032 + 0.957319i \(0.406667\pi\)
\(488\) 13.6195 + 7.86319i 0.616524 + 0.355950i
\(489\) −24.2157 −1.09507
\(490\) 3.08799 0.556194i 0.139501 0.0251263i
\(491\) 20.5459i 0.927224i −0.886038 0.463612i \(-0.846553\pi\)
0.886038 0.463612i \(-0.153447\pi\)
\(492\) −29.1575 + 24.4660i −1.31452 + 1.10301i
\(493\) 29.8179 0.130268i 1.34293 0.00586697i
\(494\) 4.45336 1.62089i 0.200366 0.0729274i
\(495\) −2.80047 + 16.2305i −0.125872 + 0.729508i
\(496\) 24.4707 + 4.31484i 1.09877 + 0.193742i
\(497\) 26.6462i 1.19524i
\(498\) −44.7549 + 16.2894i −2.00551 + 0.729947i
\(499\) 2.77678 0.124306 0.0621529 0.998067i \(-0.480203\pi\)
0.0621529 + 0.998067i \(0.480203\pi\)
\(500\) 4.12523 + 21.9769i 0.184486 + 0.982835i
\(501\) 51.8037i 2.31442i
\(502\) 35.1218 12.7833i 1.56756 0.570546i
\(503\) −31.4367 −1.40169 −0.700846 0.713313i \(-0.747194\pi\)
−0.700846 + 0.713313i \(0.747194\pi\)
\(504\) 17.8587 + 10.3107i 0.795491 + 0.459277i
\(505\) −3.45638 0.596375i −0.153807 0.0265383i
\(506\) −1.71509 4.71218i −0.0762452 0.209482i
\(507\) 17.1100i 0.759881i
\(508\) −1.67533 1.99658i −0.0743309 0.0885841i
\(509\) 25.2633i 1.11978i 0.828568 + 0.559889i \(0.189156\pi\)
−0.828568 + 0.559889i \(0.810844\pi\)
\(510\) −5.78627 31.3399i −0.256220 1.38775i
\(511\) −11.7581 −0.520149
\(512\) 22.6274i 1.00000i
\(513\) −0.0851842 −0.00376098
\(514\) 41.0525 14.9419i 1.81075 0.659058i
\(515\) −21.2367 3.66426i −0.935803 0.161467i
\(516\) −15.8602 18.9015i −0.698207 0.832091i
\(517\) 0.725592i 0.0319115i
\(518\) −7.93336 + 2.88751i −0.348572 + 0.126870i
\(519\) −1.65170 −0.0725014
\(520\) −9.91438 + 11.9040i −0.434774 + 0.522025i
\(521\) 6.70567i 0.293781i −0.989153 0.146890i \(-0.953074\pi\)
0.989153 0.146890i \(-0.0469264\pi\)
\(522\) −10.4050 28.5874i −0.455414 1.25124i
\(523\) −22.0466 −0.964029 −0.482015 0.876163i \(-0.660095\pi\)
−0.482015 + 0.876163i \(0.660095\pi\)
\(524\) 28.6549 24.0443i 1.25179 1.05038i
\(525\) 10.0384 28.2236i 0.438113 1.23178i
\(526\) −19.1245 + 6.96076i −0.833869 + 0.303503i
\(527\) 0.111896 + 25.6127i 0.00487428 + 1.11571i
\(528\) −23.8431 4.20419i −1.03764 0.182964i
\(529\) −20.9496 −0.910852
\(530\) 28.5101 5.13511i 1.23840 0.223055i
\(531\) 37.0188i 1.60648i
\(532\) −4.31088 5.13751i −0.186900 0.222739i
\(533\) 19.0717i 0.826088i
\(534\) −44.9875 + 16.3741i −1.94680 + 0.708578i
\(535\) −15.7790 2.72256i −0.682186 0.117707i
\(536\) −21.8023 12.5875i −0.941715 0.543699i
\(537\) −8.68294 −0.374697
\(538\) 5.98750 + 16.4505i 0.258140 + 0.709233i
\(539\) 2.45702 0.105831
\(540\) 0.240640 0.140114i 0.0103555 0.00602957i
\(541\) 33.6997 1.44886 0.724431 0.689348i \(-0.242103\pi\)
0.724431 + 0.689348i \(0.242103\pi\)
\(542\) 12.5688 + 34.5324i 0.539874 + 1.48329i
\(543\) 18.2551i 0.783402i
\(544\) 22.9516 4.15045i 0.984040 0.177949i
\(545\) 5.96982 34.5990i 0.255719 1.48206i
\(546\) 19.5023 7.09825i 0.834620 0.303777i
\(547\) 19.4137i 0.830070i 0.909805 + 0.415035i \(0.136231\pi\)
−0.909805 + 0.415035i \(0.863769\pi\)
\(548\) 12.8673 + 15.3346i 0.549663 + 0.655063i
\(549\) 16.5387 0.705855
\(550\) 0.128591 + 17.5095i 0.00548314 + 0.746607i
\(551\) 9.89392i 0.421495i
\(552\) 4.94980 8.57330i 0.210677 0.364904i
\(553\) 21.6826i 0.922038i
\(554\) 11.0377 4.01741i 0.468949 0.170683i
\(555\) 2.26341 13.1179i 0.0960765 0.556826i
\(556\) −14.4053 + 12.0875i −0.610922 + 0.512624i
\(557\) −6.56797 −0.278294 −0.139147 0.990272i \(-0.544436\pi\)
−0.139147 + 0.990272i \(0.544436\pi\)
\(558\) 24.5557 8.93756i 1.03953 0.378357i
\(559\) −12.3633 −0.522913
\(560\) 20.6284 + 7.42245i 0.871708 + 0.313656i
\(561\) −0.109027 24.9558i −0.00460311 1.05364i
\(562\) 10.4341 + 28.6676i 0.440138 + 1.20927i
\(563\) 5.91485 0.249281 0.124641 0.992202i \(-0.460222\pi\)
0.124641 + 0.992202i \(0.460222\pi\)
\(564\) 1.09731 0.920749i 0.0462049 0.0387705i
\(565\) −2.62916 + 15.2377i −0.110610 + 0.641054i
\(566\) 17.5808 6.39890i 0.738977 0.268966i
\(567\) −22.2454 −0.934220
\(568\) 15.3742 26.6289i 0.645087 1.11732i
\(569\) −25.7452 −1.07929 −0.539647 0.841892i \(-0.681442\pi\)
−0.539647 + 0.841892i \(0.681442\pi\)
\(570\) 10.4071 1.87448i 0.435906 0.0785135i
\(571\) −5.12821 −0.214609 −0.107305 0.994226i \(-0.534222\pi\)
−0.107305 + 0.994226i \(0.534222\pi\)
\(572\) −9.29308 + 7.79782i −0.388563 + 0.326043i
\(573\) 29.5346i 1.23383i
\(574\) 25.3613 9.23078i 1.05856 0.385285i
\(575\) −6.74565 2.39926i −0.281313 0.100056i
\(576\) −11.8981 20.6081i −0.495754 0.858672i
\(577\) 15.5372i 0.646822i 0.946259 + 0.323411i \(0.104830\pi\)
−0.946259 + 0.323411i \(0.895170\pi\)
\(578\) 8.41980 + 22.5190i 0.350218 + 0.936668i
\(579\) 31.4901i 1.30868i
\(580\) −16.2739 27.9497i −0.675738 1.16055i
\(581\) 33.7711 1.40106
\(582\) 10.6524 3.87717i 0.441558 0.160714i
\(583\) 22.6846 0.939501
\(584\) 11.7505 + 6.78416i 0.486239 + 0.280730i
\(585\) −2.77017 + 16.0549i −0.114532 + 0.663789i
\(586\) −9.35712 25.7085i −0.386539 1.06201i
\(587\) 28.1980 1.16386 0.581929 0.813240i \(-0.302298\pi\)
0.581929 + 0.813240i \(0.302298\pi\)
\(588\) 3.11786 + 3.71573i 0.128579 + 0.153234i
\(589\) −8.49858 −0.350178
\(590\) 6.97627 + 38.7322i 0.287209 + 1.59458i
\(591\) −34.1433 −1.40447
\(592\) 9.59425 + 1.69172i 0.394321 + 0.0695295i
\(593\) 7.05467i 0.289701i 0.989454 + 0.144850i \(0.0462701\pi\)
−0.989454 + 0.144850i \(0.953730\pi\)
\(594\) 0.204903 0.0745786i 0.00840728 0.00306000i
\(595\) −3.74500 + 22.2853i −0.153530 + 0.913610i
\(596\) 8.89620 + 10.6021i 0.364402 + 0.434278i
\(597\) 52.3098 2.14090
\(598\) −1.69654 4.66119i −0.0693765 0.190610i
\(599\) −4.07024 −0.166306 −0.0831528 0.996537i \(-0.526499\pi\)
−0.0831528 + 0.996537i \(0.526499\pi\)
\(600\) −26.3163 + 22.4134i −1.07436 + 0.915022i
\(601\) 44.7775i 1.82651i −0.407388 0.913255i \(-0.633560\pi\)
0.407388 0.913255i \(-0.366440\pi\)
\(602\) 5.98389 + 16.4406i 0.243885 + 0.670069i
\(603\) −26.4755 −1.07817
\(604\) 26.3493 22.1097i 1.07214 0.899629i
\(605\) 1.85082 10.7267i 0.0752467 0.436103i
\(606\) −1.85449 5.09518i −0.0753336 0.206977i
\(607\) −29.5562 −1.19965 −0.599824 0.800132i \(-0.704763\pi\)
−0.599824 + 0.800132i \(0.704763\pi\)
\(608\) 1.34387 + 7.62146i 0.0545011 + 0.309091i
\(609\) 43.3277i 1.75573i
\(610\) 17.3042 3.11675i 0.700626 0.126194i
\(611\) 0.717741i 0.0290367i
\(612\) 18.7209 15.8486i 0.756748 0.640642i
\(613\) 5.16244 0.208509 0.104254 0.994551i \(-0.466754\pi\)
0.104254 + 0.994551i \(0.466754\pi\)
\(614\) −2.46787 6.78042i −0.0995952 0.273636i
\(615\) −7.23567 + 41.9354i −0.291770 + 1.69100i
\(616\) 14.8673 + 8.58366i 0.599022 + 0.345845i
\(617\) 27.0679 1.08971 0.544857 0.838529i \(-0.316584\pi\)
0.544857 + 0.838529i \(0.316584\pi\)
\(618\) −11.3944 31.3059i −0.458350 1.25931i
\(619\) −9.40241 −0.377915 −0.188957 0.981985i \(-0.560511\pi\)
−0.188957 + 0.981985i \(0.560511\pi\)
\(620\) 24.0080 13.9788i 0.964184 0.561402i
\(621\) 0.0891596i 0.00357785i
\(622\) −5.78320 + 2.10491i −0.231885 + 0.0843993i
\(623\) 33.9466 1.36004
\(624\) −23.5852 4.15870i −0.944162 0.166481i
\(625\) 19.3851 + 15.7867i 0.775403 + 0.631467i
\(626\) −10.1024 27.7560i −0.403772 1.10935i
\(627\) 8.28064 0.330697
\(628\) −13.0056 + 10.9130i −0.518981 + 0.435477i
\(629\) 0.0438713 + 10.0420i 0.00174926 + 0.400400i
\(630\) 22.6904 4.08689i 0.904007 0.162826i
\(631\) 11.0504 0.439910 0.219955 0.975510i \(-0.429409\pi\)
0.219955 + 0.975510i \(0.429409\pi\)
\(632\) 12.5103 21.6686i 0.497635 0.861929i
\(633\) 39.9932i 1.58959i
\(634\) −27.2213 + 9.90775i −1.08110 + 0.393487i
\(635\) −2.87156 0.495469i −0.113955 0.0196621i
\(636\) 28.7859 + 34.3058i 1.14144 + 1.36031i
\(637\) 2.43043 0.0962973
\(638\) −8.66211 23.7989i −0.342936 0.942209i
\(639\) 32.3367i 1.27922i
\(640\) −16.3324 19.3197i −0.645596 0.763679i
\(641\) 18.8190i 0.743306i 0.928372 + 0.371653i \(0.121209\pi\)
−0.928372 + 0.371653i \(0.878791\pi\)
\(642\) −8.46610 23.2604i −0.334130 0.918015i
\(643\) 27.0209i 1.06560i 0.846241 + 0.532801i \(0.178861\pi\)
−0.846241 + 0.532801i \(0.821139\pi\)
\(644\) −5.37727 + 4.51206i −0.211894 + 0.177800i
\(645\) −27.1848 4.69056i −1.07040 0.184690i
\(646\) −7.48414 + 2.76109i −0.294459 + 0.108634i
\(647\) 24.0203i 0.944335i 0.881509 + 0.472168i \(0.156528\pi\)
−0.881509 + 0.472168i \(0.843472\pi\)
\(648\) 22.2310 + 12.8351i 0.873317 + 0.504210i
\(649\) 30.8180i 1.20971i
\(650\) 0.127200 + 17.3200i 0.00498918 + 0.679348i
\(651\) −37.2172 −1.45866
\(652\) −12.7363 15.1785i −0.498791 0.594436i
\(653\) 0.294016i 0.0115057i 0.999983 + 0.00575286i \(0.00183120\pi\)
−0.999983 + 0.00575286i \(0.998169\pi\)
\(654\) 51.0036 18.5638i 1.99440 0.725902i
\(655\) 7.11095 41.2125i 0.277848 1.61031i
\(656\) −30.6709 5.40810i −1.19750 0.211151i
\(657\) 14.2692 0.556693
\(658\) −0.954443 + 0.347389i −0.0372080 + 0.0135426i
\(659\) 7.63585i 0.297451i 0.988879 + 0.148725i \(0.0475170\pi\)
−0.988879 + 0.148725i \(0.952483\pi\)
\(660\) −23.3923 + 13.6203i −0.910544 + 0.530170i
\(661\) 21.3029i 0.828588i 0.910143 + 0.414294i \(0.135971\pi\)
−0.910143 + 0.414294i \(0.864029\pi\)
\(662\) −8.77429 + 3.19358i −0.341022 + 0.124122i
\(663\) −0.107847 24.6858i −0.00418843 0.958718i
\(664\) −33.7492 19.4851i −1.30972 0.756169i
\(665\) −7.38896 1.27492i −0.286532 0.0494391i
\(666\) 9.62760 3.50416i 0.373062 0.135783i
\(667\) 10.3556 0.400972
\(668\) −32.4708 + 27.2462i −1.25633 + 1.05419i
\(669\) −64.4250 −2.49082
\(670\) −27.7009 + 4.98936i −1.07018 + 0.192756i
\(671\) 13.7684 0.531524
\(672\) 5.88510 + 33.3761i 0.227023 + 1.28751i
\(673\) −10.3584 −0.399286 −0.199643 0.979869i \(-0.563978\pi\)
−0.199643 + 0.979869i \(0.563978\pi\)
\(674\) 13.0493 + 35.8526i 0.502640 + 1.38099i
\(675\) 0.104329 0.293326i 0.00401562 0.0112901i
\(676\) 10.7246 8.99903i 0.412485 0.346116i
\(677\) 25.4377i 0.977652i −0.872381 0.488826i \(-0.837425\pi\)
0.872381 0.488826i \(-0.162575\pi\)
\(678\) −22.4624 + 8.17565i −0.862664 + 0.313984i
\(679\) −8.03810 −0.308474
\(680\) 16.6007 20.1101i 0.636607 0.771188i
\(681\) 8.54614 0.327489
\(682\) 20.4426 7.44049i 0.782787 0.284911i
\(683\) 13.0714i 0.500165i 0.968225 + 0.250082i \(0.0804577\pi\)
−0.968225 + 0.250082i \(0.919542\pi\)
\(684\) 5.23151 + 6.23467i 0.200032 + 0.238389i
\(685\) 22.0548 + 3.80541i 0.842672 + 0.145397i
\(686\) −9.47526 26.0331i −0.361767 0.993947i
\(687\) 53.5618 2.04351
\(688\) 3.50582 19.8825i 0.133658 0.758014i
\(689\) 22.4392 0.854865
\(690\) −1.96196 10.8928i −0.0746907 0.414682i
\(691\) −18.6715 −0.710297 −0.355148 0.934810i \(-0.615570\pi\)
−0.355148 + 0.934810i \(0.615570\pi\)
\(692\) −0.868712 1.03529i −0.0330235 0.0393559i
\(693\) 18.0541 0.685817
\(694\) −10.9056 + 3.96930i −0.413970 + 0.150673i
\(695\) −3.57480 + 20.7183i −0.135600 + 0.785889i
\(696\) 24.9990 43.2996i 0.947586 1.64127i
\(697\) −0.140248 32.1022i −0.00531225 1.21596i
\(698\) −33.3703 + 12.1458i −1.26308 + 0.459725i
\(699\) 3.56187i 0.134722i
\(700\) 22.9704 8.55210i 0.868200 0.323239i
\(701\) 4.47088i 0.168863i 0.996429 + 0.0844313i \(0.0269074\pi\)
−0.996429 + 0.0844313i \(0.973093\pi\)
\(702\) 0.202686 0.0737717i 0.00764989 0.00278433i
\(703\) −3.33205 −0.125671
\(704\) −9.90513 17.1562i −0.373314 0.646598i
\(705\) 0.272305 1.57819i 0.0102556 0.0594379i
\(706\) −38.2889 + 13.9360i −1.44102 + 0.524489i
\(707\) 3.84471i 0.144595i
\(708\) −46.6059 + 39.1070i −1.75156 + 1.46973i
\(709\) −29.3419 −1.10196 −0.550978 0.834520i \(-0.685745\pi\)
−0.550978 + 0.834520i \(0.685745\pi\)
\(710\) −6.09391 33.8333i −0.228700 1.26974i
\(711\) 26.3131i 0.986819i
\(712\) −33.9246 19.5864i −1.27138 0.734032i
\(713\) 8.89519i 0.333127i
\(714\) −32.7747 + 12.0914i −1.22656 + 0.452510i
\(715\) −2.30616 + 13.3657i −0.0862453 + 0.499847i
\(716\) −4.56681 5.44251i −0.170670 0.203396i
\(717\) 34.3166i 1.28158i
\(718\) −2.95631 8.12240i −0.110329 0.303125i
\(719\) 40.6462i 1.51585i −0.652343 0.757924i \(-0.726214\pi\)
0.652343 0.757924i \(-0.273786\pi\)
\(720\) −25.0337 9.00757i −0.932952 0.335692i
\(721\) 23.6227i 0.879757i
\(722\) 8.28481 + 22.7623i 0.308329 + 0.847126i
\(723\) −15.9322 −0.592525
\(724\) −11.4424 + 9.60130i −0.425253 + 0.356830i
\(725\) −34.0691 12.1175i −1.26529 0.450034i
\(726\) 15.8127 5.75534i 0.586863 0.213601i
\(727\) 12.6204i 0.468064i −0.972229 0.234032i \(-0.924808\pi\)
0.972229 0.234032i \(-0.0751921\pi\)
\(728\) 14.7065 + 8.49078i 0.545058 + 0.314689i
\(729\) 26.5395 0.982946
\(730\) 14.9296 2.68905i 0.552569 0.0995263i
\(731\) 20.8104 0.0909161i 0.769700 0.00336265i
\(732\) 17.4716 + 20.8219i 0.645770 + 0.769598i
\(733\) 27.9511 1.03240 0.516198 0.856469i \(-0.327347\pi\)
0.516198 + 0.856469i \(0.327347\pi\)
\(734\) 9.77940 + 26.8687i 0.360964 + 0.991741i
\(735\) 5.34410 + 0.922088i 0.197120 + 0.0340117i
\(736\) 7.97714 1.40658i 0.294041 0.0518474i
\(737\) −22.0408 −0.811882
\(738\) −30.7775 + 11.2021i −1.13293 + 0.412355i
\(739\) 6.33410i 0.233004i −0.993190 0.116502i \(-0.962832\pi\)
0.993190 0.116502i \(-0.0371681\pi\)
\(740\) 9.41284 5.48069i 0.346023 0.201474i
\(741\) 8.19104 0.300905
\(742\) −10.8606 29.8393i −0.398706 1.09544i
\(743\) 26.0637 0.956185 0.478093 0.878309i \(-0.341328\pi\)
0.478093 + 0.878309i \(0.341328\pi\)
\(744\) 37.1931 + 21.4734i 1.36356 + 0.787254i
\(745\) 15.2483 + 2.63099i 0.558655 + 0.0963921i
\(746\) 17.0954 + 46.9693i 0.625908 + 1.71967i
\(747\) −40.9832 −1.49950
\(748\) 15.5851 13.1939i 0.569848 0.482417i
\(749\) 17.5518i 0.641329i
\(750\) −6.29140 + 38.1320i −0.229730 + 1.39238i
\(751\) 1.56092i 0.0569587i 0.999594 + 0.0284794i \(0.00906649\pi\)
−0.999594 + 0.0284794i \(0.990934\pi\)
\(752\) 1.15426 + 0.203527i 0.0420915 + 0.00742187i
\(753\) 64.5993 2.35413
\(754\) −8.56839 23.5414i −0.312042 0.857329i
\(755\) 6.53878 37.8965i 0.237971 1.37919i
\(756\) −0.196201 0.233824i −0.00713577 0.00850409i
\(757\) 26.8691 0.976574 0.488287 0.872683i \(-0.337622\pi\)
0.488287 + 0.872683i \(0.337622\pi\)
\(758\) −8.54451 23.4758i −0.310351 0.852681i
\(759\) 8.66707i 0.314595i
\(760\) 6.64858 + 5.53734i 0.241169 + 0.200861i
\(761\) −14.3215 −0.519155 −0.259578 0.965722i \(-0.583583\pi\)
−0.259578 + 0.965722i \(0.583583\pi\)
\(762\) −1.54071 4.23308i −0.0558142 0.153348i
\(763\) −38.4862 −1.39330
\(764\) −18.5124 + 15.5338i −0.669756 + 0.561992i
\(765\) 4.54478 27.0446i 0.164317 0.977798i
\(766\) 37.8833 13.7884i 1.36878 0.498195i
\(767\) 30.4846i 1.10074i
\(768\) 13.3759 36.7500i 0.482662 1.32610i
\(769\) −44.1777 −1.59309 −0.796543 0.604581i \(-0.793340\pi\)
−0.796543 + 0.604581i \(0.793340\pi\)
\(770\) 18.8897 3.40233i 0.680737 0.122611i
\(771\) 75.5076 2.71934
\(772\) −19.7382 + 16.5623i −0.710392 + 0.596089i
\(773\) 42.6576 1.53429 0.767144 0.641475i \(-0.221677\pi\)
0.767144 + 0.641475i \(0.221677\pi\)
\(774\) −7.26180 19.9516i −0.261020 0.717147i
\(775\) 10.4086 29.2643i 0.373888 1.05120i
\(776\) 8.03289 + 4.63779i 0.288364 + 0.166487i
\(777\) −14.5918 −0.523477
\(778\) 24.6496 8.97170i 0.883729 0.321651i
\(779\) 10.6519 0.381643
\(780\) −23.1392 + 13.4730i −0.828516 + 0.482409i
\(781\) 26.9202i 0.963279i
\(782\) 2.88994 + 7.83340i 0.103344 + 0.280122i
\(783\) 0.450302i 0.0160925i
\(784\) −0.689189 + 3.90858i −0.0246139 + 0.139592i
\(785\) −3.22745 + 18.7052i −0.115193 + 0.667617i
\(786\) 60.7529 22.1123i 2.16699 0.788718i
\(787\) 19.7394i 0.703632i −0.936069 0.351816i \(-0.885564\pi\)
0.936069 0.351816i \(-0.114436\pi\)
\(788\) −17.9577 21.4012i −0.639718 0.762386i
\(789\) −35.1756 −1.25228
\(790\) −4.95876 27.5310i −0.176425 0.979508i
\(791\) 16.9497 0.602661
\(792\) −18.0424 10.4168i −0.641108 0.370144i
\(793\) 13.6195 0.483641
\(794\) 14.4238 5.24983i 0.511881 0.186309i
\(795\) 49.3398 + 8.51326i 1.74990 + 0.301934i
\(796\) 27.5124 + 32.7880i 0.975152 + 1.16214i
\(797\) −31.3920 −1.11196 −0.555981 0.831195i \(-0.687657\pi\)
−0.555981 + 0.831195i \(0.687657\pi\)
\(798\) −3.96449 10.8923i −0.140341 0.385585i
\(799\) 0.00527804 + 1.20813i 0.000186724 + 0.0427404i
\(800\) −27.8899 4.70682i −0.986056 0.166411i
\(801\) −41.1962 −1.45560
\(802\) 47.7887 17.3937i 1.68748 0.614192i
\(803\) 11.8790 0.419202
\(804\) −27.9689 33.3320i −0.986387 1.17553i
\(805\) −1.33441 + 7.73379i −0.0470319 + 0.272580i
\(806\) 20.2214 7.35998i 0.712268 0.259244i
\(807\) 30.2573i 1.06511i
\(808\) 2.21831 3.84222i 0.0780398 0.135169i
\(809\) 48.9537i 1.72112i 0.509349 + 0.860560i \(0.329886\pi\)
−0.509349 + 0.860560i \(0.670114\pi\)
\(810\) 28.2456 5.08747i 0.992449 0.178756i
\(811\) 19.6878 0.691334 0.345667 0.938357i \(-0.387653\pi\)
0.345667 + 0.938357i \(0.387653\pi\)
\(812\) −27.1580 + 22.7883i −0.953059 + 0.799711i
\(813\) 63.5151i 2.22757i
\(814\) 8.01495 2.91720i 0.280924 0.102248i
\(815\) −21.8303 3.76667i −0.764682 0.131941i
\(816\) 39.7299 + 6.82663i 1.39083 + 0.238980i
\(817\) 6.90513i 0.241580i
\(818\) −1.00715 2.76711i −0.0352140 0.0967497i
\(819\) 17.8587 0.624034
\(820\) −30.0909 + 17.5206i −1.05082 + 0.611847i
\(821\) 15.0022 0.523580 0.261790 0.965125i \(-0.415687\pi\)
0.261790 + 0.965125i \(0.415687\pi\)
\(822\) 11.8333 + 32.5119i 0.412735 + 1.13398i
\(823\) −36.7195 −1.27996 −0.639981 0.768390i \(-0.721058\pi\)
−0.639981 + 0.768390i \(0.721058\pi\)
\(824\) 13.6298 23.6074i 0.474815 0.822404i
\(825\) −10.1417 + 28.5138i −0.353087 + 0.992724i
\(826\) 40.5380 14.7546i 1.41050 0.513380i
\(827\) 24.7896i 0.862019i −0.902347 0.431009i \(-0.858158\pi\)
0.902347 0.431009i \(-0.141842\pi\)
\(828\) 6.52563 5.47565i 0.226781 0.190292i
\(829\) 21.9879i 0.763672i 0.924230 + 0.381836i \(0.124708\pi\)
−0.924230 + 0.381836i \(0.875292\pi\)
\(830\) −42.8800 + 7.72336i −1.48839 + 0.268082i
\(831\) 20.3016 0.704256
\(832\) −9.79796 16.9706i −0.339683 0.588348i
\(833\) −4.09099 + 0.0178726i −0.141744 + 0.000619250i
\(834\) −30.5416 + 11.1162i −1.05757 + 0.384923i
\(835\) −8.05789 + 46.7007i −0.278855 + 1.61614i
\(836\) 4.35521 + 5.19034i 0.150628 + 0.179512i
\(837\) −0.386796 −0.0133696
\(838\) 19.2261 + 52.8232i 0.664154 + 1.82475i
\(839\) 24.2884i 0.838528i −0.907864 0.419264i \(-0.862288\pi\)
0.907864 0.419264i \(-0.137712\pi\)
\(840\) 29.1156 + 24.2493i 1.00458 + 0.836679i
\(841\) 23.3014 0.803497
\(842\) 32.7430 11.9175i 1.12840 0.410703i
\(843\) 52.7281i 1.81605i
\(844\) −25.0679 + 21.0345i −0.862874 + 0.724037i
\(845\) 2.66140 15.4246i 0.0915551 0.530621i
\(846\) 1.15827 0.421577i 0.0398222 0.0144941i
\(847\) −11.9319 −0.409985
\(848\) −6.36299 + 36.0863i −0.218506 + 1.23921i
\(849\) 32.3363 1.10978
\(850\) −0.341473 29.1528i −0.0117124 0.999931i
\(851\) 3.48755i 0.119552i
\(852\) 40.7111 34.1607i 1.39474 1.17033i
\(853\) 12.7808i 0.437605i −0.975769 0.218803i \(-0.929785\pi\)
0.975769 0.218803i \(-0.0702151\pi\)
\(854\) −6.59186 18.1110i −0.225569 0.619745i
\(855\) 8.96694 + 1.54718i 0.306663 + 0.0529126i
\(856\) 10.1270 17.5404i 0.346133 0.599520i
\(857\) 8.58247 0.293172 0.146586 0.989198i \(-0.453172\pi\)
0.146586 + 0.989198i \(0.453172\pi\)
\(858\) −19.7028 + 7.17124i −0.672643 + 0.244822i
\(859\) 9.06471i 0.309284i 0.987971 + 0.154642i \(0.0494224\pi\)
−0.987971 + 0.154642i \(0.950578\pi\)
\(860\) −11.3578 19.5066i −0.387299 0.665169i
\(861\) 46.6469 1.58972
\(862\) −24.3382 + 8.85837i −0.828961 + 0.301717i
\(863\) 55.9115i 1.90325i −0.307264 0.951624i \(-0.599413\pi\)
0.307264 0.951624i \(-0.400587\pi\)
\(864\) 0.0611636 + 0.346876i 0.00208083 + 0.0118010i
\(865\) −1.48899 0.256916i −0.0506273 0.00873541i
\(866\) 13.0180 4.73818i 0.442371 0.161010i
\(867\) 0.363064 + 41.5512i 0.0123303 + 1.41115i
\(868\) −19.5744 23.3279i −0.664399 0.791800i
\(869\) 21.9056i 0.743096i
\(870\) −9.90893 55.0143i −0.335944 1.86516i
\(871\) −21.8023 −0.738742
\(872\) 38.4613 + 22.2056i 1.30246 + 0.751978i
\(873\) 9.75471 0.330147
\(874\) −2.60335 + 0.947543i −0.0880597 + 0.0320511i
\(875\) 13.4397 23.8820i 0.454344 0.807357i
\(876\) 15.0741 + 17.9646i 0.509305 + 0.606966i
\(877\) 9.07425i 0.306416i −0.988194 0.153208i \(-0.951040\pi\)
0.988194 0.153208i \(-0.0489604\pi\)
\(878\) −16.9639 + 6.17434i −0.572503 + 0.208374i
\(879\) 47.2854i 1.59490i
\(880\) −20.8405 7.49877i −0.702533 0.252784i
\(881\) 22.6662i 0.763642i −0.924236 0.381821i \(-0.875297\pi\)
0.924236 0.381821i \(-0.124703\pi\)
\(882\) 1.42755 + 3.92217i 0.0480682 + 0.132066i
\(883\) −46.7195 −1.57224 −0.786119 0.618075i \(-0.787913\pi\)
−0.786119 + 0.618075i \(0.787913\pi\)
\(884\) 15.4165 13.0511i 0.518512 0.438958i
\(885\) −11.5656 + 67.0303i −0.388774 + 2.25320i
\(886\) −12.0219 33.0298i −0.403882 1.10966i
\(887\) −52.8203 −1.77353 −0.886765 0.462220i \(-0.847053\pi\)
−0.886765 + 0.462220i \(0.847053\pi\)
\(888\) 14.5823 + 8.41911i 0.489351 + 0.282527i
\(889\) 3.19419i 0.107130i
\(890\) −43.1029 + 7.76351i −1.44481 + 0.260234i
\(891\) 22.4742 0.752913
\(892\) −33.8844 40.3819i −1.13453 1.35209i
\(893\) −0.400870 −0.0134146
\(894\) 8.18136 + 22.4781i 0.273626 + 0.751780i
\(895\) −7.82762 1.35060i −0.261649 0.0451457i
\(896\) −17.8250 + 21.2430i −0.595491 + 0.709679i
\(897\) 8.57330i 0.286254i
\(898\) 31.6762 11.5292i 1.05705 0.384734i
\(899\) 44.9253i 1.49834i
\(900\) −27.8759 + 10.3785i −0.929198 + 0.345949i
\(901\) −37.7704 + 0.165011i −1.25831 + 0.00549730i
\(902\) −25.6222 + 9.32570i −0.853124 + 0.310512i
\(903\) 30.2391i 1.00629i
\(904\) −16.9387 9.77955i −0.563372 0.325263i
\(905\) −2.83952 + 16.4569i −0.0943889 + 0.547045i
\(906\) 55.8646 20.3331i 1.85598 0.675521i
\(907\) 37.9689i 1.26074i −0.776296 0.630369i \(-0.782904\pi\)
0.776296 0.630369i \(-0.217096\pi\)
\(908\) 4.49486 + 5.35676i 0.149167 + 0.177770i
\(909\) 4.66578i 0.154754i
\(910\) 18.6853 3.36551i 0.619411 0.111566i
\(911\) 0.938913i 0.0311076i −0.999879 0.0155538i \(-0.995049\pi\)
0.999879 0.0155538i \(-0.00495113\pi\)
\(912\) −2.32270 + 13.1727i −0.0769124 + 0.436192i
\(913\) −34.1184 −1.12915
\(914\) −41.9768 + 15.2783i −1.38847 + 0.505361i
\(915\) 29.9468 + 5.16712i 0.990010 + 0.170820i
\(916\) 28.1709 + 33.5728i 0.930793 + 1.10928i
\(917\) −45.8429 −1.51386
\(918\) −0.340626 + 0.125666i −0.0112423 + 0.00414758i
\(919\) 7.54759 0.248972 0.124486 0.992221i \(-0.460272\pi\)
0.124486 + 0.992221i \(0.460272\pi\)
\(920\) 5.79576 6.95885i 0.191081 0.229427i
\(921\) 12.4712i 0.410939i
\(922\) 33.8089 12.3054i 1.11344 0.405258i
\(923\) 26.6289i 0.876501i
\(924\) 19.0725 + 22.7297i 0.627438 + 0.747751i
\(925\) 4.08091 11.4737i 0.134179 0.377252i
\(926\) 9.00501 3.27756i 0.295923 0.107707i
\(927\) 28.6676i 0.941567i
\(928\) 40.2887 7.10398i 1.32254 0.233200i
\(929\) 44.5382i 1.46125i 0.682778 + 0.730625i \(0.260771\pi\)
−0.682778 + 0.730625i \(0.739229\pi\)
\(930\) 47.2556 8.51148i 1.54957 0.279102i
\(931\) 1.35744i 0.0444882i
\(932\) 2.23259 1.87337i 0.0731310 0.0613642i
\(933\) −10.6370 −0.348240
\(934\) 0.155876 + 0.428266i 0.00510043 + 0.0140133i
\(935\) 3.78351 22.5145i 0.123734 0.736303i
\(936\) −17.8472 10.3041i −0.583353 0.336799i
\(937\) 58.9476i 1.92574i −0.269974 0.962868i \(-0.587015\pi\)
0.269974 0.962868i \(-0.412985\pi\)
\(938\) 10.5524 + 28.9924i 0.344547 + 0.946635i
\(939\) 51.0515i 1.66600i
\(940\) 1.13243 0.659367i 0.0369359 0.0215062i
\(941\) −51.6074 −1.68235 −0.841177 0.540760i \(-0.818137\pi\)
−0.841177 + 0.540760i \(0.818137\pi\)
\(942\) −27.5740 + 10.0361i −0.898410 + 0.326994i
\(943\) 11.1490i 0.363061i
\(944\) −49.0249 8.64440i −1.59562 0.281351i
\(945\) −0.336294 0.0580253i −0.0109396 0.00188756i
\(946\) −6.04543 16.6097i −0.196554 0.540027i
\(947\) 3.86021i 0.125440i −0.998031 0.0627201i \(-0.980022\pi\)
0.998031 0.0627201i \(-0.0199775\pi\)
\(948\) 33.1276 27.7974i 1.07593 0.902816i
\(949\) 11.7505 0.381438
\(950\) 9.67353 0.0710431i 0.313851 0.00230494i
\(951\) −50.0680 −1.62357
\(952\) −24.8169 14.1838i −0.804319 0.459701i
\(953\) 4.23440i 0.137166i −0.997645 0.0685828i \(-0.978152\pi\)
0.997645 0.0685828i \(-0.0218477\pi\)
\(954\) 13.1800 + 36.2118i 0.426719 + 1.17240i
\(955\) −4.59401 + 26.6253i −0.148659 + 0.861574i
\(956\) −21.5098 + 18.0489i −0.695678 + 0.583743i
\(957\) 43.7732i 1.41499i
\(958\) 3.64412 1.32635i 0.117736 0.0428525i
\(959\) 24.5327i 0.792204i
\(960\) −15.1055 41.0326i −0.487528 1.32432i
\(961\) −7.58950 −0.244823
\(962\) 7.92822 2.88564i 0.255616 0.0930367i
\(963\) 21.3001i 0.686388i
\(964\) −8.37956 9.98637i −0.269888 0.321639i
\(965\) −4.89818 + 28.3882i −0.157678 + 0.913847i
\(966\) −11.4007 + 4.14950i −0.366810 + 0.133508i
\(967\) 22.9341i 0.737511i −0.929527 0.368755i \(-0.879784\pi\)
0.929527 0.368755i \(-0.120216\pi\)
\(968\) 11.9242 + 6.88442i 0.383257 + 0.221274i
\(969\) −13.7874 + 0.0602343i −0.442916 + 0.00193501i
\(970\) 10.2062 1.83829i 0.327701 0.0590241i
\(971\) 48.6846i 1.56236i −0.624304 0.781182i \(-0.714617\pi\)
0.624304 0.781182i \(-0.285383\pi\)
\(972\) 28.2788 + 33.7013i 0.907042 + 1.08097i
\(973\) 23.0460 0.738822
\(974\) 6.17031 + 16.9528i 0.197710 + 0.543202i
\(975\) −10.0319 + 28.2053i −0.321279 + 0.903293i
\(976\) −3.86202 + 21.9026i −0.123620 + 0.701085i
\(977\) 18.2712i 0.584547i −0.956335 0.292274i \(-0.905588\pi\)
0.956335 0.292274i \(-0.0944118\pi\)
\(978\) −11.7129 32.1808i −0.374536 1.02903i
\(979\) −34.2957 −1.09610
\(980\) 2.23277 + 3.83468i 0.0713231 + 0.122494i
\(981\) 46.7053 1.49119
\(982\) 27.3040 9.93784i 0.871306 0.317129i
\(983\) −40.5244 −1.29253 −0.646264 0.763114i \(-0.723670\pi\)
−0.646264 + 0.763114i \(0.723670\pi\)
\(984\) −46.6167 26.9142i −1.48609 0.857993i
\(985\) −30.7800 5.31088i −0.980732 0.169219i
\(986\) 14.5957 + 39.5628i 0.464822 + 1.25994i
\(987\) −1.75550 −0.0558782
\(988\) 4.30809 + 5.13418i 0.137059 + 0.163340i
\(989\) 7.22737 0.229817
\(990\) −22.9237 + 4.12892i −0.728564 + 0.131226i
\(991\) 29.5223i 0.937807i −0.883249 0.468903i \(-0.844649\pi\)
0.883249 0.468903i \(-0.155351\pi\)
\(992\) 6.10211 + 34.6068i 0.193742 + 1.09877i
\(993\) −16.1385 −0.512139
\(994\) −35.4108 + 12.8885i −1.12316 + 0.408797i
\(995\) 47.1570 + 8.13662i 1.49498 + 0.257948i
\(996\) −43.2949 51.5969i −1.37185 1.63491i
\(997\) 36.1931i 1.14625i −0.819469 0.573123i \(-0.805732\pi\)
0.819469 0.573123i \(-0.194268\pi\)
\(998\) 1.34310 + 3.69014i 0.0425151 + 0.116809i
\(999\) −0.151652 −0.00479804
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.c.509.32 yes 48
5.4 even 2 inner 680.2.h.c.509.17 48
8.5 even 2 inner 680.2.h.c.509.21 yes 48
17.16 even 2 inner 680.2.h.c.509.29 yes 48
40.29 even 2 inner 680.2.h.c.509.28 yes 48
85.84 even 2 inner 680.2.h.c.509.20 yes 48
136.101 even 2 inner 680.2.h.c.509.24 yes 48
680.509 even 2 inner 680.2.h.c.509.25 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.c.509.17 48 5.4 even 2 inner
680.2.h.c.509.20 yes 48 85.84 even 2 inner
680.2.h.c.509.21 yes 48 8.5 even 2 inner
680.2.h.c.509.24 yes 48 136.101 even 2 inner
680.2.h.c.509.25 yes 48 680.509 even 2 inner
680.2.h.c.509.28 yes 48 40.29 even 2 inner
680.2.h.c.509.29 yes 48 17.16 even 2 inner
680.2.h.c.509.32 yes 48 1.1 even 1 trivial