L(s) = 1 | + (−0.483 + 1.32i)2-s + 0.980i·3-s + (−1.53 − 1.28i)4-s + (−2.20 + 0.380i)5-s + (−1.30 − 0.474i)6-s + 2.74·7-s + (2.44 − 1.41i)8-s + 2.03·9-s + (0.560 − 3.11i)10-s + 1.05·11-s + (1.26 − 1.50i)12-s + 2.44·13-s + (−1.32 + 3.64i)14-s + (−0.372 − 2.16i)15-s + (0.694 + 3.93i)16-s + (2.07 − 3.56i)17-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)2-s + 0.566i·3-s + (−0.766 − 0.642i)4-s + (−0.985 + 0.170i)5-s + (−0.531 − 0.193i)6-s + 1.03·7-s + (0.866 − 0.499i)8-s + 0.679·9-s + (0.177 − 0.984i)10-s + 0.318·11-s + (0.363 − 0.433i)12-s + 0.679·13-s + (−0.354 + 0.975i)14-s + (−0.0962 − 0.557i)15-s + (0.173 + 0.984i)16-s + (0.503 − 0.864i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.166 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.792081 + 0.936856i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.792081 + 0.936856i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.483 - 1.32i)T \) |
| 5 | \( 1 + (2.20 - 0.380i)T \) |
| 17 | \( 1 + (-2.07 + 3.56i)T \) |
good | 3 | \( 1 - 0.980iT - 3T^{2} \) |
| 7 | \( 1 - 2.74T + 7T^{2} \) |
| 11 | \( 1 - 1.05T + 11T^{2} \) |
| 13 | \( 1 - 2.44T + 13T^{2} \) |
| 19 | \( 1 + 1.36iT - 19T^{2} \) |
| 23 | \( 1 - 0.720T + 23T^{2} \) |
| 29 | \( 1 + 5.30T + 29T^{2} \) |
| 31 | \( 1 - 6.33iT - 31T^{2} \) |
| 37 | \( 1 - 2.52iT - 37T^{2} \) |
| 41 | \( 1 - 8.39iT - 41T^{2} \) |
| 43 | \( 1 - 8.91T + 43T^{2} \) |
| 47 | \( 1 - 6.52iT - 47T^{2} \) |
| 53 | \( 1 - 0.0463T + 53T^{2} \) |
| 59 | \( 1 + 7.30iT - 59T^{2} \) |
| 61 | \( 1 + 3.65T + 61T^{2} \) |
| 67 | \( 1 - 8.22T + 67T^{2} \) |
| 71 | \( 1 + 7.91iT - 71T^{2} \) |
| 73 | \( 1 - 4.96T + 73T^{2} \) |
| 79 | \( 1 + 8.93iT - 79T^{2} \) |
| 83 | \( 1 - 7.61T + 83T^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 - 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77892774884129456487017098162, −9.645581449115857126562967447170, −8.917917911408580003831018571321, −7.965775304639790736587787981664, −7.42026443056046569088914143035, −6.47194658188608843946670197098, −5.09641531581755059443568193556, −4.52993619870610117146646537174, −3.53222959035512985835992109930, −1.21593289442836223877081737822,
0.996493813550782896142423109343, 2.01794174335026440974762107810, 3.76010207182560902815716210937, 4.24357000475139141549654070351, 5.56726298056687569420104994706, 7.14236033741425406088067225466, 7.85968143887594759374557065161, 8.410313805999295129574160627218, 9.364495068466574001051755312468, 10.53188598856558733437813412994