Properties

Label 650.2.j.f.307.2
Level $650$
Weight $2$
Character 650.307
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(307,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,-4,0,-2,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.2
Root \(1.65831 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 650.307
Dual form 650.2.j.f.343.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.15831 - 1.15831i) q^{3} -1.00000 q^{4} +(1.15831 + 1.15831i) q^{6} -3.00000 q^{7} -1.00000i q^{8} +0.316625i q^{9} +(3.31662 - 3.31662i) q^{11} +(-1.15831 + 1.15831i) q^{12} +(3.00000 - 2.00000i) q^{13} -3.00000i q^{14} +1.00000 q^{16} +(3.15831 - 3.15831i) q^{17} -0.316625 q^{18} +(2.00000 - 2.00000i) q^{19} +(-3.47494 + 3.47494i) q^{21} +(3.31662 + 3.31662i) q^{22} +(3.31662 + 3.31662i) q^{23} +(-1.15831 - 1.15831i) q^{24} +(2.00000 + 3.00000i) q^{26} +(3.84169 + 3.84169i) q^{27} +3.00000 q^{28} -6.31662i q^{29} +(1.00000 + 1.00000i) q^{31} +1.00000i q^{32} -7.68338i q^{33} +(3.15831 + 3.15831i) q^{34} -0.316625i q^{36} -3.00000 q^{37} +(2.00000 + 2.00000i) q^{38} +(1.15831 - 5.79156i) q^{39} +(-6.31662 - 6.31662i) q^{41} +(-3.47494 - 3.47494i) q^{42} +(-2.47494 - 2.47494i) q^{43} +(-3.31662 + 3.31662i) q^{44} +(-3.31662 + 3.31662i) q^{46} +9.31662 q^{47} +(1.15831 - 1.15831i) q^{48} +2.00000 q^{49} -7.31662i q^{51} +(-3.00000 + 2.00000i) q^{52} +(-9.63325 + 9.63325i) q^{53} +(-3.84169 + 3.84169i) q^{54} +3.00000i q^{56} -4.63325i q^{57} +6.31662 q^{58} +(0.316625 + 0.316625i) q^{59} +2.00000 q^{61} +(-1.00000 + 1.00000i) q^{62} -0.949874i q^{63} -1.00000 q^{64} +7.68338 q^{66} +4.94987i q^{67} +(-3.15831 + 3.15831i) q^{68} +7.68338 q^{69} +(-2.84169 - 2.84169i) q^{71} +0.316625 q^{72} -4.00000i q^{73} -3.00000i q^{74} +(-2.00000 + 2.00000i) q^{76} +(-9.94987 + 9.94987i) q^{77} +(5.79156 + 1.15831i) q^{78} +12.9499i q^{79} +7.94987 q^{81} +(6.31662 - 6.31662i) q^{82} -6.31662 q^{83} +(3.47494 - 3.47494i) q^{84} +(2.47494 - 2.47494i) q^{86} +(-7.31662 - 7.31662i) q^{87} +(-3.31662 - 3.31662i) q^{88} +(0.316625 + 0.316625i) q^{89} +(-9.00000 + 6.00000i) q^{91} +(-3.31662 - 3.31662i) q^{92} +2.31662 q^{93} +9.31662i q^{94} +(1.15831 + 1.15831i) q^{96} -8.94987i q^{97} +2.00000i q^{98} +(1.05013 + 1.05013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 4 q^{4} - 2 q^{6} - 12 q^{7} + 2 q^{12} + 12 q^{13} + 4 q^{16} + 6 q^{17} + 12 q^{18} + 8 q^{19} + 6 q^{21} + 2 q^{24} + 8 q^{26} + 22 q^{27} + 12 q^{28} + 4 q^{31} + 6 q^{34} - 12 q^{37}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.15831 1.15831i 0.668752 0.668752i −0.288675 0.957427i \(-0.593215\pi\)
0.957427 + 0.288675i \(0.0932147\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.15831 + 1.15831i 0.472879 + 0.472879i
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.316625i 0.105542i
\(10\) 0 0
\(11\) 3.31662 3.31662i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(12\) −1.15831 + 1.15831i −0.334376 + 0.334376i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 3.00000i 0.801784i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.15831 3.15831i 0.766003 0.766003i −0.211397 0.977400i \(-0.567801\pi\)
0.977400 + 0.211397i \(0.0678013\pi\)
\(18\) −0.316625 −0.0746292
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) 0 0
\(21\) −3.47494 + 3.47494i −0.758293 + 0.758293i
\(22\) 3.31662 + 3.31662i 0.707107 + 0.707107i
\(23\) 3.31662 + 3.31662i 0.691564 + 0.691564i 0.962576 0.271012i \(-0.0873583\pi\)
−0.271012 + 0.962576i \(0.587358\pi\)
\(24\) −1.15831 1.15831i −0.236440 0.236440i
\(25\) 0 0
\(26\) 2.00000 + 3.00000i 0.392232 + 0.588348i
\(27\) 3.84169 + 3.84169i 0.739333 + 0.739333i
\(28\) 3.00000 0.566947
\(29\) 6.31662i 1.17297i −0.809961 0.586484i \(-0.800512\pi\)
0.809961 0.586484i \(-0.199488\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.00000i 0.179605 + 0.179605i 0.791184 0.611578i \(-0.209465\pi\)
−0.611578 + 0.791184i \(0.709465\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 7.68338i 1.33750i
\(34\) 3.15831 + 3.15831i 0.541646 + 0.541646i
\(35\) 0 0
\(36\) 0.316625i 0.0527708i
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 2.00000 + 2.00000i 0.324443 + 0.324443i
\(39\) 1.15831 5.79156i 0.185478 0.927392i
\(40\) 0 0
\(41\) −6.31662 6.31662i −0.986491 0.986491i 0.0134189 0.999910i \(-0.495729\pi\)
−0.999910 + 0.0134189i \(0.995729\pi\)
\(42\) −3.47494 3.47494i −0.536194 0.536194i
\(43\) −2.47494 2.47494i −0.377424 0.377424i 0.492748 0.870172i \(-0.335993\pi\)
−0.870172 + 0.492748i \(0.835993\pi\)
\(44\) −3.31662 + 3.31662i −0.500000 + 0.500000i
\(45\) 0 0
\(46\) −3.31662 + 3.31662i −0.489010 + 0.489010i
\(47\) 9.31662 1.35897 0.679485 0.733690i \(-0.262203\pi\)
0.679485 + 0.733690i \(0.262203\pi\)
\(48\) 1.15831 1.15831i 0.167188 0.167188i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 7.31662i 1.02453i
\(52\) −3.00000 + 2.00000i −0.416025 + 0.277350i
\(53\) −9.63325 + 9.63325i −1.32323 + 1.32323i −0.412082 + 0.911147i \(0.635198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) −3.84169 + 3.84169i −0.522787 + 0.522787i
\(55\) 0 0
\(56\) 3.00000i 0.400892i
\(57\) 4.63325i 0.613689i
\(58\) 6.31662 0.829413
\(59\) 0.316625 + 0.316625i 0.0412210 + 0.0412210i 0.727417 0.686196i \(-0.240721\pi\)
−0.686196 + 0.727417i \(0.740721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 + 1.00000i −0.127000 + 0.127000i
\(63\) 0.949874i 0.119673i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 7.68338 0.945758
\(67\) 4.94987i 0.604723i 0.953193 + 0.302362i \(0.0977750\pi\)
−0.953193 + 0.302362i \(0.902225\pi\)
\(68\) −3.15831 + 3.15831i −0.383002 + 0.383002i
\(69\) 7.68338 0.924970
\(70\) 0 0
\(71\) −2.84169 2.84169i −0.337246 0.337246i 0.518084 0.855330i \(-0.326646\pi\)
−0.855330 + 0.518084i \(0.826646\pi\)
\(72\) 0.316625 0.0373146
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 3.00000i 0.348743i
\(75\) 0 0
\(76\) −2.00000 + 2.00000i −0.229416 + 0.229416i
\(77\) −9.94987 + 9.94987i −1.13389 + 1.13389i
\(78\) 5.79156 + 1.15831i 0.655765 + 0.131153i
\(79\) 12.9499i 1.45697i 0.685059 + 0.728487i \(0.259776\pi\)
−0.685059 + 0.728487i \(0.740224\pi\)
\(80\) 0 0
\(81\) 7.94987 0.883319
\(82\) 6.31662 6.31662i 0.697555 0.697555i
\(83\) −6.31662 −0.693340 −0.346670 0.937987i \(-0.612688\pi\)
−0.346670 + 0.937987i \(0.612688\pi\)
\(84\) 3.47494 3.47494i 0.379147 0.379147i
\(85\) 0 0
\(86\) 2.47494 2.47494i 0.266879 0.266879i
\(87\) −7.31662 7.31662i −0.784425 0.784425i
\(88\) −3.31662 3.31662i −0.353553 0.353553i
\(89\) 0.316625 + 0.316625i 0.0335622 + 0.0335622i 0.723689 0.690127i \(-0.242445\pi\)
−0.690127 + 0.723689i \(0.742445\pi\)
\(90\) 0 0
\(91\) −9.00000 + 6.00000i −0.943456 + 0.628971i
\(92\) −3.31662 3.31662i −0.345782 0.345782i
\(93\) 2.31662 0.240223
\(94\) 9.31662i 0.960936i
\(95\) 0 0
\(96\) 1.15831 + 1.15831i 0.118220 + 0.118220i
\(97\) 8.94987i 0.908722i −0.890818 0.454361i \(-0.849868\pi\)
0.890818 0.454361i \(-0.150132\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 1.05013 + 1.05013i 0.105542 + 0.105542i
\(100\) 0 0
\(101\) 19.2665i 1.91709i 0.284944 + 0.958544i \(0.408025\pi\)
−0.284944 + 0.958544i \(0.591975\pi\)
\(102\) 7.31662 0.724454
\(103\) 7.94987 + 7.94987i 0.783324 + 0.783324i 0.980390 0.197066i \(-0.0631413\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −2.00000 3.00000i −0.196116 0.294174i
\(105\) 0 0
\(106\) −9.63325 9.63325i −0.935664 0.935664i
\(107\) 9.63325 + 9.63325i 0.931281 + 0.931281i 0.997786 0.0665047i \(-0.0211847\pi\)
−0.0665047 + 0.997786i \(0.521185\pi\)
\(108\) −3.84169 3.84169i −0.369667 0.369667i
\(109\) −1.47494 + 1.47494i −0.141273 + 0.141273i −0.774206 0.632933i \(-0.781851\pi\)
0.632933 + 0.774206i \(0.281851\pi\)
\(110\) 0 0
\(111\) −3.47494 + 3.47494i −0.329826 + 0.329826i
\(112\) −3.00000 −0.283473
\(113\) −2.68338 + 2.68338i −0.252431 + 0.252431i −0.821967 0.569536i \(-0.807123\pi\)
0.569536 + 0.821967i \(0.307123\pi\)
\(114\) 4.63325 0.433944
\(115\) 0 0
\(116\) 6.31662i 0.586484i
\(117\) 0.633250 + 0.949874i 0.0585439 + 0.0878159i
\(118\) −0.316625 + 0.316625i −0.0291477 + 0.0291477i
\(119\) −9.47494 + 9.47494i −0.868566 + 0.868566i
\(120\) 0 0
\(121\) 11.0000i 1.00000i
\(122\) 2.00000i 0.181071i
\(123\) −14.6332 −1.31944
\(124\) −1.00000 1.00000i −0.0898027 0.0898027i
\(125\) 0 0
\(126\) 0.949874 0.0846215
\(127\) 7.00000 7.00000i 0.621150 0.621150i −0.324676 0.945825i \(-0.605255\pi\)
0.945825 + 0.324676i \(0.105255\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −5.73350 −0.504807
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 7.68338i 0.668752i
\(133\) −6.00000 + 6.00000i −0.520266 + 0.520266i
\(134\) −4.94987 −0.427604
\(135\) 0 0
\(136\) −3.15831 3.15831i −0.270823 0.270823i
\(137\) −5.68338 −0.485564 −0.242782 0.970081i \(-0.578060\pi\)
−0.242782 + 0.970081i \(0.578060\pi\)
\(138\) 7.68338i 0.654052i
\(139\) 15.9499i 1.35285i −0.736511 0.676425i \(-0.763528\pi\)
0.736511 0.676425i \(-0.236472\pi\)
\(140\) 0 0
\(141\) 10.7916 10.7916i 0.908813 0.908813i
\(142\) 2.84169 2.84169i 0.238469 0.238469i
\(143\) 3.31662 16.5831i 0.277350 1.38675i
\(144\) 0.316625i 0.0263854i
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 2.31662 2.31662i 0.191072 0.191072i
\(148\) 3.00000 0.246598
\(149\) −15.3166 + 15.3166i −1.25479 + 1.25479i −0.301238 + 0.953549i \(0.597400\pi\)
−0.953549 + 0.301238i \(0.902600\pi\)
\(150\) 0 0
\(151\) 4.47494 4.47494i 0.364165 0.364165i −0.501179 0.865344i \(-0.667100\pi\)
0.865344 + 0.501179i \(0.167100\pi\)
\(152\) −2.00000 2.00000i −0.162221 0.162221i
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) −9.94987 9.94987i −0.801784 0.801784i
\(155\) 0 0
\(156\) −1.15831 + 5.79156i −0.0927392 + 0.463696i
\(157\) −10.0000 10.0000i −0.798087 0.798087i 0.184707 0.982794i \(-0.440866\pi\)
−0.982794 + 0.184707i \(0.940866\pi\)
\(158\) −12.9499 −1.03024
\(159\) 22.3166i 1.76982i
\(160\) 0 0
\(161\) −9.94987 9.94987i −0.784160 0.784160i
\(162\) 7.94987i 0.624601i
\(163\) 2.94987i 0.231052i 0.993304 + 0.115526i \(0.0368554\pi\)
−0.993304 + 0.115526i \(0.963145\pi\)
\(164\) 6.31662 + 6.31662i 0.493246 + 0.493246i
\(165\) 0 0
\(166\) 6.31662i 0.490265i
\(167\) −12.6332 −0.977590 −0.488795 0.872399i \(-0.662563\pi\)
−0.488795 + 0.872399i \(0.662563\pi\)
\(168\) 3.47494 + 3.47494i 0.268097 + 0.268097i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) 0.633250 + 0.633250i 0.0484258 + 0.0484258i
\(172\) 2.47494 + 2.47494i 0.188712 + 0.188712i
\(173\) 3.31662 + 3.31662i 0.252158 + 0.252158i 0.821855 0.569697i \(-0.192939\pi\)
−0.569697 + 0.821855i \(0.692939\pi\)
\(174\) 7.31662 7.31662i 0.554672 0.554672i
\(175\) 0 0
\(176\) 3.31662 3.31662i 0.250000 0.250000i
\(177\) 0.733501 0.0551333
\(178\) −0.316625 + 0.316625i −0.0237320 + 0.0237320i
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0 0
\(181\) 6.94987i 0.516580i 0.966067 + 0.258290i \(0.0831590\pi\)
−0.966067 + 0.258290i \(0.916841\pi\)
\(182\) −6.00000 9.00000i −0.444750 0.667124i
\(183\) 2.31662 2.31662i 0.171250 0.171250i
\(184\) 3.31662 3.31662i 0.244505 0.244505i
\(185\) 0 0
\(186\) 2.31662i 0.169863i
\(187\) 20.9499i 1.53201i
\(188\) −9.31662 −0.679485
\(189\) −11.5251 11.5251i −0.838325 0.838325i
\(190\) 0 0
\(191\) 5.05013 0.365414 0.182707 0.983167i \(-0.441514\pi\)
0.182707 + 0.983167i \(0.441514\pi\)
\(192\) −1.15831 + 1.15831i −0.0835940 + 0.0835940i
\(193\) 10.9499i 0.788189i −0.919070 0.394095i \(-0.871058\pi\)
0.919070 0.394095i \(-0.128942\pi\)
\(194\) 8.94987 0.642564
\(195\) 0 0
\(196\) −2.00000 −0.142857
\(197\) 3.94987i 0.281417i −0.990051 0.140708i \(-0.955062\pi\)
0.990051 0.140708i \(-0.0449380\pi\)
\(198\) −1.05013 + 1.05013i −0.0746292 + 0.0746292i
\(199\) 16.9499 1.20154 0.600772 0.799420i \(-0.294860\pi\)
0.600772 + 0.799420i \(0.294860\pi\)
\(200\) 0 0
\(201\) 5.73350 + 5.73350i 0.404410 + 0.404410i
\(202\) −19.2665 −1.35559
\(203\) 18.9499i 1.33002i
\(204\) 7.31662i 0.512266i
\(205\) 0 0
\(206\) −7.94987 + 7.94987i −0.553894 + 0.553894i
\(207\) −1.05013 + 1.05013i −0.0729888 + 0.0729888i
\(208\) 3.00000 2.00000i 0.208013 0.138675i
\(209\) 13.2665i 0.917663i
\(210\) 0 0
\(211\) −19.9499 −1.37341 −0.686703 0.726938i \(-0.740943\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(212\) 9.63325 9.63325i 0.661614 0.661614i
\(213\) −6.58312 −0.451068
\(214\) −9.63325 + 9.63325i −0.658515 + 0.658515i
\(215\) 0 0
\(216\) 3.84169 3.84169i 0.261394 0.261394i
\(217\) −3.00000 3.00000i −0.203653 0.203653i
\(218\) −1.47494 1.47494i −0.0998954 0.0998954i
\(219\) −4.63325 4.63325i −0.313086 0.313086i
\(220\) 0 0
\(221\) 3.15831 15.7916i 0.212451 1.06226i
\(222\) −3.47494 3.47494i −0.233223 0.233223i
\(223\) −15.9499 −1.06808 −0.534041 0.845458i \(-0.679327\pi\)
−0.534041 + 0.845458i \(0.679327\pi\)
\(224\) 3.00000i 0.200446i
\(225\) 0 0
\(226\) −2.68338 2.68338i −0.178495 0.178495i
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 4.63325i 0.306844i
\(229\) −3.52506 3.52506i −0.232943 0.232943i 0.580977 0.813920i \(-0.302671\pi\)
−0.813920 + 0.580977i \(0.802671\pi\)
\(230\) 0 0
\(231\) 23.0501i 1.51659i
\(232\) −6.31662 −0.414707
\(233\) 6.79156 + 6.79156i 0.444930 + 0.444930i 0.893665 0.448735i \(-0.148125\pi\)
−0.448735 + 0.893665i \(0.648125\pi\)
\(234\) −0.949874 + 0.633250i −0.0620952 + 0.0413968i
\(235\) 0 0
\(236\) −0.316625 0.316625i −0.0206105 0.0206105i
\(237\) 15.0000 + 15.0000i 0.974355 + 0.974355i
\(238\) −9.47494 9.47494i −0.614169 0.614169i
\(239\) −11.8417 + 11.8417i −0.765975 + 0.765975i −0.977395 0.211420i \(-0.932191\pi\)
0.211420 + 0.977395i \(0.432191\pi\)
\(240\) 0 0
\(241\) 16.0000 16.0000i 1.03065 1.03065i 0.0311354 0.999515i \(-0.490088\pi\)
0.999515 0.0311354i \(-0.00991232\pi\)
\(242\) 11.0000 0.707107
\(243\) −2.31662 + 2.31662i −0.148612 + 0.148612i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 14.6332i 0.932982i
\(247\) 2.00000 10.0000i 0.127257 0.636285i
\(248\) 1.00000 1.00000i 0.0635001 0.0635001i
\(249\) −7.31662 + 7.31662i −0.463672 + 0.463672i
\(250\) 0 0
\(251\) 19.2665i 1.21609i 0.793902 + 0.608045i \(0.208046\pi\)
−0.793902 + 0.608045i \(0.791954\pi\)
\(252\) 0.949874i 0.0598365i
\(253\) 22.0000 1.38313
\(254\) 7.00000 + 7.00000i 0.439219 + 0.439219i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −11.8417 + 11.8417i −0.738664 + 0.738664i −0.972319 0.233655i \(-0.924931\pi\)
0.233655 + 0.972319i \(0.424931\pi\)
\(258\) 5.73350i 0.356952i
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 3.00000i 0.185341i
\(263\) 12.3166 12.3166i 0.759476 0.759476i −0.216751 0.976227i \(-0.569546\pi\)
0.976227 + 0.216751i \(0.0695461\pi\)
\(264\) −7.68338 −0.472879
\(265\) 0 0
\(266\) −6.00000 6.00000i −0.367884 0.367884i
\(267\) 0.733501 0.0448895
\(268\) 4.94987i 0.302362i
\(269\) 13.2665i 0.808873i −0.914566 0.404436i \(-0.867468\pi\)
0.914566 0.404436i \(-0.132532\pi\)
\(270\) 0 0
\(271\) −10.5251 + 10.5251i −0.639352 + 0.639352i −0.950396 0.311044i \(-0.899321\pi\)
0.311044 + 0.950396i \(0.399321\pi\)
\(272\) 3.15831 3.15831i 0.191501 0.191501i
\(273\) −3.47494 + 17.3747i −0.210313 + 1.05156i
\(274\) 5.68338i 0.343345i
\(275\) 0 0
\(276\) −7.68338 −0.462485
\(277\) −21.8997 + 21.8997i −1.31583 + 1.31583i −0.398783 + 0.917045i \(0.630567\pi\)
−0.917045 + 0.398783i \(0.869433\pi\)
\(278\) 15.9499 0.956610
\(279\) −0.316625 + 0.316625i −0.0189558 + 0.0189558i
\(280\) 0 0
\(281\) −11.6834 + 11.6834i −0.696972 + 0.696972i −0.963756 0.266784i \(-0.914039\pi\)
0.266784 + 0.963756i \(0.414039\pi\)
\(282\) 10.7916 + 10.7916i 0.642628 + 0.642628i
\(283\) 7.94987 + 7.94987i 0.472571 + 0.472571i 0.902746 0.430175i \(-0.141548\pi\)
−0.430175 + 0.902746i \(0.641548\pi\)
\(284\) 2.84169 + 2.84169i 0.168623 + 0.168623i
\(285\) 0 0
\(286\) 16.5831 + 3.31662i 0.980581 + 0.196116i
\(287\) 18.9499 + 18.9499i 1.11858 + 1.11858i
\(288\) −0.316625 −0.0186573
\(289\) 2.94987i 0.173522i
\(290\) 0 0
\(291\) −10.3668 10.3668i −0.607710 0.607710i
\(292\) 4.00000i 0.234082i
\(293\) 22.8997i 1.33782i −0.743344 0.668909i \(-0.766762\pi\)
0.743344 0.668909i \(-0.233238\pi\)
\(294\) 2.31662 + 2.31662i 0.135108 + 0.135108i
\(295\) 0 0
\(296\) 3.00000i 0.174371i
\(297\) 25.4829 1.47867
\(298\) −15.3166 15.3166i −0.887268 0.887268i
\(299\) 16.5831 + 3.31662i 0.959027 + 0.191805i
\(300\) 0 0
\(301\) 7.42481 + 7.42481i 0.427959 + 0.427959i
\(302\) 4.47494 + 4.47494i 0.257504 + 0.257504i
\(303\) 22.3166 + 22.3166i 1.28206 + 1.28206i
\(304\) 2.00000 2.00000i 0.114708 0.114708i
\(305\) 0 0
\(306\) −1.00000 + 1.00000i −0.0571662 + 0.0571662i
\(307\) 25.8997 1.47818 0.739088 0.673608i \(-0.235257\pi\)
0.739088 + 0.673608i \(0.235257\pi\)
\(308\) 9.94987 9.94987i 0.566947 0.566947i
\(309\) 18.4169 1.04770
\(310\) 0 0
\(311\) 19.2665i 1.09250i 0.837621 + 0.546251i \(0.183946\pi\)
−0.837621 + 0.546251i \(0.816054\pi\)
\(312\) −5.79156 1.15831i −0.327883 0.0655765i
\(313\) 15.4248 15.4248i 0.871862 0.871862i −0.120813 0.992675i \(-0.538550\pi\)
0.992675 + 0.120813i \(0.0385503\pi\)
\(314\) 10.0000 10.0000i 0.564333 0.564333i
\(315\) 0 0
\(316\) 12.9499i 0.728487i
\(317\) 12.0000i 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) −22.3166 −1.25145
\(319\) −20.9499 20.9499i −1.17297 1.17297i
\(320\) 0 0
\(321\) 22.3166 1.24559
\(322\) 9.94987 9.94987i 0.554485 0.554485i
\(323\) 12.6332i 0.702933i
\(324\) −7.94987 −0.441660
\(325\) 0 0
\(326\) −2.94987 −0.163378
\(327\) 3.41688i 0.188954i
\(328\) −6.31662 + 6.31662i −0.348777 + 0.348777i
\(329\) −27.9499 −1.54093
\(330\) 0 0
\(331\) 1.00000 + 1.00000i 0.0549650 + 0.0549650i 0.734055 0.679090i \(-0.237625\pi\)
−0.679090 + 0.734055i \(0.737625\pi\)
\(332\) 6.31662 0.346670
\(333\) 0.949874i 0.0520528i
\(334\) 12.6332i 0.691261i
\(335\) 0 0
\(336\) −3.47494 + 3.47494i −0.189573 + 0.189573i
\(337\) 3.52506 3.52506i 0.192022 0.192022i −0.604547 0.796569i \(-0.706646\pi\)
0.796569 + 0.604547i \(0.206646\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) 6.21637i 0.337627i
\(340\) 0 0
\(341\) 6.63325 0.359211
\(342\) −0.633250 + 0.633250i −0.0342422 + 0.0342422i
\(343\) 15.0000 0.809924
\(344\) −2.47494 + 2.47494i −0.133440 + 0.133440i
\(345\) 0 0
\(346\) −3.31662 + 3.31662i −0.178303 + 0.178303i
\(347\) −0.791562 0.791562i −0.0424933 0.0424933i 0.685541 0.728034i \(-0.259566\pi\)
−0.728034 + 0.685541i \(0.759566\pi\)
\(348\) 7.31662 + 7.31662i 0.392212 + 0.392212i
\(349\) 18.4248 + 18.4248i 0.986258 + 0.986258i 0.999907 0.0136493i \(-0.00434484\pi\)
−0.0136493 + 0.999907i \(0.504345\pi\)
\(350\) 0 0
\(351\) 19.2084 + 3.84169i 1.02527 + 0.205054i
\(352\) 3.31662 + 3.31662i 0.176777 + 0.176777i
\(353\) 7.58312 0.403609 0.201804 0.979426i \(-0.435319\pi\)
0.201804 + 0.979426i \(0.435319\pi\)
\(354\) 0.733501i 0.0389851i
\(355\) 0 0
\(356\) −0.316625 0.316625i −0.0167811 0.0167811i
\(357\) 21.9499i 1.16171i
\(358\) 15.0000i 0.792775i
\(359\) 22.2665 + 22.2665i 1.17518 + 1.17518i 0.980957 + 0.194224i \(0.0622187\pi\)
0.194224 + 0.980957i \(0.437781\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) −6.94987 −0.365277
\(363\) −12.7414 12.7414i −0.668752 0.668752i
\(364\) 9.00000 6.00000i 0.471728 0.314485i
\(365\) 0 0
\(366\) 2.31662 + 2.31662i 0.121092 + 0.121092i
\(367\) −1.94987 1.94987i −0.101783 0.101783i 0.654382 0.756164i \(-0.272929\pi\)
−0.756164 + 0.654382i \(0.772929\pi\)
\(368\) 3.31662 + 3.31662i 0.172891 + 0.172891i
\(369\) 2.00000 2.00000i 0.104116 0.104116i
\(370\) 0 0
\(371\) 28.8997 28.8997i 1.50040 1.50040i
\(372\) −2.31662 −0.120111
\(373\) 20.0000 20.0000i 1.03556 1.03556i 0.0362168 0.999344i \(-0.488469\pi\)
0.999344 0.0362168i \(-0.0115307\pi\)
\(374\) 20.9499 1.08329
\(375\) 0 0
\(376\) 9.31662i 0.480468i
\(377\) −12.6332 18.9499i −0.650645 0.975968i
\(378\) 11.5251 11.5251i 0.592785 0.592785i
\(379\) −13.0000 + 13.0000i −0.667765 + 0.667765i −0.957198 0.289433i \(-0.906533\pi\)
0.289433 + 0.957198i \(0.406533\pi\)
\(380\) 0 0
\(381\) 16.2164i 0.830790i
\(382\) 5.05013i 0.258387i
\(383\) −14.3668 −0.734107 −0.367053 0.930200i \(-0.619633\pi\)
−0.367053 + 0.930200i \(0.619633\pi\)
\(384\) −1.15831 1.15831i −0.0591099 0.0591099i
\(385\) 0 0
\(386\) 10.9499 0.557334
\(387\) 0.783626 0.783626i 0.0398340 0.0398340i
\(388\) 8.94987i 0.454361i
\(389\) −13.8997 −0.704745 −0.352373 0.935860i \(-0.614625\pi\)
−0.352373 + 0.935860i \(0.614625\pi\)
\(390\) 0 0
\(391\) 20.9499 1.05948
\(392\) 2.00000i 0.101015i
\(393\) −3.47494 + 3.47494i −0.175287 + 0.175287i
\(394\) 3.94987 0.198992
\(395\) 0 0
\(396\) −1.05013 1.05013i −0.0527708 0.0527708i
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 16.9499i 0.849620i
\(399\) 13.8997i 0.695858i
\(400\) 0 0
\(401\) −10.5831 + 10.5831i −0.528496 + 0.528496i −0.920124 0.391628i \(-0.871912\pi\)
0.391628 + 0.920124i \(0.371912\pi\)
\(402\) −5.73350 + 5.73350i −0.285961 + 0.285961i
\(403\) 5.00000 + 1.00000i 0.249068 + 0.0498135i
\(404\) 19.2665i 0.958544i
\(405\) 0 0
\(406\) −18.9499 −0.940466
\(407\) −9.94987 + 9.94987i −0.493197 + 0.493197i
\(408\) −7.31662 −0.362227
\(409\) 23.9499 23.9499i 1.18425 1.18425i 0.205611 0.978634i \(-0.434082\pi\)
0.978634 0.205611i \(-0.0659183\pi\)
\(410\) 0 0
\(411\) −6.58312 + 6.58312i −0.324722 + 0.324722i
\(412\) −7.94987 7.94987i −0.391662 0.391662i
\(413\) −0.949874 0.949874i −0.0467403 0.0467403i
\(414\) −1.05013 1.05013i −0.0516109 0.0516109i
\(415\) 0 0
\(416\) 2.00000 + 3.00000i 0.0980581 + 0.147087i
\(417\) −18.4749 18.4749i −0.904722 0.904722i
\(418\) 13.2665 0.648886
\(419\) 8.68338i 0.424211i 0.977247 + 0.212105i \(0.0680320\pi\)
−0.977247 + 0.212105i \(0.931968\pi\)
\(420\) 0 0
\(421\) −2.47494 2.47494i −0.120621 0.120621i 0.644220 0.764841i \(-0.277182\pi\)
−0.764841 + 0.644220i \(0.777182\pi\)
\(422\) 19.9499i 0.971145i
\(423\) 2.94987i 0.143428i
\(424\) 9.63325 + 9.63325i 0.467832 + 0.467832i
\(425\) 0 0
\(426\) 6.58312i 0.318953i
\(427\) −6.00000 −0.290360
\(428\) −9.63325 9.63325i −0.465641 0.465641i
\(429\) −15.3668 23.0501i −0.741914 1.11287i
\(430\) 0 0
\(431\) 12.1583 + 12.1583i 0.585645 + 0.585645i 0.936449 0.350804i \(-0.114092\pi\)
−0.350804 + 0.936449i \(0.614092\pi\)
\(432\) 3.84169 + 3.84169i 0.184833 + 0.184833i
\(433\) 12.5251 + 12.5251i 0.601916 + 0.601916i 0.940821 0.338905i \(-0.110056\pi\)
−0.338905 + 0.940821i \(0.610056\pi\)
\(434\) 3.00000 3.00000i 0.144005 0.144005i
\(435\) 0 0
\(436\) 1.47494 1.47494i 0.0706367 0.0706367i
\(437\) 13.2665 0.634623
\(438\) 4.63325 4.63325i 0.221385 0.221385i
\(439\) −33.8997 −1.61795 −0.808973 0.587845i \(-0.799976\pi\)
−0.808973 + 0.587845i \(0.799976\pi\)
\(440\) 0 0
\(441\) 0.633250i 0.0301547i
\(442\) 15.7916 + 3.15831i 0.751128 + 0.150226i
\(443\) −20.0581 + 20.0581i −0.952987 + 0.952987i −0.998943 0.0459562i \(-0.985367\pi\)
0.0459562 + 0.998943i \(0.485367\pi\)
\(444\) 3.47494 3.47494i 0.164913 0.164913i
\(445\) 0 0
\(446\) 15.9499i 0.755248i
\(447\) 35.4829i 1.67828i
\(448\) 3.00000 0.141737
\(449\) −21.6332 21.6332i −1.02094 1.02094i −0.999776 0.0211601i \(-0.993264\pi\)
−0.0211601 0.999776i \(-0.506736\pi\)
\(450\) 0 0
\(451\) −41.8997 −1.97298
\(452\) 2.68338 2.68338i 0.126215 0.126215i
\(453\) 10.3668i 0.487072i
\(454\) −18.0000 −0.844782
\(455\) 0 0
\(456\) −4.63325 −0.216972
\(457\) 2.00000i 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 3.52506 3.52506i 0.164715 0.164715i
\(459\) 24.2665 1.13266
\(460\) 0 0
\(461\) 4.10819 + 4.10819i 0.191337 + 0.191337i 0.796274 0.604936i \(-0.206801\pi\)
−0.604936 + 0.796274i \(0.706801\pi\)
\(462\) −23.0501 −1.07239
\(463\) 9.89975i 0.460080i 0.973181 + 0.230040i \(0.0738858\pi\)
−0.973181 + 0.230040i \(0.926114\pi\)
\(464\) 6.31662i 0.293242i
\(465\) 0 0
\(466\) −6.79156 + 6.79156i −0.314613 + 0.314613i
\(467\) −8.36675 + 8.36675i −0.387167 + 0.387167i −0.873676 0.486509i \(-0.838270\pi\)
0.486509 + 0.873676i \(0.338270\pi\)
\(468\) −0.633250 0.949874i −0.0292720 0.0439080i
\(469\) 14.8496i 0.685692i
\(470\) 0 0
\(471\) −23.1662 −1.06744
\(472\) 0.316625 0.316625i 0.0145738 0.0145738i
\(473\) −16.4169 −0.754849
\(474\) −15.0000 + 15.0000i −0.688973 + 0.688973i
\(475\) 0 0
\(476\) 9.47494 9.47494i 0.434283 0.434283i
\(477\) −3.05013 3.05013i −0.139656 0.139656i
\(478\) −11.8417 11.8417i −0.541626 0.541626i
\(479\) −3.15831 3.15831i −0.144307 0.144307i 0.631262 0.775569i \(-0.282537\pi\)
−0.775569 + 0.631262i \(0.782537\pi\)
\(480\) 0 0
\(481\) −9.00000 + 6.00000i −0.410365 + 0.273576i
\(482\) 16.0000 + 16.0000i 0.728780 + 0.728780i
\(483\) −23.0501 −1.04882
\(484\) 11.0000i 0.500000i
\(485\) 0 0
\(486\) −2.31662 2.31662i −0.105084 0.105084i
\(487\) 2.00000i 0.0906287i −0.998973 0.0453143i \(-0.985571\pi\)
0.998973 0.0453143i \(-0.0144289\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 3.41688 + 3.41688i 0.154516 + 0.154516i
\(490\) 0 0
\(491\) 32.6834i 1.47498i −0.675358 0.737490i \(-0.736011\pi\)
0.675358 0.737490i \(-0.263989\pi\)
\(492\) 14.6332 0.659718
\(493\) −19.9499 19.9499i −0.898497 0.898497i
\(494\) 10.0000 + 2.00000i 0.449921 + 0.0899843i
\(495\) 0 0
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) 8.52506 + 8.52506i 0.382401 + 0.382401i
\(498\) −7.31662 7.31662i −0.327866 0.327866i
\(499\) 8.94987 8.94987i 0.400651 0.400651i −0.477811 0.878463i \(-0.658570\pi\)
0.878463 + 0.477811i \(0.158570\pi\)
\(500\) 0 0
\(501\) −14.6332 + 14.6332i −0.653765 + 0.653765i
\(502\) −19.2665 −0.859906
\(503\) −1.58312 + 1.58312i −0.0705880 + 0.0705880i −0.741519 0.670931i \(-0.765894\pi\)
0.670931 + 0.741519i \(0.265894\pi\)
\(504\) −0.949874 −0.0423108
\(505\) 0 0
\(506\) 22.0000i 0.978019i
\(507\) −8.10819 19.6913i −0.360097 0.874522i
\(508\) −7.00000 + 7.00000i −0.310575 + 0.310575i
\(509\) −15.3166 + 15.3166i −0.678897 + 0.678897i −0.959751 0.280853i \(-0.909383\pi\)
0.280853 + 0.959751i \(0.409383\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 1.00000i 0.0441942i
\(513\) 15.3668 0.678459
\(514\) −11.8417 11.8417i −0.522314 0.522314i
\(515\) 0 0
\(516\) 5.73350 0.252403
\(517\) 30.8997 30.8997i 1.35897 1.35897i
\(518\) 9.00000i 0.395437i
\(519\) 7.68338 0.337263
\(520\) 0 0
\(521\) 10.8997 0.477527 0.238763 0.971078i \(-0.423258\pi\)
0.238763 + 0.971078i \(0.423258\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) 5.00000 5.00000i 0.218635 0.218635i −0.589288 0.807923i \(-0.700592\pi\)
0.807923 + 0.589288i \(0.200592\pi\)
\(524\) 3.00000 0.131056
\(525\) 0 0
\(526\) 12.3166 + 12.3166i 0.537030 + 0.537030i
\(527\) 6.31662 0.275156
\(528\) 7.68338i 0.334376i
\(529\) 1.00000i 0.0434783i
\(530\) 0 0
\(531\) −0.100251 + 0.100251i −0.00435053 + 0.00435053i
\(532\) 6.00000 6.00000i 0.260133 0.260133i
\(533\) −31.5831 6.31662i −1.36802 0.273603i
\(534\) 0.733501i 0.0317417i
\(535\) 0 0
\(536\) 4.94987 0.213802
\(537\) 17.3747 17.3747i 0.749773 0.749773i
\(538\) 13.2665 0.571959
\(539\) 6.63325 6.63325i 0.285714 0.285714i
\(540\) 0 0
\(541\) 4.47494 4.47494i 0.192393 0.192393i −0.604337 0.796729i \(-0.706562\pi\)
0.796729 + 0.604337i \(0.206562\pi\)
\(542\) −10.5251 10.5251i −0.452090 0.452090i
\(543\) 8.05013 + 8.05013i 0.345464 + 0.345464i
\(544\) 3.15831 + 3.15831i 0.135412 + 0.135412i
\(545\) 0 0
\(546\) −17.3747 3.47494i −0.743568 0.148714i
\(547\) −21.5251 21.5251i −0.920345 0.920345i 0.0767083 0.997054i \(-0.475559\pi\)
−0.997054 + 0.0767083i \(0.975559\pi\)
\(548\) 5.68338 0.242782
\(549\) 0.633250i 0.0270264i
\(550\) 0 0
\(551\) −12.6332 12.6332i −0.538195 0.538195i
\(552\) 7.68338i 0.327026i
\(553\) 38.8496i 1.65205i
\(554\) −21.8997 21.8997i −0.930431 0.930431i
\(555\) 0 0
\(556\) 15.9499i 0.676425i
\(557\) −4.58312 −0.194193 −0.0970966 0.995275i \(-0.530956\pi\)
−0.0970966 + 0.995275i \(0.530956\pi\)
\(558\) −0.316625 0.316625i −0.0134038 0.0134038i
\(559\) −12.3747 2.47494i −0.523393 0.104679i
\(560\) 0 0
\(561\) −24.2665 24.2665i −1.02453 1.02453i
\(562\) −11.6834 11.6834i −0.492833 0.492833i
\(563\) 6.79156 + 6.79156i 0.286230 + 0.286230i 0.835588 0.549357i \(-0.185127\pi\)
−0.549357 + 0.835588i \(0.685127\pi\)
\(564\) −10.7916 + 10.7916i −0.454407 + 0.454407i
\(565\) 0 0
\(566\) −7.94987 + 7.94987i −0.334158 + 0.334158i
\(567\) −23.8496 −1.00159
\(568\) −2.84169 + 2.84169i −0.119235 + 0.119235i
\(569\) 42.7995 1.79425 0.897124 0.441779i \(-0.145652\pi\)
0.897124 + 0.441779i \(0.145652\pi\)
\(570\) 0 0
\(571\) 28.8997i 1.20942i −0.796447 0.604708i \(-0.793290\pi\)
0.796447 0.604708i \(-0.206710\pi\)
\(572\) −3.31662 + 16.5831i −0.138675 + 0.693375i
\(573\) 5.84962 5.84962i 0.244372 0.244372i
\(574\) −18.9499 + 18.9499i −0.790952 + 0.790952i
\(575\) 0 0
\(576\) 0.316625i 0.0131927i
\(577\) 41.8997i 1.74431i 0.489230 + 0.872155i \(0.337278\pi\)
−0.489230 + 0.872155i \(0.662722\pi\)
\(578\) 2.94987 0.122699
\(579\) −12.6834 12.6834i −0.527103 0.527103i
\(580\) 0 0
\(581\) 18.9499 0.786173
\(582\) 10.3668 10.3668i 0.429716 0.429716i
\(583\) 63.8997i 2.64646i
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 22.8997 0.945980
\(587\) 24.9499i 1.02979i 0.857253 + 0.514896i \(0.172169\pi\)
−0.857253 + 0.514896i \(0.827831\pi\)
\(588\) −2.31662 + 2.31662i −0.0955360 + 0.0955360i
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) −4.57519 4.57519i −0.188198 0.188198i
\(592\) −3.00000 −0.123299
\(593\) 12.9499i 0.531788i 0.964002 + 0.265894i \(0.0856671\pi\)
−0.964002 + 0.265894i \(0.914333\pi\)
\(594\) 25.4829i 1.04557i
\(595\) 0 0
\(596\) 15.3166 15.3166i 0.627393 0.627393i
\(597\) 19.6332 19.6332i 0.803535 0.803535i
\(598\) −3.31662 + 16.5831i −0.135627 + 0.678134i
\(599\) 13.2665i 0.542054i −0.962572 0.271027i \(-0.912637\pi\)
0.962572 0.271027i \(-0.0873633\pi\)
\(600\) 0 0
\(601\) −6.05013 −0.246790 −0.123395 0.992358i \(-0.539378\pi\)
−0.123395 + 0.992358i \(0.539378\pi\)
\(602\) −7.42481 + 7.42481i −0.302613 + 0.302613i
\(603\) −1.56725 −0.0638235
\(604\) −4.47494 + 4.47494i −0.182083 + 0.182083i
\(605\) 0 0
\(606\) −22.3166 + 22.3166i −0.906551 + 0.906551i
\(607\) −3.05013 3.05013i −0.123801 0.123801i 0.642492 0.766293i \(-0.277901\pi\)
−0.766293 + 0.642492i \(0.777901\pi\)
\(608\) 2.00000 + 2.00000i 0.0811107 + 0.0811107i
\(609\) 21.9499 + 21.9499i 0.889454 + 0.889454i
\(610\) 0 0
\(611\) 27.9499 18.6332i 1.13073 0.753821i
\(612\) −1.00000 1.00000i −0.0404226 0.0404226i
\(613\) −24.0000 −0.969351 −0.484675 0.874694i \(-0.661062\pi\)
−0.484675 + 0.874694i \(0.661062\pi\)
\(614\) 25.8997i 1.04523i
\(615\) 0 0
\(616\) 9.94987 + 9.94987i 0.400892 + 0.400892i
\(617\) 12.0000i 0.483102i −0.970388 0.241551i \(-0.922344\pi\)
0.970388 0.241551i \(-0.0776561\pi\)
\(618\) 18.4169i 0.740835i
\(619\) 21.8997 + 21.8997i 0.880225 + 0.880225i 0.993557 0.113332i \(-0.0361524\pi\)
−0.113332 + 0.993557i \(0.536152\pi\)
\(620\) 0 0
\(621\) 25.4829i 1.02259i
\(622\) −19.2665 −0.772516
\(623\) −0.949874 0.949874i −0.0380559 0.0380559i
\(624\) 1.15831 5.79156i 0.0463696 0.231848i
\(625\) 0 0
\(626\) 15.4248 + 15.4248i 0.616499 + 0.616499i
\(627\) −15.3668 15.3668i −0.613689 0.613689i
\(628\) 10.0000 + 10.0000i 0.399043 + 0.399043i
\(629\) −9.47494 + 9.47494i −0.377790 + 0.377790i
\(630\) 0 0
\(631\) 4.47494 4.47494i 0.178144 0.178144i −0.612402 0.790546i \(-0.709797\pi\)
0.790546 + 0.612402i \(0.209797\pi\)
\(632\) 12.9499 0.515118
\(633\) −23.1082 + 23.1082i −0.918468 + 0.918468i
\(634\) 12.0000 0.476581
\(635\) 0 0
\(636\) 22.3166i 0.884912i
\(637\) 6.00000 4.00000i 0.237729 0.158486i
\(638\) 20.9499 20.9499i 0.829413 0.829413i
\(639\) 0.899749 0.899749i 0.0355935 0.0355935i
\(640\) 0 0
\(641\) 5.36675i 0.211974i 0.994368 + 0.105987i \(0.0338002\pi\)
−0.994368 + 0.105987i \(0.966200\pi\)
\(642\) 22.3166i 0.880767i
\(643\) 12.9499 0.510693 0.255347 0.966850i \(-0.417810\pi\)
0.255347 + 0.966850i \(0.417810\pi\)
\(644\) 9.94987 + 9.94987i 0.392080 + 0.392080i
\(645\) 0 0
\(646\) 12.6332 0.497049
\(647\) 6.63325 6.63325i 0.260780 0.260780i −0.564591 0.825371i \(-0.690966\pi\)
0.825371 + 0.564591i \(0.190966\pi\)
\(648\) 7.94987i 0.312301i
\(649\) 2.10025 0.0824421
\(650\) 0 0
\(651\) −6.94987 −0.272387
\(652\) 2.94987i 0.115526i
\(653\) −31.5831 + 31.5831i −1.23594 + 1.23594i −0.274299 + 0.961645i \(0.588446\pi\)
−0.961645 + 0.274299i \(0.911554\pi\)
\(654\) −3.41688 −0.133610
\(655\) 0 0
\(656\) −6.31662 6.31662i −0.246623 0.246623i
\(657\) 1.26650 0.0494108
\(658\) 27.9499i 1.08960i
\(659\) 0.633250i 0.0246679i 0.999924 + 0.0123340i \(0.00392612\pi\)
−0.999924 + 0.0123340i \(0.996074\pi\)
\(660\) 0 0
\(661\) −12.8997 + 12.8997i −0.501742 + 0.501742i −0.911979 0.410237i \(-0.865446\pi\)
0.410237 + 0.911979i \(0.365446\pi\)
\(662\) −1.00000 + 1.00000i −0.0388661 + 0.0388661i
\(663\) −14.6332 21.9499i −0.568308 0.852462i
\(664\) 6.31662i 0.245133i
\(665\) 0 0
\(666\) 0.949874 0.0368069
\(667\) 20.9499 20.9499i 0.811182 0.811182i
\(668\) 12.6332 0.488795
\(669\) −18.4749 + 18.4749i −0.714282 + 0.714282i
\(670\) 0 0
\(671\) 6.63325 6.63325i 0.256074 0.256074i
\(672\) −3.47494 3.47494i −0.134049 0.134049i
\(673\) 11.4248 + 11.4248i 0.440394 + 0.440394i 0.892144 0.451750i \(-0.149200\pi\)
−0.451750 + 0.892144i \(0.649200\pi\)
\(674\) 3.52506 + 3.52506i 0.135780 + 0.135780i
\(675\) 0 0
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) 2.68338 + 2.68338i 0.103130 + 0.103130i 0.756789 0.653659i \(-0.226767\pi\)
−0.653659 + 0.756789i \(0.726767\pi\)
\(678\) −6.21637 −0.238738
\(679\) 26.8496i 1.03039i
\(680\) 0 0
\(681\) 20.8496 + 20.8496i 0.798959 + 0.798959i
\(682\) 6.63325i 0.254000i
\(683\) 30.9499i 1.18426i −0.805841 0.592132i \(-0.798286\pi\)
0.805841 0.592132i \(-0.201714\pi\)
\(684\) −0.633250 0.633250i −0.0242129 0.0242129i
\(685\) 0 0
\(686\) 15.0000i 0.572703i
\(687\) −8.16625 −0.311562
\(688\) −2.47494 2.47494i −0.0943561 0.0943561i
\(689\) −9.63325 + 48.1662i −0.366998 + 1.83499i
\(690\) 0 0
\(691\) −14.0000 14.0000i −0.532585 0.532585i 0.388756 0.921341i \(-0.372905\pi\)
−0.921341 + 0.388756i \(0.872905\pi\)
\(692\) −3.31662 3.31662i −0.126079 0.126079i
\(693\) −3.15038 3.15038i −0.119673 0.119673i
\(694\) 0.791562 0.791562i 0.0300473 0.0300473i
\(695\) 0 0
\(696\) −7.31662 + 7.31662i −0.277336 + 0.277336i
\(697\) −39.8997 −1.51131
\(698\) −18.4248 + 18.4248i −0.697389 + 0.697389i
\(699\) 15.7335 0.595096
\(700\) 0 0
\(701\) 45.4829i 1.71786i −0.512089 0.858932i \(-0.671128\pi\)
0.512089 0.858932i \(-0.328872\pi\)
\(702\) −3.84169 + 19.2084i −0.144995 + 0.724976i
\(703\) −6.00000 + 6.00000i −0.226294 + 0.226294i
\(704\) −3.31662 + 3.31662i −0.125000 + 0.125000i
\(705\) 0 0
\(706\) 7.58312i 0.285395i
\(707\) 57.7995i 2.17377i
\(708\) −0.733501 −0.0275666
\(709\) 29.9499 + 29.9499i 1.12479 + 1.12479i 0.991011 + 0.133780i \(0.0427116\pi\)
0.133780 + 0.991011i \(0.457288\pi\)
\(710\) 0 0
\(711\) −4.10025 −0.153771
\(712\) 0.316625 0.316625i 0.0118660 0.0118660i
\(713\) 6.63325i 0.248417i
\(714\) −21.9499 −0.821453
\(715\) 0 0
\(716\) −15.0000 −0.560576
\(717\) 27.4327i 1.02449i
\(718\) −22.2665 + 22.2665i −0.830978 + 0.830978i
\(719\) −6.94987 −0.259187 −0.129593 0.991567i \(-0.541367\pi\)
−0.129593 + 0.991567i \(0.541367\pi\)
\(720\) 0 0
\(721\) −23.8496 23.8496i −0.888206 0.888206i
\(722\) −11.0000 −0.409378
\(723\) 37.0660i 1.37850i
\(724\) 6.94987i 0.258290i
\(725\) 0 0
\(726\) 12.7414 12.7414i 0.472879 0.472879i
\(727\) 13.9499 13.9499i 0.517372 0.517372i −0.399403 0.916775i \(-0.630783\pi\)
0.916775 + 0.399403i \(0.130783\pi\)
\(728\) 6.00000 + 9.00000i 0.222375 + 0.333562i
\(729\) 29.2164i 1.08209i
\(730\) 0 0
\(731\) −15.6332 −0.578217
\(732\) −2.31662 + 2.31662i −0.0856249 + 0.0856249i
\(733\) −36.7995 −1.35922 −0.679610 0.733573i \(-0.737851\pi\)
−0.679610 + 0.733573i \(0.737851\pi\)
\(734\) 1.94987 1.94987i 0.0719712 0.0719712i
\(735\) 0 0
\(736\) −3.31662 + 3.31662i −0.122252 + 0.122252i
\(737\) 16.4169 + 16.4169i 0.604723 + 0.604723i
\(738\) 2.00000 + 2.00000i 0.0736210 + 0.0736210i
\(739\) −35.8997 35.8997i −1.32059 1.32059i −0.913295 0.407299i \(-0.866471\pi\)
−0.407299 0.913295i \(-0.633529\pi\)
\(740\) 0 0
\(741\) −9.26650 13.8997i −0.340413 0.510620i
\(742\) 28.8997 + 28.8997i 1.06094 + 1.06094i
\(743\) 15.6332 0.573528 0.286764 0.958001i \(-0.407420\pi\)
0.286764 + 0.958001i \(0.407420\pi\)
\(744\) 2.31662i 0.0849316i
\(745\) 0 0
\(746\) 20.0000 + 20.0000i 0.732252 + 0.732252i
\(747\) 2.00000i 0.0731762i
\(748\) 20.9499i 0.766003i
\(749\) −28.8997 28.8997i −1.05597 1.05597i
\(750\) 0 0
\(751\) 13.8997i 0.507209i −0.967308 0.253605i \(-0.918384\pi\)
0.967308 0.253605i \(-0.0816162\pi\)
\(752\) 9.31662 0.339742
\(753\) 22.3166 + 22.3166i 0.813263 + 0.813263i
\(754\) 18.9499 12.6332i 0.690114 0.460076i
\(755\) 0 0
\(756\) 11.5251 + 11.5251i 0.419162 + 0.419162i
\(757\) 5.00000 + 5.00000i 0.181728 + 0.181728i 0.792108 0.610380i \(-0.208983\pi\)
−0.610380 + 0.792108i \(0.708983\pi\)
\(758\) −13.0000 13.0000i −0.472181 0.472181i
\(759\) 25.4829 25.4829i 0.924970 0.924970i
\(760\) 0 0
\(761\) −25.5831 + 25.5831i −0.927388 + 0.927388i −0.997537 0.0701490i \(-0.977653\pi\)
0.0701490 + 0.997537i \(0.477653\pi\)
\(762\) 16.2164 0.587457
\(763\) 4.42481 4.42481i 0.160189 0.160189i
\(764\) −5.05013 −0.182707
\(765\) 0 0
\(766\) 14.3668i 0.519092i
\(767\) 1.58312 + 0.316625i 0.0571633 + 0.0114327i
\(768\) 1.15831 1.15831i 0.0417970 0.0417970i
\(769\) −4.94987 + 4.94987i −0.178497 + 0.178497i −0.790700 0.612203i \(-0.790283\pi\)
0.612203 + 0.790700i \(0.290283\pi\)
\(770\) 0 0
\(771\) 27.4327i 0.987966i
\(772\) 10.9499i 0.394095i
\(773\) 22.5831 0.812259 0.406129 0.913816i \(-0.366878\pi\)
0.406129 + 0.913816i \(0.366878\pi\)
\(774\) 0.783626 + 0.783626i 0.0281669 + 0.0281669i
\(775\) 0 0
\(776\) −8.94987 −0.321282
\(777\) 10.4248 10.4248i 0.373988 0.373988i
\(778\) 13.8997i 0.498330i
\(779\) −25.2665 −0.905266
\(780\) 0 0
\(781\) −18.8496 −0.674493
\(782\) 20.9499i 0.749166i
\(783\) 24.2665 24.2665i 0.867214 0.867214i
\(784\) 2.00000 0.0714286
\(785\) 0 0
\(786\) −3.47494 3.47494i −0.123947 0.123947i
\(787\) 25.8997 0.923226 0.461613 0.887081i \(-0.347271\pi\)
0.461613 + 0.887081i \(0.347271\pi\)
\(788\) 3.94987i 0.140708i
\(789\) 28.5330i 1.01580i
\(790\) 0 0
\(791\) 8.05013 8.05013i 0.286230 0.286230i
\(792\) 1.05013 1.05013i 0.0373146 0.0373146i
\(793\) 6.00000 4.00000i 0.213066 0.142044i
\(794\) 18.0000i 0.638796i
\(795\) 0 0
\(796\) −16.9499 −0.600772
\(797\) −7.26650 + 7.26650i −0.257393 + 0.257393i −0.823993 0.566600i \(-0.808258\pi\)
0.566600 + 0.823993i \(0.308258\pi\)
\(798\) −13.8997 −0.492046
\(799\) 29.4248 29.4248i 1.04098 1.04098i
\(800\) 0 0
\(801\) −0.100251 + 0.100251i −0.00354220 + 0.00354220i
\(802\) −10.5831 10.5831i −0.373703 0.373703i
\(803\) −13.2665 13.2665i −0.468165 0.468165i
\(804\) −5.73350 5.73350i −0.202205 0.202205i
\(805\) 0 0
\(806\) −1.00000 + 5.00000i −0.0352235 + 0.176117i
\(807\) −15.3668 15.3668i −0.540935 0.540935i
\(808\) 19.2665 0.677793
\(809\) 14.3668i 0.505108i −0.967583 0.252554i \(-0.918729\pi\)
0.967583 0.252554i \(-0.0812705\pi\)
\(810\) 0 0
\(811\) 22.9499 + 22.9499i 0.805879 + 0.805879i 0.984007 0.178128i \(-0.0570042\pi\)
−0.178128 + 0.984007i \(0.557004\pi\)
\(812\) 18.9499i 0.665010i
\(813\) 24.3826i 0.855136i
\(814\) −9.94987 9.94987i −0.348743 0.348743i
\(815\) 0 0
\(816\) 7.31662i 0.256133i
\(817\) −9.89975 −0.346348
\(818\) 23.9499 + 23.9499i 0.837388 + 0.837388i
\(819\) −1.89975 2.84962i −0.0663826 0.0995739i
\(820\) 0 0
\(821\) −24.7916 24.7916i −0.865231 0.865231i 0.126709 0.991940i \(-0.459559\pi\)
−0.991940 + 0.126709i \(0.959559\pi\)
\(822\) −6.58312 6.58312i −0.229613 0.229613i
\(823\) −27.8997 27.8997i −0.972524 0.972524i 0.0271084 0.999632i \(-0.491370\pi\)
−0.999632 + 0.0271084i \(0.991370\pi\)
\(824\) 7.94987 7.94987i 0.276947 0.276947i
\(825\) 0 0
\(826\) 0.949874 0.949874i 0.0330504 0.0330504i
\(827\) 31.2665 1.08724 0.543621 0.839331i \(-0.317053\pi\)
0.543621 + 0.839331i \(0.317053\pi\)
\(828\) 1.05013 1.05013i 0.0364944 0.0364944i
\(829\) 30.8496 1.07145 0.535726 0.844392i \(-0.320038\pi\)
0.535726 + 0.844392i \(0.320038\pi\)
\(830\) 0 0
\(831\) 50.7335i 1.75993i
\(832\) −3.00000 + 2.00000i −0.104006 + 0.0693375i
\(833\) 6.31662 6.31662i 0.218858 0.218858i
\(834\) 18.4749 18.4749i 0.639735 0.639735i
\(835\) 0 0
\(836\) 13.2665i 0.458831i
\(837\) 7.68338i 0.265576i
\(838\) −8.68338 −0.299962
\(839\) −21.6332 21.6332i −0.746863 0.746863i 0.227026 0.973889i \(-0.427100\pi\)
−0.973889 + 0.227026i \(0.927100\pi\)
\(840\) 0 0
\(841\) −10.8997 −0.375853
\(842\) 2.47494 2.47494i 0.0852920 0.0852920i
\(843\) 27.0660i 0.932202i
\(844\) 19.9499 0.686703
\(845\) 0 0
\(846\) −2.94987 −0.101419
\(847\) 33.0000i 1.13389i
\(848\) −9.63325 + 9.63325i −0.330807 + 0.330807i
\(849\) 18.4169 0.632066
\(850\) 0 0
\(851\) −9.94987 9.94987i −0.341077 0.341077i
\(852\) 6.58312 0.225534
\(853\) 4.05013i 0.138674i 0.997593 + 0.0693368i \(0.0220883\pi\)
−0.997593 + 0.0693368i \(0.977912\pi\)
\(854\) 6.00000i 0.205316i
\(855\) 0 0
\(856\) 9.63325 9.63325i 0.329258 0.329258i
\(857\) −15.3166 + 15.3166i −0.523206 + 0.523206i −0.918538 0.395332i \(-0.870629\pi\)
0.395332 + 0.918538i \(0.370629\pi\)
\(858\) 23.0501 15.3668i 0.786918 0.524612i
\(859\) 19.8997i 0.678971i 0.940611 + 0.339485i \(0.110253\pi\)
−0.940611 + 0.339485i \(0.889747\pi\)
\(860\) 0 0
\(861\) 43.8997 1.49610
\(862\) −12.1583 + 12.1583i −0.414114 + 0.414114i
\(863\) 22.5831 0.768738 0.384369 0.923179i \(-0.374419\pi\)
0.384369 + 0.923179i \(0.374419\pi\)
\(864\) −3.84169 + 3.84169i −0.130697 + 0.130697i
\(865\) 0 0
\(866\) −12.5251 + 12.5251i −0.425619 + 0.425619i
\(867\) −3.41688 3.41688i −0.116043 0.116043i
\(868\) 3.00000 + 3.00000i 0.101827 + 0.101827i
\(869\) 42.9499 + 42.9499i 1.45697 + 1.45697i
\(870\) 0 0
\(871\) 9.89975 + 14.8496i 0.335440 + 0.503160i
\(872\) 1.47494 + 1.47494i 0.0499477 + 0.0499477i
\(873\) 2.83375 0.0959080
\(874\) 13.2665i 0.448746i
\(875\) 0 0
\(876\) 4.63325 + 4.63325i 0.156543 + 0.156543i
\(877\) 6.05013i 0.204298i 0.994769 + 0.102149i \(0.0325719\pi\)
−0.994769 + 0.102149i \(0.967428\pi\)
\(878\) 33.8997i 1.14406i
\(879\) −26.5251 26.5251i −0.894668 0.894668i
\(880\) 0 0
\(881\) 16.5831i 0.558700i −0.960189 0.279350i \(-0.909881\pi\)
0.960189 0.279350i \(-0.0901189\pi\)
\(882\) −0.633250 −0.0213226
\(883\) −24.4248 24.4248i −0.821960 0.821960i 0.164429 0.986389i \(-0.447422\pi\)
−0.986389 + 0.164429i \(0.947422\pi\)
\(884\) −3.15831 + 15.7916i −0.106226 + 0.531128i
\(885\) 0 0
\(886\) −20.0581 20.0581i −0.673864 0.673864i
\(887\) −5.36675 5.36675i −0.180198 0.180198i 0.611244 0.791442i \(-0.290669\pi\)
−0.791442 + 0.611244i \(0.790669\pi\)
\(888\) 3.47494 + 3.47494i 0.116611 + 0.116611i
\(889\) −21.0000 + 21.0000i −0.704317 + 0.704317i
\(890\) 0 0
\(891\) 26.3668 26.3668i 0.883319 0.883319i
\(892\) 15.9499 0.534041
\(893\) 18.6332 18.6332i 0.623538 0.623538i
\(894\) −35.4829 −1.18672
\(895\) 0 0
\(896\) 3.00000i 0.100223i
\(897\) 23.0501 15.3668i 0.769621 0.513081i
\(898\) 21.6332 21.6332i 0.721911 0.721911i
\(899\) 6.31662 6.31662i 0.210671 0.210671i
\(900\) 0 0
\(901\) 60.8496i 2.02719i
\(902\) 41.8997i 1.39511i
\(903\) 17.2005 0.572397
\(904\) 2.68338 + 2.68338i 0.0892477 + 0.0892477i
\(905\) 0 0
\(906\) 10.3668 0.344412
\(907\) −32.3246 + 32.3246i −1.07332 + 1.07332i −0.0762291 + 0.997090i \(0.524288\pi\)
−0.997090 + 0.0762291i \(0.975712\pi\)
\(908\) 18.0000i 0.597351i
\(909\) −6.10025 −0.202333
\(910\) 0 0
\(911\) −11.0501 −0.366107 −0.183053 0.983103i \(-0.558598\pi\)
−0.183053 + 0.983103i \(0.558598\pi\)
\(912\) 4.63325i 0.153422i
\(913\) −20.9499 + 20.9499i −0.693340 + 0.693340i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 3.52506 + 3.52506i 0.116471 + 0.116471i
\(917\) 9.00000 0.297206
\(918\) 24.2665i 0.800914i
\(919\) 10.1003i 0.333177i −0.986027 0.166588i \(-0.946725\pi\)
0.986027 0.166588i \(-0.0532751\pi\)
\(920\) 0 0
\(921\) 30.0000 30.0000i 0.988534 0.988534i
\(922\) −4.10819 + 4.10819i −0.135296 + 0.135296i
\(923\) −14.2084 2.84169i −0.467676 0.0935353i
\(924\) 23.0501i 0.758293i
\(925\) 0 0
\(926\) −9.89975 −0.325326
\(927\) −2.51713 + 2.51713i −0.0826733 + 0.0826733i
\(928\) 6.31662 0.207353
\(929\) 13.5831 13.5831i 0.445648 0.445648i −0.448257 0.893905i \(-0.647955\pi\)
0.893905 + 0.448257i \(0.147955\pi\)
\(930\) 0 0
\(931\) 4.00000 4.00000i 0.131095 0.131095i
\(932\) −6.79156 6.79156i −0.222465 0.222465i
\(933\) 22.3166 + 22.3166i 0.730613 + 0.730613i
\(934\) −8.36675 8.36675i −0.273768 0.273768i
\(935\) 0 0
\(936\) 0.949874 0.633250i 0.0310476 0.0206984i
\(937\) −1.94987 1.94987i −0.0636996 0.0636996i 0.674539 0.738239i \(-0.264342\pi\)
−0.738239 + 0.674539i \(0.764342\pi\)
\(938\) 14.8496 0.484857
\(939\) 35.7335i 1.16612i
\(940\) 0 0
\(941\) −1.74144 1.74144i −0.0567692 0.0567692i 0.678152 0.734921i \(-0.262781\pi\)
−0.734921 + 0.678152i \(0.762781\pi\)
\(942\) 23.1662i 0.754797i
\(943\) 41.8997i 1.36444i
\(944\) 0.316625 + 0.316625i 0.0103053 + 0.0103053i
\(945\) 0 0
\(946\) 16.4169i 0.533759i
\(947\) −5.68338 −0.184685 −0.0923424 0.995727i \(-0.529435\pi\)
−0.0923424 + 0.995727i \(0.529435\pi\)
\(948\) −15.0000 15.0000i −0.487177 0.487177i
\(949\) −8.00000 12.0000i −0.259691 0.389536i
\(950\) 0 0
\(951\) −13.8997 13.8997i −0.450730 0.450730i
\(952\) 9.47494 + 9.47494i 0.307084 + 0.307084i
\(953\) −21.0079 21.0079i −0.680514 0.680514i 0.279602 0.960116i \(-0.409797\pi\)
−0.960116 + 0.279602i \(0.909797\pi\)
\(954\) 3.05013 3.05013i 0.0987515 0.0987515i
\(955\) 0 0
\(956\) 11.8417 11.8417i 0.382988 0.382988i
\(957\) −48.5330 −1.56885
\(958\) 3.15831 3.15831i 0.102040 0.102040i
\(959\) 17.0501 0.550577
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) −6.00000 9.00000i −0.193448 0.290172i
\(963\) −3.05013 + 3.05013i −0.0982889 + 0.0982889i
\(964\) −16.0000 + 16.0000i −0.515325 + 0.515325i
\(965\) 0 0
\(966\) 23.0501i 0.741626i
\(967\) 36.0501i 1.15929i 0.814868 + 0.579647i \(0.196810\pi\)
−0.814868 + 0.579647i \(0.803190\pi\)
\(968\) −11.0000 −0.353553
\(969\) −14.6332 14.6332i −0.470088 0.470088i
\(970\) 0 0
\(971\) 20.0501 0.643439 0.321720 0.946835i \(-0.395739\pi\)
0.321720 + 0.946835i \(0.395739\pi\)
\(972\) 2.31662 2.31662i 0.0743058 0.0743058i
\(973\) 47.8496i 1.53399i
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 35.0501i 1.12135i −0.828035 0.560676i \(-0.810541\pi\)
0.828035 0.560676i \(-0.189459\pi\)
\(978\) −3.41688 + 3.41688i −0.109260 + 0.109260i
\(979\) 2.10025 0.0671243
\(980\) 0 0
\(981\) −0.467002 0.467002i −0.0149102 0.0149102i
\(982\) 32.6834 1.04297
\(983\) 2.05013i 0.0653889i −0.999465 0.0326944i \(-0.989591\pi\)
0.999465 0.0326944i \(-0.0104088\pi\)
\(984\) 14.6332i 0.466491i
\(985\) 0 0
\(986\) 19.9499 19.9499i 0.635333 0.635333i
\(987\) −32.3747 + 32.3747i −1.03050 + 1.03050i
\(988\) −2.00000 + 10.0000i −0.0636285 + 0.318142i
\(989\) 16.4169i 0.522026i
\(990\) 0 0
\(991\) 59.7995 1.89959 0.949797 0.312867i \(-0.101290\pi\)
0.949797 + 0.312867i \(0.101290\pi\)
\(992\) −1.00000 + 1.00000i −0.0317500 + 0.0317500i
\(993\) 2.31662 0.0735159
\(994\) −8.52506 + 8.52506i −0.270399 + 0.270399i
\(995\) 0 0
\(996\) 7.31662 7.31662i 0.231836 0.231836i
\(997\) −8.89975 8.89975i −0.281858 0.281858i 0.551992 0.833850i \(-0.313868\pi\)
−0.833850 + 0.551992i \(0.813868\pi\)
\(998\) 8.94987 + 8.94987i 0.283303 + 0.283303i
\(999\) −11.5251 11.5251i −0.364637 0.364637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.j.f.307.2 4
5.2 odd 4 130.2.g.d.73.1 yes 4
5.3 odd 4 650.2.g.g.593.2 4
5.4 even 2 130.2.j.d.47.1 yes 4
13.5 odd 4 650.2.g.g.57.2 4
15.2 even 4 1170.2.m.e.73.1 4
15.14 odd 2 1170.2.w.e.307.1 4
20.7 even 4 1040.2.bg.k.593.2 4
20.19 odd 2 1040.2.cd.i.177.2 4
65.18 even 4 inner 650.2.j.f.343.2 4
65.44 odd 4 130.2.g.d.57.1 4
65.57 even 4 130.2.j.d.83.1 yes 4
195.44 even 4 1170.2.m.e.577.2 4
195.122 odd 4 1170.2.w.e.343.1 4
260.187 odd 4 1040.2.cd.i.993.2 4
260.239 even 4 1040.2.bg.k.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.d.57.1 4 65.44 odd 4
130.2.g.d.73.1 yes 4 5.2 odd 4
130.2.j.d.47.1 yes 4 5.4 even 2
130.2.j.d.83.1 yes 4 65.57 even 4
650.2.g.g.57.2 4 13.5 odd 4
650.2.g.g.593.2 4 5.3 odd 4
650.2.j.f.307.2 4 1.1 even 1 trivial
650.2.j.f.343.2 4 65.18 even 4 inner
1040.2.bg.k.577.2 4 260.239 even 4
1040.2.bg.k.593.2 4 20.7 even 4
1040.2.cd.i.177.2 4 20.19 odd 2
1040.2.cd.i.993.2 4 260.187 odd 4
1170.2.m.e.73.1 4 15.2 even 4
1170.2.m.e.577.2 4 195.44 even 4
1170.2.w.e.307.1 4 15.14 odd 2
1170.2.w.e.343.1 4 195.122 odd 4