Properties

Label 130.2.j.d.47.1
Level $130$
Weight $2$
Character 130.47
Analytic conductor $1.038$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(47,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.1
Root \(1.65831 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 130.47
Dual form 130.2.j.d.83.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-1.15831 + 1.15831i) q^{3} -1.00000 q^{4} +(1.65831 + 1.50000i) q^{5} +(1.15831 + 1.15831i) q^{6} +3.00000 q^{7} +1.00000i q^{8} +0.316625i q^{9} +(1.50000 - 1.65831i) q^{10} +(3.31662 - 3.31662i) q^{11} +(1.15831 - 1.15831i) q^{12} +(-3.00000 + 2.00000i) q^{13} -3.00000i q^{14} +(-3.65831 + 0.183375i) q^{15} +1.00000 q^{16} +(-3.15831 + 3.15831i) q^{17} +0.316625 q^{18} +(2.00000 - 2.00000i) q^{19} +(-1.65831 - 1.50000i) q^{20} +(-3.47494 + 3.47494i) q^{21} +(-3.31662 - 3.31662i) q^{22} +(-3.31662 - 3.31662i) q^{23} +(-1.15831 - 1.15831i) q^{24} +(0.500000 + 4.97494i) q^{25} +(2.00000 + 3.00000i) q^{26} +(-3.84169 - 3.84169i) q^{27} -3.00000 q^{28} -6.31662i q^{29} +(0.183375 + 3.65831i) q^{30} +(1.00000 + 1.00000i) q^{31} -1.00000i q^{32} +7.68338i q^{33} +(3.15831 + 3.15831i) q^{34} +(4.97494 + 4.50000i) q^{35} -0.316625i q^{36} +3.00000 q^{37} +(-2.00000 - 2.00000i) q^{38} +(1.15831 - 5.79156i) q^{39} +(-1.50000 + 1.65831i) q^{40} +(-6.31662 - 6.31662i) q^{41} +(3.47494 + 3.47494i) q^{42} +(2.47494 + 2.47494i) q^{43} +(-3.31662 + 3.31662i) q^{44} +(-0.474937 + 0.525063i) q^{45} +(-3.31662 + 3.31662i) q^{46} -9.31662 q^{47} +(-1.15831 + 1.15831i) q^{48} +2.00000 q^{49} +(4.97494 - 0.500000i) q^{50} -7.31662i q^{51} +(3.00000 - 2.00000i) q^{52} +(9.63325 - 9.63325i) q^{53} +(-3.84169 + 3.84169i) q^{54} +(10.4749 - 0.525063i) q^{55} +3.00000i q^{56} +4.63325i q^{57} -6.31662 q^{58} +(0.316625 + 0.316625i) q^{59} +(3.65831 - 0.183375i) q^{60} +2.00000 q^{61} +(1.00000 - 1.00000i) q^{62} +0.949874i q^{63} -1.00000 q^{64} +(-7.97494 - 1.18338i) q^{65} +7.68338 q^{66} -4.94987i q^{67} +(3.15831 - 3.15831i) q^{68} +7.68338 q^{69} +(4.50000 - 4.97494i) q^{70} +(-2.84169 - 2.84169i) q^{71} -0.316625 q^{72} +4.00000i q^{73} -3.00000i q^{74} +(-6.34169 - 5.18338i) q^{75} +(-2.00000 + 2.00000i) q^{76} +(9.94987 - 9.94987i) q^{77} +(-5.79156 - 1.15831i) q^{78} +12.9499i q^{79} +(1.65831 + 1.50000i) q^{80} +7.94987 q^{81} +(-6.31662 + 6.31662i) q^{82} +6.31662 q^{83} +(3.47494 - 3.47494i) q^{84} +(-9.97494 + 0.500000i) q^{85} +(2.47494 - 2.47494i) q^{86} +(7.31662 + 7.31662i) q^{87} +(3.31662 + 3.31662i) q^{88} +(0.316625 + 0.316625i) q^{89} +(0.525063 + 0.474937i) q^{90} +(-9.00000 + 6.00000i) q^{91} +(3.31662 + 3.31662i) q^{92} -2.31662 q^{93} +9.31662i q^{94} +(6.31662 - 0.316625i) q^{95} +(1.15831 + 1.15831i) q^{96} +8.94987i q^{97} -2.00000i q^{98} +(1.05013 + 1.05013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{4} - 2 q^{6} + 12 q^{7} + 6 q^{10} - 2 q^{12} - 12 q^{13} - 8 q^{15} + 4 q^{16} - 6 q^{17} - 12 q^{18} + 8 q^{19} + 6 q^{21} + 2 q^{24} + 2 q^{25} + 8 q^{26} - 22 q^{27} - 12 q^{28}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.15831 + 1.15831i −0.668752 + 0.668752i −0.957427 0.288675i \(-0.906785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.65831 + 1.50000i 0.741620 + 0.670820i
\(6\) 1.15831 + 1.15831i 0.472879 + 0.472879i
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.316625i 0.105542i
\(10\) 1.50000 1.65831i 0.474342 0.524404i
\(11\) 3.31662 3.31662i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(12\) 1.15831 1.15831i 0.334376 0.334376i
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 3.00000i 0.801784i
\(15\) −3.65831 + 0.183375i −0.944572 + 0.0473473i
\(16\) 1.00000 0.250000
\(17\) −3.15831 + 3.15831i −0.766003 + 0.766003i −0.977400 0.211397i \(-0.932199\pi\)
0.211397 + 0.977400i \(0.432199\pi\)
\(18\) 0.316625 0.0746292
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) −1.65831 1.50000i −0.370810 0.335410i
\(21\) −3.47494 + 3.47494i −0.758293 + 0.758293i
\(22\) −3.31662 3.31662i −0.707107 0.707107i
\(23\) −3.31662 3.31662i −0.691564 0.691564i 0.271012 0.962576i \(-0.412642\pi\)
−0.962576 + 0.271012i \(0.912642\pi\)
\(24\) −1.15831 1.15831i −0.236440 0.236440i
\(25\) 0.500000 + 4.97494i 0.100000 + 0.994987i
\(26\) 2.00000 + 3.00000i 0.392232 + 0.588348i
\(27\) −3.84169 3.84169i −0.739333 0.739333i
\(28\) −3.00000 −0.566947
\(29\) 6.31662i 1.17297i −0.809961 0.586484i \(-0.800512\pi\)
0.809961 0.586484i \(-0.199488\pi\)
\(30\) 0.183375 + 3.65831i 0.0334796 + 0.667913i
\(31\) 1.00000 + 1.00000i 0.179605 + 0.179605i 0.791184 0.611578i \(-0.209465\pi\)
−0.611578 + 0.791184i \(0.709465\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 7.68338i 1.33750i
\(34\) 3.15831 + 3.15831i 0.541646 + 0.541646i
\(35\) 4.97494 + 4.50000i 0.840918 + 0.760639i
\(36\) 0.316625i 0.0527708i
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −2.00000 2.00000i −0.324443 0.324443i
\(39\) 1.15831 5.79156i 0.185478 0.927392i
\(40\) −1.50000 + 1.65831i −0.237171 + 0.262202i
\(41\) −6.31662 6.31662i −0.986491 0.986491i 0.0134189 0.999910i \(-0.495729\pi\)
−0.999910 + 0.0134189i \(0.995729\pi\)
\(42\) 3.47494 + 3.47494i 0.536194 + 0.536194i
\(43\) 2.47494 + 2.47494i 0.377424 + 0.377424i 0.870172 0.492748i \(-0.164007\pi\)
−0.492748 + 0.870172i \(0.664007\pi\)
\(44\) −3.31662 + 3.31662i −0.500000 + 0.500000i
\(45\) −0.474937 + 0.525063i −0.0707995 + 0.0782717i
\(46\) −3.31662 + 3.31662i −0.489010 + 0.489010i
\(47\) −9.31662 −1.35897 −0.679485 0.733690i \(-0.737797\pi\)
−0.679485 + 0.733690i \(0.737797\pi\)
\(48\) −1.15831 + 1.15831i −0.167188 + 0.167188i
\(49\) 2.00000 0.285714
\(50\) 4.97494 0.500000i 0.703562 0.0707107i
\(51\) 7.31662i 1.02453i
\(52\) 3.00000 2.00000i 0.416025 0.277350i
\(53\) 9.63325 9.63325i 1.32323 1.32323i 0.412082 0.911147i \(-0.364802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) −3.84169 + 3.84169i −0.522787 + 0.522787i
\(55\) 10.4749 0.525063i 1.41244 0.0707995i
\(56\) 3.00000i 0.400892i
\(57\) 4.63325i 0.613689i
\(58\) −6.31662 −0.829413
\(59\) 0.316625 + 0.316625i 0.0412210 + 0.0412210i 0.727417 0.686196i \(-0.240721\pi\)
−0.686196 + 0.727417i \(0.740721\pi\)
\(60\) 3.65831 0.183375i 0.472286 0.0236736i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 1.00000 1.00000i 0.127000 0.127000i
\(63\) 0.949874i 0.119673i
\(64\) −1.00000 −0.125000
\(65\) −7.97494 1.18338i −0.989169 0.146780i
\(66\) 7.68338 0.945758
\(67\) 4.94987i 0.604723i −0.953193 0.302362i \(-0.902225\pi\)
0.953193 0.302362i \(-0.0977750\pi\)
\(68\) 3.15831 3.15831i 0.383002 0.383002i
\(69\) 7.68338 0.924970
\(70\) 4.50000 4.97494i 0.537853 0.594619i
\(71\) −2.84169 2.84169i −0.337246 0.337246i 0.518084 0.855330i \(-0.326646\pi\)
−0.855330 + 0.518084i \(0.826646\pi\)
\(72\) −0.316625 −0.0373146
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 3.00000i 0.348743i
\(75\) −6.34169 5.18338i −0.732275 0.598525i
\(76\) −2.00000 + 2.00000i −0.229416 + 0.229416i
\(77\) 9.94987 9.94987i 1.13389 1.13389i
\(78\) −5.79156 1.15831i −0.655765 0.131153i
\(79\) 12.9499i 1.45697i 0.685059 + 0.728487i \(0.259776\pi\)
−0.685059 + 0.728487i \(0.740224\pi\)
\(80\) 1.65831 + 1.50000i 0.185405 + 0.167705i
\(81\) 7.94987 0.883319
\(82\) −6.31662 + 6.31662i −0.697555 + 0.697555i
\(83\) 6.31662 0.693340 0.346670 0.937987i \(-0.387312\pi\)
0.346670 + 0.937987i \(0.387312\pi\)
\(84\) 3.47494 3.47494i 0.379147 0.379147i
\(85\) −9.97494 + 0.500000i −1.08193 + 0.0542326i
\(86\) 2.47494 2.47494i 0.266879 0.266879i
\(87\) 7.31662 + 7.31662i 0.784425 + 0.784425i
\(88\) 3.31662 + 3.31662i 0.353553 + 0.353553i
\(89\) 0.316625 + 0.316625i 0.0335622 + 0.0335622i 0.723689 0.690127i \(-0.242445\pi\)
−0.690127 + 0.723689i \(0.742445\pi\)
\(90\) 0.525063 + 0.474937i 0.0553465 + 0.0500628i
\(91\) −9.00000 + 6.00000i −0.943456 + 0.628971i
\(92\) 3.31662 + 3.31662i 0.345782 + 0.345782i
\(93\) −2.31662 −0.240223
\(94\) 9.31662i 0.960936i
\(95\) 6.31662 0.316625i 0.648072 0.0324850i
\(96\) 1.15831 + 1.15831i 0.118220 + 0.118220i
\(97\) 8.94987i 0.908722i 0.890818 + 0.454361i \(0.150132\pi\)
−0.890818 + 0.454361i \(0.849868\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 1.05013 + 1.05013i 0.105542 + 0.105542i
\(100\) −0.500000 4.97494i −0.0500000 0.497494i
\(101\) 19.2665i 1.91709i 0.284944 + 0.958544i \(0.408025\pi\)
−0.284944 + 0.958544i \(0.591975\pi\)
\(102\) −7.31662 −0.724454
\(103\) −7.94987 7.94987i −0.783324 0.783324i 0.197066 0.980390i \(-0.436859\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −2.00000 3.00000i −0.196116 0.294174i
\(105\) −10.9749 + 0.550126i −1.07104 + 0.0536868i
\(106\) −9.63325 9.63325i −0.935664 0.935664i
\(107\) −9.63325 9.63325i −0.931281 0.931281i 0.0665047 0.997786i \(-0.478815\pi\)
−0.997786 + 0.0665047i \(0.978815\pi\)
\(108\) 3.84169 + 3.84169i 0.369667 + 0.369667i
\(109\) −1.47494 + 1.47494i −0.141273 + 0.141273i −0.774206 0.632933i \(-0.781851\pi\)
0.632933 + 0.774206i \(0.281851\pi\)
\(110\) −0.525063 10.4749i −0.0500628 0.998746i
\(111\) −3.47494 + 3.47494i −0.329826 + 0.329826i
\(112\) 3.00000 0.283473
\(113\) 2.68338 2.68338i 0.252431 0.252431i −0.569536 0.821967i \(-0.692877\pi\)
0.821967 + 0.569536i \(0.192877\pi\)
\(114\) 4.63325 0.433944
\(115\) −0.525063 10.4749i −0.0489624 0.976793i
\(116\) 6.31662i 0.586484i
\(117\) −0.633250 0.949874i −0.0585439 0.0878159i
\(118\) 0.316625 0.316625i 0.0291477 0.0291477i
\(119\) −9.47494 + 9.47494i −0.868566 + 0.868566i
\(120\) −0.183375 3.65831i −0.0167398 0.333957i
\(121\) 11.0000i 1.00000i
\(122\) 2.00000i 0.181071i
\(123\) 14.6332 1.31944
\(124\) −1.00000 1.00000i −0.0898027 0.0898027i
\(125\) −6.63325 + 9.00000i −0.593296 + 0.804984i
\(126\) 0.949874 0.0846215
\(127\) −7.00000 + 7.00000i −0.621150 + 0.621150i −0.945825 0.324676i \(-0.894745\pi\)
0.324676 + 0.945825i \(0.394745\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −5.73350 −0.504807
\(130\) −1.18338 + 7.97494i −0.103789 + 0.699448i
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 7.68338i 0.668752i
\(133\) 6.00000 6.00000i 0.520266 0.520266i
\(134\) −4.94987 −0.427604
\(135\) −0.608187 12.1332i −0.0523444 1.04426i
\(136\) −3.15831 3.15831i −0.270823 0.270823i
\(137\) 5.68338 0.485564 0.242782 0.970081i \(-0.421940\pi\)
0.242782 + 0.970081i \(0.421940\pi\)
\(138\) 7.68338i 0.654052i
\(139\) 15.9499i 1.35285i −0.736511 0.676425i \(-0.763528\pi\)
0.736511 0.676425i \(-0.236472\pi\)
\(140\) −4.97494 4.50000i −0.420459 0.380319i
\(141\) 10.7916 10.7916i 0.908813 0.908813i
\(142\) −2.84169 + 2.84169i −0.238469 + 0.238469i
\(143\) −3.31662 + 16.5831i −0.277350 + 1.38675i
\(144\) 0.316625i 0.0263854i
\(145\) 9.47494 10.4749i 0.786851 0.869896i
\(146\) 4.00000 0.331042
\(147\) −2.31662 + 2.31662i −0.191072 + 0.191072i
\(148\) −3.00000 −0.246598
\(149\) −15.3166 + 15.3166i −1.25479 + 1.25479i −0.301238 + 0.953549i \(0.597400\pi\)
−0.953549 + 0.301238i \(0.902600\pi\)
\(150\) −5.18338 + 6.34169i −0.423221 + 0.517797i
\(151\) 4.47494 4.47494i 0.364165 0.364165i −0.501179 0.865344i \(-0.667100\pi\)
0.865344 + 0.501179i \(0.167100\pi\)
\(152\) 2.00000 + 2.00000i 0.162221 + 0.162221i
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) −9.94987 9.94987i −0.801784 0.801784i
\(155\) 0.158312 + 3.15831i 0.0127160 + 0.253682i
\(156\) −1.15831 + 5.79156i −0.0927392 + 0.463696i
\(157\) 10.0000 + 10.0000i 0.798087 + 0.798087i 0.982794 0.184707i \(-0.0591335\pi\)
−0.184707 + 0.982794i \(0.559134\pi\)
\(158\) 12.9499 1.03024
\(159\) 22.3166i 1.76982i
\(160\) 1.50000 1.65831i 0.118585 0.131101i
\(161\) −9.94987 9.94987i −0.784160 0.784160i
\(162\) 7.94987i 0.624601i
\(163\) 2.94987i 0.231052i −0.993304 0.115526i \(-0.963145\pi\)
0.993304 0.115526i \(-0.0368554\pi\)
\(164\) 6.31662 + 6.31662i 0.493246 + 0.493246i
\(165\) −11.5251 + 12.7414i −0.897225 + 0.991919i
\(166\) 6.31662i 0.490265i
\(167\) 12.6332 0.977590 0.488795 0.872399i \(-0.337437\pi\)
0.488795 + 0.872399i \(0.337437\pi\)
\(168\) −3.47494 3.47494i −0.268097 0.268097i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0.500000 + 9.97494i 0.0383482 + 0.765043i
\(171\) 0.633250 + 0.633250i 0.0484258 + 0.0484258i
\(172\) −2.47494 2.47494i −0.188712 0.188712i
\(173\) −3.31662 3.31662i −0.252158 0.252158i 0.569697 0.821855i \(-0.307061\pi\)
−0.821855 + 0.569697i \(0.807061\pi\)
\(174\) 7.31662 7.31662i 0.554672 0.554672i
\(175\) 1.50000 + 14.9248i 0.113389 + 1.12821i
\(176\) 3.31662 3.31662i 0.250000 0.250000i
\(177\) −0.733501 −0.0551333
\(178\) 0.316625 0.316625i 0.0237320 0.0237320i
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0.474937 0.525063i 0.0353997 0.0391359i
\(181\) 6.94987i 0.516580i 0.966067 + 0.258290i \(0.0831590\pi\)
−0.966067 + 0.258290i \(0.916841\pi\)
\(182\) 6.00000 + 9.00000i 0.444750 + 0.667124i
\(183\) −2.31662 + 2.31662i −0.171250 + 0.171250i
\(184\) 3.31662 3.31662i 0.244505 0.244505i
\(185\) 4.97494 + 4.50000i 0.365765 + 0.330847i
\(186\) 2.31662i 0.169863i
\(187\) 20.9499i 1.53201i
\(188\) 9.31662 0.679485
\(189\) −11.5251 11.5251i −0.838325 0.838325i
\(190\) −0.316625 6.31662i −0.0229704 0.458256i
\(191\) 5.05013 0.365414 0.182707 0.983167i \(-0.441514\pi\)
0.182707 + 0.983167i \(0.441514\pi\)
\(192\) 1.15831 1.15831i 0.0835940 0.0835940i
\(193\) 10.9499i 0.788189i 0.919070 + 0.394095i \(0.128942\pi\)
−0.919070 + 0.394095i \(0.871058\pi\)
\(194\) 8.94987 0.642564
\(195\) 10.6082 7.86675i 0.759668 0.563350i
\(196\) −2.00000 −0.142857
\(197\) 3.94987i 0.281417i 0.990051 + 0.140708i \(0.0449380\pi\)
−0.990051 + 0.140708i \(0.955062\pi\)
\(198\) 1.05013 1.05013i 0.0746292 0.0746292i
\(199\) 16.9499 1.20154 0.600772 0.799420i \(-0.294860\pi\)
0.600772 + 0.799420i \(0.294860\pi\)
\(200\) −4.97494 + 0.500000i −0.351781 + 0.0353553i
\(201\) 5.73350 + 5.73350i 0.404410 + 0.404410i
\(202\) 19.2665 1.35559
\(203\) 18.9499i 1.33002i
\(204\) 7.31662i 0.512266i
\(205\) −1.00000 19.9499i −0.0698430 1.39336i
\(206\) −7.94987 + 7.94987i −0.553894 + 0.553894i
\(207\) 1.05013 1.05013i 0.0729888 0.0729888i
\(208\) −3.00000 + 2.00000i −0.208013 + 0.138675i
\(209\) 13.2665i 0.917663i
\(210\) 0.550126 + 10.9749i 0.0379623 + 0.757343i
\(211\) −19.9499 −1.37341 −0.686703 0.726938i \(-0.740943\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(212\) −9.63325 + 9.63325i −0.661614 + 0.661614i
\(213\) 6.58312 0.451068
\(214\) −9.63325 + 9.63325i −0.658515 + 0.658515i
\(215\) 0.391813 + 7.81662i 0.0267214 + 0.533089i
\(216\) 3.84169 3.84169i 0.261394 0.261394i
\(217\) 3.00000 + 3.00000i 0.203653 + 0.203653i
\(218\) 1.47494 + 1.47494i 0.0998954 + 0.0998954i
\(219\) −4.63325 4.63325i −0.313086 0.313086i
\(220\) −10.4749 + 0.525063i −0.706220 + 0.0353997i
\(221\) 3.15831 15.7916i 0.212451 1.06226i
\(222\) 3.47494 + 3.47494i 0.233223 + 0.233223i
\(223\) 15.9499 1.06808 0.534041 0.845458i \(-0.320673\pi\)
0.534041 + 0.845458i \(0.320673\pi\)
\(224\) 3.00000i 0.200446i
\(225\) −1.57519 + 0.158312i −0.105013 + 0.0105542i
\(226\) −2.68338 2.68338i −0.178495 0.178495i
\(227\) 18.0000i 1.19470i −0.801980 0.597351i \(-0.796220\pi\)
0.801980 0.597351i \(-0.203780\pi\)
\(228\) 4.63325i 0.306844i
\(229\) −3.52506 3.52506i −0.232943 0.232943i 0.580977 0.813920i \(-0.302671\pi\)
−0.813920 + 0.580977i \(0.802671\pi\)
\(230\) −10.4749 + 0.525063i −0.690697 + 0.0346216i
\(231\) 23.0501i 1.51659i
\(232\) 6.31662 0.414707
\(233\) −6.79156 6.79156i −0.444930 0.444930i 0.448735 0.893665i \(-0.351875\pi\)
−0.893665 + 0.448735i \(0.851875\pi\)
\(234\) −0.949874 + 0.633250i −0.0620952 + 0.0413968i
\(235\) −15.4499 13.9749i −1.00784 0.911624i
\(236\) −0.316625 0.316625i −0.0206105 0.0206105i
\(237\) −15.0000 15.0000i −0.974355 0.974355i
\(238\) 9.47494 + 9.47494i 0.614169 + 0.614169i
\(239\) −11.8417 + 11.8417i −0.765975 + 0.765975i −0.977395 0.211420i \(-0.932191\pi\)
0.211420 + 0.977395i \(0.432191\pi\)
\(240\) −3.65831 + 0.183375i −0.236143 + 0.0118368i
\(241\) 16.0000 16.0000i 1.03065 1.03065i 0.0311354 0.999515i \(-0.490088\pi\)
0.999515 0.0311354i \(-0.00991232\pi\)
\(242\) −11.0000 −0.707107
\(243\) 2.31662 2.31662i 0.148612 0.148612i
\(244\) −2.00000 −0.128037
\(245\) 3.31662 + 3.00000i 0.211891 + 0.191663i
\(246\) 14.6332i 0.932982i
\(247\) −2.00000 + 10.0000i −0.127257 + 0.636285i
\(248\) −1.00000 + 1.00000i −0.0635001 + 0.0635001i
\(249\) −7.31662 + 7.31662i −0.463672 + 0.463672i
\(250\) 9.00000 + 6.63325i 0.569210 + 0.419524i
\(251\) 19.2665i 1.21609i 0.793902 + 0.608045i \(0.208046\pi\)
−0.793902 + 0.608045i \(0.791954\pi\)
\(252\) 0.949874i 0.0598365i
\(253\) −22.0000 −1.38313
\(254\) 7.00000 + 7.00000i 0.439219 + 0.439219i
\(255\) 10.9749 12.1332i 0.687277 0.759814i
\(256\) 1.00000 0.0625000
\(257\) 11.8417 11.8417i 0.738664 0.738664i −0.233655 0.972319i \(-0.575069\pi\)
0.972319 + 0.233655i \(0.0750687\pi\)
\(258\) 5.73350i 0.356952i
\(259\) 9.00000 0.559233
\(260\) 7.97494 + 1.18338i 0.494585 + 0.0733898i
\(261\) 2.00000 0.123797
\(262\) 3.00000i 0.185341i
\(263\) −12.3166 + 12.3166i −0.759476 + 0.759476i −0.976227 0.216751i \(-0.930454\pi\)
0.216751 + 0.976227i \(0.430454\pi\)
\(264\) −7.68338 −0.472879
\(265\) 30.4248 1.52506i 1.86898 0.0936839i
\(266\) −6.00000 6.00000i −0.367884 0.367884i
\(267\) −0.733501 −0.0448895
\(268\) 4.94987i 0.302362i
\(269\) 13.2665i 0.808873i −0.914566 0.404436i \(-0.867468\pi\)
0.914566 0.404436i \(-0.132532\pi\)
\(270\) −12.1332 + 0.608187i −0.738406 + 0.0370131i
\(271\) −10.5251 + 10.5251i −0.639352 + 0.639352i −0.950396 0.311044i \(-0.899321\pi\)
0.311044 + 0.950396i \(0.399321\pi\)
\(272\) −3.15831 + 3.15831i −0.191501 + 0.191501i
\(273\) 3.47494 17.3747i 0.210313 1.05156i
\(274\) 5.68338i 0.343345i
\(275\) 18.1583 + 14.8417i 1.09499 + 0.894987i
\(276\) −7.68338 −0.462485
\(277\) 21.8997 21.8997i 1.31583 1.31583i 0.398783 0.917045i \(-0.369433\pi\)
0.917045 0.398783i \(-0.130567\pi\)
\(278\) −15.9499 −0.956610
\(279\) −0.316625 + 0.316625i −0.0189558 + 0.0189558i
\(280\) −4.50000 + 4.97494i −0.268926 + 0.297309i
\(281\) −11.6834 + 11.6834i −0.696972 + 0.696972i −0.963756 0.266784i \(-0.914039\pi\)
0.266784 + 0.963756i \(0.414039\pi\)
\(282\) −10.7916 10.7916i −0.642628 0.642628i
\(283\) −7.94987 7.94987i −0.472571 0.472571i 0.430175 0.902746i \(-0.358452\pi\)
−0.902746 + 0.430175i \(0.858452\pi\)
\(284\) 2.84169 + 2.84169i 0.168623 + 0.168623i
\(285\) −6.94987 + 7.68338i −0.411675 + 0.455124i
\(286\) 16.5831 + 3.31662i 0.980581 + 0.196116i
\(287\) −18.9499 18.9499i −1.11858 1.11858i
\(288\) 0.316625 0.0186573
\(289\) 2.94987i 0.173522i
\(290\) −10.4749 9.47494i −0.615109 0.556387i
\(291\) −10.3668 10.3668i −0.607710 0.607710i
\(292\) 4.00000i 0.234082i
\(293\) 22.8997i 1.33782i 0.743344 + 0.668909i \(0.233238\pi\)
−0.743344 + 0.668909i \(0.766762\pi\)
\(294\) 2.31662 + 2.31662i 0.135108 + 0.135108i
\(295\) 0.0501256 + 1.00000i 0.00291843 + 0.0582223i
\(296\) 3.00000i 0.174371i
\(297\) −25.4829 −1.47867
\(298\) 15.3166 + 15.3166i 0.887268 + 0.887268i
\(299\) 16.5831 + 3.31662i 0.959027 + 0.191805i
\(300\) 6.34169 + 5.18338i 0.366138 + 0.299262i
\(301\) 7.42481 + 7.42481i 0.427959 + 0.427959i
\(302\) −4.47494 4.47494i −0.257504 0.257504i
\(303\) −22.3166 22.3166i −1.28206 1.28206i
\(304\) 2.00000 2.00000i 0.114708 0.114708i
\(305\) 3.31662 + 3.00000i 0.189909 + 0.171780i
\(306\) −1.00000 + 1.00000i −0.0571662 + 0.0571662i
\(307\) −25.8997 −1.47818 −0.739088 0.673608i \(-0.764743\pi\)
−0.739088 + 0.673608i \(0.764743\pi\)
\(308\) −9.94987 + 9.94987i −0.566947 + 0.566947i
\(309\) 18.4169 1.04770
\(310\) 3.15831 0.158312i 0.179380 0.00899154i
\(311\) 19.2665i 1.09250i 0.837621 + 0.546251i \(0.183946\pi\)
−0.837621 + 0.546251i \(0.816054\pi\)
\(312\) 5.79156 + 1.15831i 0.327883 + 0.0655765i
\(313\) −15.4248 + 15.4248i −0.871862 + 0.871862i −0.992675 0.120813i \(-0.961450\pi\)
0.120813 + 0.992675i \(0.461450\pi\)
\(314\) 10.0000 10.0000i 0.564333 0.564333i
\(315\) −1.42481 + 1.57519i −0.0802790 + 0.0887518i
\(316\) 12.9499i 0.728487i
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 22.3166 1.25145
\(319\) −20.9499 20.9499i −1.17297 1.17297i
\(320\) −1.65831 1.50000i −0.0927025 0.0838525i
\(321\) 22.3166 1.24559
\(322\) −9.94987 + 9.94987i −0.554485 + 0.554485i
\(323\) 12.6332i 0.702933i
\(324\) −7.94987 −0.441660
\(325\) −11.4499 13.9248i −0.635125 0.772410i
\(326\) −2.94987 −0.163378
\(327\) 3.41688i 0.188954i
\(328\) 6.31662 6.31662i 0.348777 0.348777i
\(329\) −27.9499 −1.54093
\(330\) 12.7414 + 11.5251i 0.701393 + 0.634434i
\(331\) 1.00000 + 1.00000i 0.0549650 + 0.0549650i 0.734055 0.679090i \(-0.237625\pi\)
−0.679090 + 0.734055i \(0.737625\pi\)
\(332\) −6.31662 −0.346670
\(333\) 0.949874i 0.0520528i
\(334\) 12.6332i 0.691261i
\(335\) 7.42481 8.20844i 0.405661 0.448475i
\(336\) −3.47494 + 3.47494i −0.189573 + 0.189573i
\(337\) −3.52506 + 3.52506i −0.192022 + 0.192022i −0.796569 0.604547i \(-0.793354\pi\)
0.604547 + 0.796569i \(0.293354\pi\)
\(338\) −12.0000 5.00000i −0.652714 0.271964i
\(339\) 6.21637i 0.337627i
\(340\) 9.97494 0.500000i 0.540967 0.0271163i
\(341\) 6.63325 0.359211
\(342\) 0.633250 0.633250i 0.0342422 0.0342422i
\(343\) −15.0000 −0.809924
\(344\) −2.47494 + 2.47494i −0.133440 + 0.133440i
\(345\) 12.7414 + 11.5251i 0.685976 + 0.620489i
\(346\) −3.31662 + 3.31662i −0.178303 + 0.178303i
\(347\) 0.791562 + 0.791562i 0.0424933 + 0.0424933i 0.728034 0.685541i \(-0.240434\pi\)
−0.685541 + 0.728034i \(0.740434\pi\)
\(348\) −7.31662 7.31662i −0.392212 0.392212i
\(349\) 18.4248 + 18.4248i 0.986258 + 0.986258i 0.999907 0.0136493i \(-0.00434484\pi\)
−0.0136493 + 0.999907i \(0.504345\pi\)
\(350\) 14.9248 1.50000i 0.797765 0.0801784i
\(351\) 19.2084 + 3.84169i 1.02527 + 0.205054i
\(352\) −3.31662 3.31662i −0.176777 0.176777i
\(353\) −7.58312 −0.403609 −0.201804 0.979426i \(-0.564681\pi\)
−0.201804 + 0.979426i \(0.564681\pi\)
\(354\) 0.733501i 0.0389851i
\(355\) −0.449874 8.97494i −0.0238769 0.476340i
\(356\) −0.316625 0.316625i −0.0167811 0.0167811i
\(357\) 21.9499i 1.16171i
\(358\) 15.0000i 0.792775i
\(359\) 22.2665 + 22.2665i 1.17518 + 1.17518i 0.980957 + 0.194224i \(0.0622187\pi\)
0.194224 + 0.980957i \(0.437781\pi\)
\(360\) −0.525063 0.474937i −0.0276732 0.0250314i
\(361\) 11.0000i 0.578947i
\(362\) 6.94987 0.365277
\(363\) 12.7414 + 12.7414i 0.668752 + 0.668752i
\(364\) 9.00000 6.00000i 0.471728 0.314485i
\(365\) −6.00000 + 6.63325i −0.314054 + 0.347200i
\(366\) 2.31662 + 2.31662i 0.121092 + 0.121092i
\(367\) 1.94987 + 1.94987i 0.101783 + 0.101783i 0.756164 0.654382i \(-0.227071\pi\)
−0.654382 + 0.756164i \(0.727071\pi\)
\(368\) −3.31662 3.31662i −0.172891 0.172891i
\(369\) 2.00000 2.00000i 0.104116 0.104116i
\(370\) 4.50000 4.97494i 0.233944 0.258635i
\(371\) 28.8997 28.8997i 1.50040 1.50040i
\(372\) 2.31662 0.120111
\(373\) −20.0000 + 20.0000i −1.03556 + 1.03556i −0.0362168 + 0.999344i \(0.511531\pi\)
−0.999344 + 0.0362168i \(0.988469\pi\)
\(374\) 20.9499 1.08329
\(375\) −2.74144 18.1082i −0.141567 0.935103i
\(376\) 9.31662i 0.480468i
\(377\) 12.6332 + 18.9499i 0.650645 + 0.975968i
\(378\) −11.5251 + 11.5251i −0.592785 + 0.592785i
\(379\) −13.0000 + 13.0000i −0.667765 + 0.667765i −0.957198 0.289433i \(-0.906533\pi\)
0.289433 + 0.957198i \(0.406533\pi\)
\(380\) −6.31662 + 0.316625i −0.324036 + 0.0162425i
\(381\) 16.2164i 0.830790i
\(382\) 5.05013i 0.258387i
\(383\) 14.3668 0.734107 0.367053 0.930200i \(-0.380367\pi\)
0.367053 + 0.930200i \(0.380367\pi\)
\(384\) −1.15831 1.15831i −0.0591099 0.0591099i
\(385\) 31.4248 1.57519i 1.60156 0.0802790i
\(386\) 10.9499 0.557334
\(387\) −0.783626 + 0.783626i −0.0398340 + 0.0398340i
\(388\) 8.94987i 0.454361i
\(389\) −13.8997 −0.704745 −0.352373 0.935860i \(-0.614625\pi\)
−0.352373 + 0.935860i \(0.614625\pi\)
\(390\) −7.86675 10.6082i −0.398348 0.537166i
\(391\) 20.9499 1.05948
\(392\) 2.00000i 0.101015i
\(393\) 3.47494 3.47494i 0.175287 0.175287i
\(394\) 3.94987 0.198992
\(395\) −19.4248 + 21.4749i −0.977368 + 1.08052i
\(396\) −1.05013 1.05013i −0.0527708 0.0527708i
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 16.9499i 0.849620i
\(399\) 13.8997i 0.695858i
\(400\) 0.500000 + 4.97494i 0.0250000 + 0.248747i
\(401\) −10.5831 + 10.5831i −0.528496 + 0.528496i −0.920124 0.391628i \(-0.871912\pi\)
0.391628 + 0.920124i \(0.371912\pi\)
\(402\) 5.73350 5.73350i 0.285961 0.285961i
\(403\) −5.00000 1.00000i −0.249068 0.0498135i
\(404\) 19.2665i 0.958544i
\(405\) 13.1834 + 11.9248i 0.655087 + 0.592549i
\(406\) −18.9499 −0.940466
\(407\) 9.94987 9.94987i 0.493197 0.493197i
\(408\) 7.31662 0.362227
\(409\) 23.9499 23.9499i 1.18425 1.18425i 0.205611 0.978634i \(-0.434082\pi\)
0.978634 0.205611i \(-0.0659183\pi\)
\(410\) −19.9499 + 1.00000i −0.985254 + 0.0493865i
\(411\) −6.58312 + 6.58312i −0.324722 + 0.324722i
\(412\) 7.94987 + 7.94987i 0.391662 + 0.391662i
\(413\) 0.949874 + 0.949874i 0.0467403 + 0.0467403i
\(414\) −1.05013 1.05013i −0.0516109 0.0516109i
\(415\) 10.4749 + 9.47494i 0.514194 + 0.465106i
\(416\) 2.00000 + 3.00000i 0.0980581 + 0.147087i
\(417\) 18.4749 + 18.4749i 0.904722 + 0.904722i
\(418\) −13.2665 −0.648886
\(419\) 8.68338i 0.424211i 0.977247 + 0.212105i \(0.0680320\pi\)
−0.977247 + 0.212105i \(0.931968\pi\)
\(420\) 10.9749 0.550126i 0.535522 0.0268434i
\(421\) −2.47494 2.47494i −0.120621 0.120621i 0.644220 0.764841i \(-0.277182\pi\)
−0.764841 + 0.644220i \(0.777182\pi\)
\(422\) 19.9499i 0.971145i
\(423\) 2.94987i 0.143428i
\(424\) 9.63325 + 9.63325i 0.467832 + 0.467832i
\(425\) −17.2916 14.1332i −0.838764 0.685563i
\(426\) 6.58312i 0.318953i
\(427\) 6.00000 0.290360
\(428\) 9.63325 + 9.63325i 0.465641 + 0.465641i
\(429\) −15.3668 23.0501i −0.741914 1.11287i
\(430\) 7.81662 0.391813i 0.376951 0.0188949i
\(431\) 12.1583 + 12.1583i 0.585645 + 0.585645i 0.936449 0.350804i \(-0.114092\pi\)
−0.350804 + 0.936449i \(0.614092\pi\)
\(432\) −3.84169 3.84169i −0.184833 0.184833i
\(433\) −12.5251 12.5251i −0.601916 0.601916i 0.338905 0.940821i \(-0.389944\pi\)
−0.940821 + 0.338905i \(0.889944\pi\)
\(434\) 3.00000 3.00000i 0.144005 0.144005i
\(435\) 1.15831 + 23.1082i 0.0555368 + 1.10795i
\(436\) 1.47494 1.47494i 0.0706367 0.0706367i
\(437\) −13.2665 −0.634623
\(438\) −4.63325 + 4.63325i −0.221385 + 0.221385i
\(439\) −33.8997 −1.61795 −0.808973 0.587845i \(-0.799976\pi\)
−0.808973 + 0.587845i \(0.799976\pi\)
\(440\) 0.525063 + 10.4749i 0.0250314 + 0.499373i
\(441\) 0.633250i 0.0301547i
\(442\) −15.7916 3.15831i −0.751128 0.150226i
\(443\) 20.0581 20.0581i 0.952987 0.952987i −0.0459562 0.998943i \(-0.514633\pi\)
0.998943 + 0.0459562i \(0.0146335\pi\)
\(444\) 3.47494 3.47494i 0.164913 0.164913i
\(445\) 0.0501256 + 1.00000i 0.00237618 + 0.0474045i
\(446\) 15.9499i 0.755248i
\(447\) 35.4829i 1.67828i
\(448\) −3.00000 −0.141737
\(449\) −21.6332 21.6332i −1.02094 1.02094i −0.999776 0.0211601i \(-0.993264\pi\)
−0.0211601 0.999776i \(-0.506736\pi\)
\(450\) 0.158312 + 1.57519i 0.00746292 + 0.0742551i
\(451\) −41.8997 −1.97298
\(452\) −2.68338 + 2.68338i −0.126215 + 0.126215i
\(453\) 10.3668i 0.487072i
\(454\) −18.0000 −0.844782
\(455\) −23.9248 3.55013i −1.12161 0.166432i
\(456\) −4.63325 −0.216972
\(457\) 2.00000i 0.0935561i 0.998905 + 0.0467780i \(0.0148953\pi\)
−0.998905 + 0.0467780i \(0.985105\pi\)
\(458\) −3.52506 + 3.52506i −0.164715 + 0.164715i
\(459\) 24.2665 1.13266
\(460\) 0.525063 + 10.4749i 0.0244812 + 0.488396i
\(461\) 4.10819 + 4.10819i 0.191337 + 0.191337i 0.796274 0.604936i \(-0.206801\pi\)
−0.604936 + 0.796274i \(0.706801\pi\)
\(462\) 23.0501 1.07239
\(463\) 9.89975i 0.460080i −0.973181 0.230040i \(-0.926114\pi\)
0.973181 0.230040i \(-0.0738858\pi\)
\(464\) 6.31662i 0.293242i
\(465\) −3.84169 3.47494i −0.178154 0.161146i
\(466\) −6.79156 + 6.79156i −0.314613 + 0.314613i
\(467\) 8.36675 8.36675i 0.387167 0.387167i −0.486509 0.873676i \(-0.661730\pi\)
0.873676 + 0.486509i \(0.161730\pi\)
\(468\) 0.633250 + 0.949874i 0.0292720 + 0.0439080i
\(469\) 14.8496i 0.685692i
\(470\) −13.9749 + 15.4499i −0.644616 + 0.712650i
\(471\) −23.1662 −1.06744
\(472\) −0.316625 + 0.316625i −0.0145738 + 0.0145738i
\(473\) 16.4169 0.754849
\(474\) −15.0000 + 15.0000i −0.688973 + 0.688973i
\(475\) 10.9499 + 8.94987i 0.502415 + 0.410648i
\(476\) 9.47494 9.47494i 0.434283 0.434283i
\(477\) 3.05013 + 3.05013i 0.139656 + 0.139656i
\(478\) 11.8417 + 11.8417i 0.541626 + 0.541626i
\(479\) −3.15831 3.15831i −0.144307 0.144307i 0.631262 0.775569i \(-0.282537\pi\)
−0.775569 + 0.631262i \(0.782537\pi\)
\(480\) 0.183375 + 3.65831i 0.00836989 + 0.166978i
\(481\) −9.00000 + 6.00000i −0.410365 + 0.273576i
\(482\) −16.0000 16.0000i −0.728780 0.728780i
\(483\) 23.0501 1.04882
\(484\) 11.0000i 0.500000i
\(485\) −13.4248 + 14.8417i −0.609589 + 0.673926i
\(486\) −2.31662 2.31662i −0.105084 0.105084i
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 3.41688 + 3.41688i 0.154516 + 0.154516i
\(490\) 3.00000 3.31662i 0.135526 0.149830i
\(491\) 32.6834i 1.47498i −0.675358 0.737490i \(-0.736011\pi\)
0.675358 0.737490i \(-0.263989\pi\)
\(492\) −14.6332 −0.659718
\(493\) 19.9499 + 19.9499i 0.898497 + 0.898497i
\(494\) 10.0000 + 2.00000i 0.449921 + 0.0899843i
\(495\) 0.166248 + 3.31662i 0.00747229 + 0.149071i
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) −8.52506 8.52506i −0.382401 0.382401i
\(498\) 7.31662 + 7.31662i 0.327866 + 0.327866i
\(499\) 8.94987 8.94987i 0.400651 0.400651i −0.477811 0.878463i \(-0.658570\pi\)
0.878463 + 0.477811i \(0.158570\pi\)
\(500\) 6.63325 9.00000i 0.296648 0.402492i
\(501\) −14.6332 + 14.6332i −0.653765 + 0.653765i
\(502\) 19.2665 0.859906
\(503\) 1.58312 1.58312i 0.0705880 0.0705880i −0.670931 0.741519i \(-0.734106\pi\)
0.741519 + 0.670931i \(0.234106\pi\)
\(504\) −0.949874 −0.0423108
\(505\) −28.8997 + 31.9499i −1.28602 + 1.42175i
\(506\) 22.0000i 0.978019i
\(507\) 8.10819 + 19.6913i 0.360097 + 0.874522i
\(508\) 7.00000 7.00000i 0.310575 0.310575i
\(509\) −15.3166 + 15.3166i −0.678897 + 0.678897i −0.959751 0.280853i \(-0.909383\pi\)
0.280853 + 0.959751i \(0.409383\pi\)
\(510\) −12.1332 10.9749i −0.537269 0.485978i
\(511\) 12.0000i 0.530849i
\(512\) 1.00000i 0.0441942i
\(513\) −15.3668 −0.678459
\(514\) −11.8417 11.8417i −0.522314 0.522314i
\(515\) −1.25856 25.1082i −0.0554589 1.10640i
\(516\) 5.73350 0.252403
\(517\) −30.8997 + 30.8997i −1.35897 + 1.35897i
\(518\) 9.00000i 0.395437i
\(519\) 7.68338 0.337263
\(520\) 1.18338 7.97494i 0.0518944 0.349724i
\(521\) 10.8997 0.477527 0.238763 0.971078i \(-0.423258\pi\)
0.238763 + 0.971078i \(0.423258\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) −5.00000 + 5.00000i −0.218635 + 0.218635i −0.807923 0.589288i \(-0.799408\pi\)
0.589288 + 0.807923i \(0.299408\pi\)
\(524\) 3.00000 0.131056
\(525\) −19.0251 15.5501i −0.830322 0.678663i
\(526\) 12.3166 + 12.3166i 0.537030 + 0.537030i
\(527\) −6.31662 −0.275156
\(528\) 7.68338i 0.334376i
\(529\) 1.00000i 0.0434783i
\(530\) −1.52506 30.4248i −0.0662445 1.32157i
\(531\) −0.100251 + 0.100251i −0.00435053 + 0.00435053i
\(532\) −6.00000 + 6.00000i −0.260133 + 0.260133i
\(533\) 31.5831 + 6.31662i 1.36802 + 0.273603i
\(534\) 0.733501i 0.0317417i
\(535\) −1.52506 30.4248i −0.0659342 1.31538i
\(536\) 4.94987 0.213802
\(537\) −17.3747 + 17.3747i −0.749773 + 0.749773i
\(538\) −13.2665 −0.571959
\(539\) 6.63325 6.63325i 0.285714 0.285714i
\(540\) 0.608187 + 12.1332i 0.0261722 + 0.522132i
\(541\) 4.47494 4.47494i 0.192393 0.192393i −0.604337 0.796729i \(-0.706562\pi\)
0.796729 + 0.604337i \(0.206562\pi\)
\(542\) 10.5251 + 10.5251i 0.452090 + 0.452090i
\(543\) −8.05013 8.05013i −0.345464 0.345464i
\(544\) 3.15831 + 3.15831i 0.135412 + 0.135412i
\(545\) −4.65831 + 0.233501i −0.199540 + 0.0100021i
\(546\) −17.3747 3.47494i −0.743568 0.148714i
\(547\) 21.5251 + 21.5251i 0.920345 + 0.920345i 0.997054 0.0767083i \(-0.0244410\pi\)
−0.0767083 + 0.997054i \(0.524441\pi\)
\(548\) −5.68338 −0.242782
\(549\) 0.633250i 0.0270264i
\(550\) 14.8417 18.1583i 0.632852 0.774273i
\(551\) −12.6332 12.6332i −0.538195 0.538195i
\(552\) 7.68338i 0.327026i
\(553\) 38.8496i 1.65205i
\(554\) −21.8997 21.8997i −0.930431 0.930431i
\(555\) −10.9749 + 0.550126i −0.465860 + 0.0233515i
\(556\) 15.9499i 0.676425i
\(557\) 4.58312 0.194193 0.0970966 0.995275i \(-0.469044\pi\)
0.0970966 + 0.995275i \(0.469044\pi\)
\(558\) 0.316625 + 0.316625i 0.0134038 + 0.0134038i
\(559\) −12.3747 2.47494i −0.523393 0.104679i
\(560\) 4.97494 + 4.50000i 0.210229 + 0.190160i
\(561\) −24.2665 24.2665i −1.02453 1.02453i
\(562\) 11.6834 + 11.6834i 0.492833 + 0.492833i
\(563\) −6.79156 6.79156i −0.286230 0.286230i 0.549357 0.835588i \(-0.314873\pi\)
−0.835588 + 0.549357i \(0.814873\pi\)
\(564\) −10.7916 + 10.7916i −0.454407 + 0.454407i
\(565\) 8.47494 0.424812i 0.356543 0.0178720i
\(566\) −7.94987 + 7.94987i −0.334158 + 0.334158i
\(567\) 23.8496 1.00159
\(568\) 2.84169 2.84169i 0.119235 0.119235i
\(569\) 42.7995 1.79425 0.897124 0.441779i \(-0.145652\pi\)
0.897124 + 0.441779i \(0.145652\pi\)
\(570\) 7.68338 + 6.94987i 0.321821 + 0.291098i
\(571\) 28.8997i 1.20942i −0.796447 0.604708i \(-0.793290\pi\)
0.796447 0.604708i \(-0.206710\pi\)
\(572\) 3.31662 16.5831i 0.138675 0.693375i
\(573\) −5.84962 + 5.84962i −0.244372 + 0.244372i
\(574\) −18.9499 + 18.9499i −0.790952 + 0.790952i
\(575\) 14.8417 18.1583i 0.618941 0.757254i
\(576\) 0.316625i 0.0131927i
\(577\) 41.8997i 1.74431i −0.489230 0.872155i \(-0.662722\pi\)
0.489230 0.872155i \(-0.337278\pi\)
\(578\) −2.94987 −0.122699
\(579\) −12.6834 12.6834i −0.527103 0.527103i
\(580\) −9.47494 + 10.4749i −0.393425 + 0.434948i
\(581\) 18.9499 0.786173
\(582\) −10.3668 + 10.3668i −0.429716 + 0.429716i
\(583\) 63.8997i 2.64646i
\(584\) −4.00000 −0.165521
\(585\) 0.374686 2.52506i 0.0154914 0.104398i
\(586\) 22.8997 0.945980
\(587\) 24.9499i 1.02979i −0.857253 0.514896i \(-0.827831\pi\)
0.857253 0.514896i \(-0.172169\pi\)
\(588\) 2.31662 2.31662i 0.0955360 0.0955360i
\(589\) 4.00000 0.164817
\(590\) 1.00000 0.0501256i 0.0411693 0.00206364i
\(591\) −4.57519 4.57519i −0.188198 0.188198i
\(592\) 3.00000 0.123299
\(593\) 12.9499i 0.531788i −0.964002 0.265894i \(-0.914333\pi\)
0.964002 0.265894i \(-0.0856671\pi\)
\(594\) 25.4829i 1.04557i
\(595\) −29.9248 + 1.50000i −1.22680 + 0.0614940i
\(596\) 15.3166 15.3166i 0.627393 0.627393i
\(597\) −19.6332 + 19.6332i −0.803535 + 0.803535i
\(598\) 3.31662 16.5831i 0.135627 0.678134i
\(599\) 13.2665i 0.542054i −0.962572 0.271027i \(-0.912637\pi\)
0.962572 0.271027i \(-0.0873633\pi\)
\(600\) 5.18338 6.34169i 0.211610 0.258898i
\(601\) −6.05013 −0.246790 −0.123395 0.992358i \(-0.539378\pi\)
−0.123395 + 0.992358i \(0.539378\pi\)
\(602\) 7.42481 7.42481i 0.302613 0.302613i
\(603\) 1.56725 0.0638235
\(604\) −4.47494 + 4.47494i −0.182083 + 0.182083i
\(605\) 16.5000 18.2414i 0.670820 0.741620i
\(606\) −22.3166 + 22.3166i −0.906551 + 0.906551i
\(607\) 3.05013 + 3.05013i 0.123801 + 0.123801i 0.766293 0.642492i \(-0.222099\pi\)
−0.642492 + 0.766293i \(0.722099\pi\)
\(608\) −2.00000 2.00000i −0.0811107 0.0811107i
\(609\) 21.9499 + 21.9499i 0.889454 + 0.889454i
\(610\) 3.00000 3.31662i 0.121466 0.134286i
\(611\) 27.9499 18.6332i 1.13073 0.753821i
\(612\) 1.00000 + 1.00000i 0.0404226 + 0.0404226i
\(613\) 24.0000 0.969351 0.484675 0.874694i \(-0.338938\pi\)
0.484675 + 0.874694i \(0.338938\pi\)
\(614\) 25.8997i 1.04523i
\(615\) 24.2665 + 21.9499i 0.978520 + 0.885104i
\(616\) 9.94987 + 9.94987i 0.400892 + 0.400892i
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 18.4169i 0.740835i
\(619\) 21.8997 + 21.8997i 0.880225 + 0.880225i 0.993557 0.113332i \(-0.0361524\pi\)
−0.113332 + 0.993557i \(0.536152\pi\)
\(620\) −0.158312 3.15831i −0.00635798 0.126841i
\(621\) 25.4829i 1.02259i
\(622\) 19.2665 0.772516
\(623\) 0.949874 + 0.949874i 0.0380559 + 0.0380559i
\(624\) 1.15831 5.79156i 0.0463696 0.231848i
\(625\) −24.5000 + 4.97494i −0.980000 + 0.198997i
\(626\) 15.4248 + 15.4248i 0.616499 + 0.616499i
\(627\) 15.3668 + 15.3668i 0.613689 + 0.613689i
\(628\) −10.0000 10.0000i −0.399043 0.399043i
\(629\) −9.47494 + 9.47494i −0.377790 + 0.377790i
\(630\) 1.57519 + 1.42481i 0.0627570 + 0.0567659i
\(631\) 4.47494 4.47494i 0.178144 0.178144i −0.612402 0.790546i \(-0.709797\pi\)
0.790546 + 0.612402i \(0.209797\pi\)
\(632\) −12.9499 −0.515118
\(633\) 23.1082 23.1082i 0.918468 0.918468i
\(634\) 12.0000 0.476581
\(635\) −22.1082 + 1.10819i −0.877337 + 0.0439771i
\(636\) 22.3166i 0.884912i
\(637\) −6.00000 + 4.00000i −0.237729 + 0.158486i
\(638\) −20.9499 + 20.9499i −0.829413 + 0.829413i
\(639\) 0.899749 0.899749i 0.0355935 0.0355935i
\(640\) −1.50000 + 1.65831i −0.0592927 + 0.0655506i
\(641\) 5.36675i 0.211974i 0.994368 + 0.105987i \(0.0338002\pi\)
−0.994368 + 0.105987i \(0.966200\pi\)
\(642\) 22.3166i 0.880767i
\(643\) −12.9499 −0.510693 −0.255347 0.966850i \(-0.582190\pi\)
−0.255347 + 0.966850i \(0.582190\pi\)
\(644\) 9.94987 + 9.94987i 0.392080 + 0.392080i
\(645\) −9.50794 8.60025i −0.374375 0.338635i
\(646\) 12.6332 0.497049
\(647\) −6.63325 + 6.63325i −0.260780 + 0.260780i −0.825371 0.564591i \(-0.809034\pi\)
0.564591 + 0.825371i \(0.309034\pi\)
\(648\) 7.94987i 0.312301i
\(649\) 2.10025 0.0824421
\(650\) −13.9248 + 11.4499i −0.546176 + 0.449101i
\(651\) −6.94987 −0.272387
\(652\) 2.94987i 0.115526i
\(653\) 31.5831 31.5831i 1.23594 1.23594i 0.274299 0.961645i \(-0.411554\pi\)
0.961645 0.274299i \(-0.0884457\pi\)
\(654\) −3.41688 −0.133610
\(655\) −4.97494 4.50000i −0.194387 0.175830i
\(656\) −6.31662 6.31662i −0.246623 0.246623i
\(657\) −1.26650 −0.0494108
\(658\) 27.9499i 1.08960i
\(659\) 0.633250i 0.0246679i 0.999924 + 0.0123340i \(0.00392612\pi\)
−0.999924 + 0.0123340i \(0.996074\pi\)
\(660\) 11.5251 12.7414i 0.448612 0.495960i
\(661\) −12.8997 + 12.8997i −0.501742 + 0.501742i −0.911979 0.410237i \(-0.865446\pi\)
0.410237 + 0.911979i \(0.365446\pi\)
\(662\) 1.00000 1.00000i 0.0388661 0.0388661i
\(663\) 14.6332 + 21.9499i 0.568308 + 0.852462i
\(664\) 6.31662i 0.245133i
\(665\) 18.9499 0.949874i 0.734845 0.0368345i
\(666\) 0.949874 0.0368069
\(667\) −20.9499 + 20.9499i −0.811182 + 0.811182i
\(668\) −12.6332 −0.488795
\(669\) −18.4749 + 18.4749i −0.714282 + 0.714282i
\(670\) −8.20844 7.42481i −0.317120 0.286845i
\(671\) 6.63325 6.63325i 0.256074 0.256074i
\(672\) 3.47494 + 3.47494i 0.134049 + 0.134049i
\(673\) −11.4248 11.4248i −0.440394 0.440394i 0.451750 0.892144i \(-0.350800\pi\)
−0.892144 + 0.451750i \(0.850800\pi\)
\(674\) 3.52506 + 3.52506i 0.135780 + 0.135780i
\(675\) 17.1913 21.0330i 0.661694 0.809560i
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) −2.68338 2.68338i −0.103130 0.103130i 0.653659 0.756789i \(-0.273233\pi\)
−0.756789 + 0.653659i \(0.773233\pi\)
\(678\) 6.21637 0.238738
\(679\) 26.8496i 1.03039i
\(680\) −0.500000 9.97494i −0.0191741 0.382521i
\(681\) 20.8496 + 20.8496i 0.798959 + 0.798959i
\(682\) 6.63325i 0.254000i
\(683\) 30.9499i 1.18426i 0.805841 + 0.592132i \(0.201714\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(684\) −0.633250 0.633250i −0.0242129 0.0242129i
\(685\) 9.42481 + 8.52506i 0.360104 + 0.325726i
\(686\) 15.0000i 0.572703i
\(687\) 8.16625 0.311562
\(688\) 2.47494 + 2.47494i 0.0943561 + 0.0943561i
\(689\) −9.63325 + 48.1662i −0.366998 + 1.83499i
\(690\) 11.5251 12.7414i 0.438752 0.485058i
\(691\) −14.0000 14.0000i −0.532585 0.532585i 0.388756 0.921341i \(-0.372905\pi\)
−0.921341 + 0.388756i \(0.872905\pi\)
\(692\) 3.31662 + 3.31662i 0.126079 + 0.126079i
\(693\) 3.15038 + 3.15038i 0.119673 + 0.119673i
\(694\) 0.791562 0.791562i 0.0300473 0.0300473i
\(695\) 23.9248 26.4499i 0.907520 1.00330i
\(696\) −7.31662 + 7.31662i −0.277336 + 0.277336i
\(697\) 39.8997 1.51131
\(698\) 18.4248 18.4248i 0.697389 0.697389i
\(699\) 15.7335 0.595096
\(700\) −1.50000 14.9248i −0.0566947 0.564105i
\(701\) 45.4829i 1.71786i −0.512089 0.858932i \(-0.671128\pi\)
0.512089 0.858932i \(-0.328872\pi\)
\(702\) 3.84169 19.2084i 0.144995 0.724976i
\(703\) 6.00000 6.00000i 0.226294 0.226294i
\(704\) −3.31662 + 3.31662i −0.125000 + 0.125000i
\(705\) 34.0831 1.70844i 1.28364 0.0643435i
\(706\) 7.58312i 0.285395i
\(707\) 57.7995i 2.17377i
\(708\) 0.733501 0.0275666
\(709\) 29.9499 + 29.9499i 1.12479 + 1.12479i 0.991011 + 0.133780i \(0.0427116\pi\)
0.133780 + 0.991011i \(0.457288\pi\)
\(710\) −8.97494 + 0.449874i −0.336823 + 0.0168835i
\(711\) −4.10025 −0.153771
\(712\) −0.316625 + 0.316625i −0.0118660 + 0.0118660i
\(713\) 6.63325i 0.248417i
\(714\) −21.9499 −0.821453
\(715\) −30.3747 + 22.5251i −1.13595 + 0.842390i
\(716\) −15.0000 −0.560576
\(717\) 27.4327i 1.02449i
\(718\) 22.2665 22.2665i 0.830978 0.830978i
\(719\) −6.94987 −0.259187 −0.129593 0.991567i \(-0.541367\pi\)
−0.129593 + 0.991567i \(0.541367\pi\)
\(720\) −0.474937 + 0.525063i −0.0176999 + 0.0195679i
\(721\) −23.8496 23.8496i −0.888206 0.888206i
\(722\) 11.0000 0.409378
\(723\) 37.0660i 1.37850i
\(724\) 6.94987i 0.258290i
\(725\) 31.4248 3.15831i 1.16709 0.117297i
\(726\) 12.7414 12.7414i 0.472879 0.472879i
\(727\) −13.9499 + 13.9499i −0.517372 + 0.517372i −0.916775 0.399403i \(-0.869217\pi\)
0.399403 + 0.916775i \(0.369217\pi\)
\(728\) −6.00000 9.00000i −0.222375 0.333562i
\(729\) 29.2164i 1.08209i
\(730\) 6.63325 + 6.00000i 0.245508 + 0.222070i
\(731\) −15.6332 −0.578217
\(732\) 2.31662 2.31662i 0.0856249 0.0856249i
\(733\) 36.7995 1.35922 0.679610 0.733573i \(-0.262149\pi\)
0.679610 + 0.733573i \(0.262149\pi\)
\(734\) 1.94987 1.94987i 0.0719712 0.0719712i
\(735\) −7.31662 + 0.366750i −0.269878 + 0.0135278i
\(736\) −3.31662 + 3.31662i −0.122252 + 0.122252i
\(737\) −16.4169 16.4169i −0.604723 0.604723i
\(738\) −2.00000 2.00000i −0.0736210 0.0736210i
\(739\) −35.8997 35.8997i −1.32059 1.32059i −0.913295 0.407299i \(-0.866471\pi\)
−0.407299 0.913295i \(-0.633529\pi\)
\(740\) −4.97494 4.50000i −0.182882 0.165423i
\(741\) −9.26650 13.8997i −0.340413 0.510620i
\(742\) −28.8997 28.8997i −1.06094 1.06094i
\(743\) −15.6332 −0.573528 −0.286764 0.958001i \(-0.592580\pi\)
−0.286764 + 0.958001i \(0.592580\pi\)
\(744\) 2.31662i 0.0849316i
\(745\) −48.3747 + 2.42481i −1.77231 + 0.0888382i
\(746\) 20.0000 + 20.0000i 0.732252 + 0.732252i
\(747\) 2.00000i 0.0731762i
\(748\) 20.9499i 0.766003i
\(749\) −28.8997 28.8997i −1.05597 1.05597i
\(750\) −18.1082 + 2.74144i −0.661217 + 0.100103i
\(751\) 13.8997i 0.507209i −0.967308 0.253605i \(-0.918384\pi\)
0.967308 0.253605i \(-0.0816162\pi\)
\(752\) −9.31662 −0.339742
\(753\) −22.3166 22.3166i −0.813263 0.813263i
\(754\) 18.9499 12.6332i 0.690114 0.460076i
\(755\) 14.1332 0.708438i 0.514362 0.0257827i
\(756\) 11.5251 + 11.5251i 0.419162 + 0.419162i
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) 13.0000 + 13.0000i 0.472181 + 0.472181i
\(759\) 25.4829 25.4829i 0.924970 0.924970i
\(760\) 0.316625 + 6.31662i 0.0114852 + 0.229128i
\(761\) −25.5831 + 25.5831i −0.927388 + 0.927388i −0.997537 0.0701490i \(-0.977653\pi\)
0.0701490 + 0.997537i \(0.477653\pi\)
\(762\) −16.2164 −0.587457
\(763\) −4.42481 + 4.42481i −0.160189 + 0.160189i
\(764\) −5.05013 −0.182707
\(765\) −0.158312 3.15831i −0.00572380 0.114189i
\(766\) 14.3668i 0.519092i
\(767\) −1.58312 0.316625i −0.0571633 0.0114327i
\(768\) −1.15831 + 1.15831i −0.0417970 + 0.0417970i
\(769\) −4.94987 + 4.94987i −0.178497 + 0.178497i −0.790700 0.612203i \(-0.790283\pi\)
0.612203 + 0.790700i \(0.290283\pi\)
\(770\) −1.57519 31.4248i −0.0567659 1.13247i
\(771\) 27.4327i 0.987966i
\(772\) 10.9499i 0.394095i
\(773\) −22.5831 −0.812259 −0.406129 0.913816i \(-0.633122\pi\)
−0.406129 + 0.913816i \(0.633122\pi\)
\(774\) 0.783626 + 0.783626i 0.0281669 + 0.0281669i
\(775\) −4.47494 + 5.47494i −0.160744 + 0.196666i
\(776\) −8.94987 −0.321282
\(777\) −10.4248 + 10.4248i −0.373988 + 0.373988i
\(778\) 13.8997i 0.498330i
\(779\) −25.2665 −0.905266
\(780\) −10.6082 + 7.86675i −0.379834 + 0.281675i
\(781\) −18.8496 −0.674493
\(782\) 20.9499i 0.749166i
\(783\) −24.2665 + 24.2665i −0.867214 + 0.867214i
\(784\) 2.00000 0.0714286
\(785\) 1.58312 + 31.5831i 0.0565041 + 1.12725i
\(786\) −3.47494 3.47494i −0.123947 0.123947i
\(787\) −25.8997 −0.923226 −0.461613 0.887081i \(-0.652729\pi\)
−0.461613 + 0.887081i \(0.652729\pi\)
\(788\) 3.94987i 0.140708i
\(789\) 28.5330i 1.01580i
\(790\) 21.4749 + 19.4248i 0.764044 + 0.691104i
\(791\) 8.05013 8.05013i 0.286230 0.286230i
\(792\) −1.05013 + 1.05013i −0.0373146 + 0.0373146i
\(793\) −6.00000 + 4.00000i −0.213066 + 0.142044i
\(794\) 18.0000i 0.638796i
\(795\) −33.4749 + 37.0079i −1.18723 + 1.31254i
\(796\) −16.9499 −0.600772
\(797\) 7.26650 7.26650i 0.257393 0.257393i −0.566600 0.823993i \(-0.691742\pi\)
0.823993 + 0.566600i \(0.191742\pi\)
\(798\) 13.8997 0.492046
\(799\) 29.4248 29.4248i 1.04098 1.04098i
\(800\) 4.97494 0.500000i 0.175891 0.0176777i
\(801\) −0.100251 + 0.100251i −0.00354220 + 0.00354220i
\(802\) 10.5831 + 10.5831i 0.373703 + 0.373703i
\(803\) 13.2665 + 13.2665i 0.468165 + 0.468165i
\(804\) −5.73350 5.73350i −0.202205 0.202205i
\(805\) −1.57519 31.4248i −0.0555181 1.10758i
\(806\) −1.00000 + 5.00000i −0.0352235 + 0.176117i
\(807\) 15.3668 + 15.3668i 0.540935 + 0.540935i
\(808\) −19.2665 −0.677793
\(809\) 14.3668i 0.505108i −0.967583 0.252554i \(-0.918729\pi\)
0.967583 0.252554i \(-0.0812705\pi\)
\(810\) 11.9248 13.1834i 0.418995 0.463217i
\(811\) 22.9499 + 22.9499i 0.805879 + 0.805879i 0.984007 0.178128i \(-0.0570042\pi\)
−0.178128 + 0.984007i \(0.557004\pi\)
\(812\) 18.9499i 0.665010i
\(813\) 24.3826i 0.855136i
\(814\) −9.94987 9.94987i −0.348743 0.348743i
\(815\) 4.42481 4.89181i 0.154994 0.171353i
\(816\) 7.31662i 0.256133i
\(817\) 9.89975 0.346348
\(818\) −23.9499 23.9499i −0.837388 0.837388i
\(819\) −1.89975 2.84962i −0.0663826 0.0995739i
\(820\) 1.00000 + 19.9499i 0.0349215 + 0.696680i
\(821\) −24.7916 24.7916i −0.865231 0.865231i 0.126709 0.991940i \(-0.459559\pi\)
−0.991940 + 0.126709i \(0.959559\pi\)
\(822\) 6.58312 + 6.58312i 0.229613 + 0.229613i
\(823\) 27.8997 + 27.8997i 0.972524 + 0.972524i 0.999632 0.0271084i \(-0.00862993\pi\)
−0.0271084 + 0.999632i \(0.508630\pi\)
\(824\) 7.94987 7.94987i 0.276947 0.276947i
\(825\) −38.2243 + 3.84169i −1.33080 + 0.133750i
\(826\) 0.949874 0.949874i 0.0330504 0.0330504i
\(827\) −31.2665 −1.08724 −0.543621 0.839331i \(-0.682947\pi\)
−0.543621 + 0.839331i \(0.682947\pi\)
\(828\) −1.05013 + 1.05013i −0.0364944 + 0.0364944i
\(829\) 30.8496 1.07145 0.535726 0.844392i \(-0.320038\pi\)
0.535726 + 0.844392i \(0.320038\pi\)
\(830\) 9.47494 10.4749i 0.328880 0.363590i
\(831\) 50.7335i 1.75993i
\(832\) 3.00000 2.00000i 0.104006 0.0693375i
\(833\) −6.31662 + 6.31662i −0.218858 + 0.218858i
\(834\) 18.4749 18.4749i 0.639735 0.639735i
\(835\) 20.9499 + 18.9499i 0.725000 + 0.655787i
\(836\) 13.2665i 0.458831i
\(837\) 7.68338i 0.265576i
\(838\) 8.68338 0.299962
\(839\) −21.6332 21.6332i −0.746863 0.746863i 0.227026 0.973889i \(-0.427100\pi\)
−0.973889 + 0.227026i \(0.927100\pi\)
\(840\) −0.550126 10.9749i −0.0189811 0.378671i
\(841\) −10.8997 −0.375853
\(842\) −2.47494 + 2.47494i −0.0852920 + 0.0852920i
\(843\) 27.0660i 0.932202i
\(844\) 19.9499 0.686703
\(845\) 26.2916 12.3997i 0.904457 0.426564i
\(846\) −2.94987 −0.101419
\(847\) 33.0000i 1.13389i
\(848\) 9.63325 9.63325i 0.330807 0.330807i
\(849\) 18.4169 0.632066
\(850\) −14.1332 + 17.2916i −0.484766 + 0.593096i
\(851\) −9.94987 9.94987i −0.341077 0.341077i
\(852\) −6.58312 −0.225534
\(853\) 4.05013i 0.138674i −0.997593 0.0693368i \(-0.977912\pi\)
0.997593 0.0693368i \(-0.0220883\pi\)
\(854\) 6.00000i 0.205316i
\(855\) 0.100251 + 2.00000i 0.00342852 + 0.0683986i
\(856\) 9.63325 9.63325i 0.329258 0.329258i
\(857\) 15.3166 15.3166i 0.523206 0.523206i −0.395332 0.918538i \(-0.629371\pi\)
0.918538 + 0.395332i \(0.129371\pi\)
\(858\) −23.0501 + 15.3668i −0.786918 + 0.524612i
\(859\) 19.8997i 0.678971i 0.940611 + 0.339485i \(0.110253\pi\)
−0.940611 + 0.339485i \(0.889747\pi\)
\(860\) −0.391813 7.81662i −0.0133607 0.266545i
\(861\) 43.8997 1.49610
\(862\) 12.1583 12.1583i 0.414114 0.414114i
\(863\) −22.5831 −0.768738 −0.384369 0.923179i \(-0.625581\pi\)
−0.384369 + 0.923179i \(0.625581\pi\)
\(864\) −3.84169 + 3.84169i −0.130697 + 0.130697i
\(865\) −0.525063 10.4749i −0.0178527 0.356159i
\(866\) −12.5251 + 12.5251i −0.425619 + 0.425619i
\(867\) 3.41688 + 3.41688i 0.116043 + 0.116043i
\(868\) −3.00000 3.00000i −0.101827 0.101827i
\(869\) 42.9499 + 42.9499i 1.45697 + 1.45697i
\(870\) 23.1082 1.15831i 0.783441 0.0392705i
\(871\) 9.89975 + 14.8496i 0.335440 + 0.503160i
\(872\) −1.47494 1.47494i −0.0499477 0.0499477i
\(873\) −2.83375 −0.0959080
\(874\) 13.2665i 0.448746i
\(875\) −19.8997 + 27.0000i −0.672734 + 0.912767i
\(876\) 4.63325 + 4.63325i 0.156543 + 0.156543i
\(877\) 6.05013i 0.204298i −0.994769 0.102149i \(-0.967428\pi\)
0.994769 0.102149i \(-0.0325719\pi\)
\(878\) 33.8997i 1.14406i
\(879\) −26.5251 26.5251i −0.894668 0.894668i
\(880\) 10.4749 0.525063i 0.353110 0.0176999i
\(881\) 16.5831i 0.558700i −0.960189 0.279350i \(-0.909881\pi\)
0.960189 0.279350i \(-0.0901189\pi\)
\(882\) 0.633250 0.0213226
\(883\) 24.4248 + 24.4248i 0.821960 + 0.821960i 0.986389 0.164429i \(-0.0525780\pi\)
−0.164429 + 0.986389i \(0.552578\pi\)
\(884\) −3.15831 + 15.7916i −0.106226 + 0.531128i
\(885\) −1.21637 1.10025i −0.0408879 0.0369845i
\(886\) −20.0581 20.0581i −0.673864 0.673864i
\(887\) 5.36675 + 5.36675i 0.180198 + 0.180198i 0.791442 0.611244i \(-0.209331\pi\)
−0.611244 + 0.791442i \(0.709331\pi\)
\(888\) −3.47494 3.47494i −0.116611 0.116611i
\(889\) −21.0000 + 21.0000i −0.704317 + 0.704317i
\(890\) 1.00000 0.0501256i 0.0335201 0.00168021i
\(891\) 26.3668 26.3668i 0.883319 0.883319i
\(892\) −15.9499 −0.534041
\(893\) −18.6332 + 18.6332i −0.623538 + 0.623538i
\(894\) −35.4829 −1.18672
\(895\) 24.8747 + 22.5000i 0.831469 + 0.752092i
\(896\) 3.00000i 0.100223i
\(897\) −23.0501 + 15.3668i −0.769621 + 0.513081i
\(898\) −21.6332 + 21.6332i −0.721911 + 0.721911i
\(899\) 6.31662 6.31662i 0.210671 0.210671i
\(900\) 1.57519 0.158312i 0.0525063 0.00527708i
\(901\) 60.8496i 2.02719i
\(902\) 41.8997i 1.39511i
\(903\) −17.2005 −0.572397
\(904\) 2.68338 + 2.68338i 0.0892477 + 0.0892477i
\(905\) −10.4248 + 11.5251i −0.346532 + 0.383106i
\(906\) 10.3668 0.344412
\(907\) 32.3246 32.3246i 1.07332 1.07332i 0.0762291 0.997090i \(-0.475712\pi\)
0.997090 0.0762291i \(-0.0242880\pi\)
\(908\) 18.0000i 0.597351i
\(909\) −6.10025 −0.202333
\(910\) −3.55013 + 23.9248i −0.117686 + 0.793100i
\(911\) −11.0501 −0.366107 −0.183053 0.983103i \(-0.558598\pi\)
−0.183053 + 0.983103i \(0.558598\pi\)
\(912\) 4.63325i 0.153422i
\(913\) 20.9499 20.9499i 0.693340 0.693340i
\(914\) 2.00000 0.0661541
\(915\) −7.31662 + 0.366750i −0.241880 + 0.0121244i
\(916\) 3.52506 + 3.52506i 0.116471 + 0.116471i
\(917\) −9.00000 −0.297206
\(918\) 24.2665i 0.800914i
\(919\) 10.1003i 0.333177i −0.986027 0.166588i \(-0.946725\pi\)
0.986027 0.166588i \(-0.0532751\pi\)
\(920\) 10.4749 0.525063i 0.345348 0.0173108i
\(921\) 30.0000 30.0000i 0.988534 0.988534i
\(922\) 4.10819 4.10819i 0.135296 0.135296i
\(923\) 14.2084 + 2.84169i 0.467676 + 0.0935353i
\(924\) 23.0501i 0.758293i
\(925\) 1.50000 + 14.9248i 0.0493197 + 0.490725i
\(926\) −9.89975 −0.325326
\(927\) 2.51713 2.51713i 0.0826733 0.0826733i
\(928\) −6.31662 −0.207353
\(929\) 13.5831 13.5831i 0.445648 0.445648i −0.448257 0.893905i \(-0.647955\pi\)
0.893905 + 0.448257i \(0.147955\pi\)
\(930\) −3.47494 + 3.84169i −0.113948 + 0.125974i
\(931\) 4.00000 4.00000i 0.131095 0.131095i
\(932\) 6.79156 + 6.79156i 0.222465 + 0.222465i
\(933\) −22.3166 22.3166i −0.730613 0.730613i
\(934\) −8.36675 8.36675i −0.273768 0.273768i
\(935\) −31.4248 + 34.7414i −1.02770 + 1.13617i
\(936\) 0.949874 0.633250i 0.0310476 0.0206984i
\(937\) 1.94987 + 1.94987i 0.0636996 + 0.0636996i 0.738239 0.674539i \(-0.235658\pi\)
−0.674539 + 0.738239i \(0.735658\pi\)
\(938\) −14.8496 −0.484857
\(939\) 35.7335i 1.16612i
\(940\) 15.4499 + 13.9749i 0.503919 + 0.455812i
\(941\) −1.74144 1.74144i −0.0567692 0.0567692i 0.678152 0.734921i \(-0.262781\pi\)
−0.734921 + 0.678152i \(0.762781\pi\)
\(942\) 23.1662i 0.754797i
\(943\) 41.8997i 1.36444i
\(944\) 0.316625 + 0.316625i 0.0103053 + 0.0103053i
\(945\) −1.82456 36.3997i −0.0593530 1.18408i
\(946\) 16.4169i 0.533759i
\(947\) 5.68338 0.184685 0.0923424 0.995727i \(-0.470565\pi\)
0.0923424 + 0.995727i \(0.470565\pi\)
\(948\) 15.0000 + 15.0000i 0.487177 + 0.487177i
\(949\) −8.00000 12.0000i −0.259691 0.389536i
\(950\) 8.94987 10.9499i 0.290372 0.355261i
\(951\) −13.8997 13.8997i −0.450730 0.450730i
\(952\) −9.47494 9.47494i −0.307084 0.307084i
\(953\) 21.0079 + 21.0079i 0.680514 + 0.680514i 0.960116 0.279602i \(-0.0902026\pi\)
−0.279602 + 0.960116i \(0.590203\pi\)
\(954\) 3.05013 3.05013i 0.0987515 0.0987515i
\(955\) 8.37469 + 7.57519i 0.270998 + 0.245127i
\(956\) 11.8417 11.8417i 0.382988 0.382988i
\(957\) 48.5330 1.56885
\(958\) −3.15831 + 3.15831i −0.102040 + 0.102040i
\(959\) 17.0501 0.550577
\(960\) 3.65831 0.183375i 0.118072 0.00591841i
\(961\) 29.0000i 0.935484i
\(962\) 6.00000 + 9.00000i 0.193448 + 0.290172i
\(963\) 3.05013 3.05013i 0.0982889 0.0982889i
\(964\) −16.0000 + 16.0000i −0.515325 + 0.515325i
\(965\) −16.4248 + 18.1583i −0.528733 + 0.584537i
\(966\) 23.0501i 0.741626i
\(967\) 36.0501i 1.15929i −0.814868 0.579647i \(-0.803190\pi\)
0.814868 0.579647i \(-0.196810\pi\)
\(968\) 11.0000 0.353553
\(969\) −14.6332 14.6332i −0.470088 0.470088i
\(970\) 14.8417 + 13.4248i 0.476538 + 0.431045i
\(971\) 20.0501 0.643439 0.321720 0.946835i \(-0.395739\pi\)
0.321720 + 0.946835i \(0.395739\pi\)
\(972\) −2.31662 + 2.31662i −0.0743058 + 0.0743058i
\(973\) 47.8496i 1.53399i
\(974\) 2.00000 0.0640841
\(975\) 29.3918 + 2.86675i 0.941291 + 0.0918095i
\(976\) 2.00000 0.0640184
\(977\) 35.0501i 1.12135i 0.828035 + 0.560676i \(0.189459\pi\)
−0.828035 + 0.560676i \(0.810541\pi\)
\(978\) 3.41688 3.41688i 0.109260 0.109260i
\(979\) 2.10025 0.0671243
\(980\) −3.31662 3.00000i −0.105946 0.0958315i
\(981\) −0.467002 0.467002i −0.0149102 0.0149102i
\(982\) −32.6834 −1.04297
\(983\) 2.05013i 0.0653889i 0.999465 + 0.0326944i \(0.0104088\pi\)
−0.999465 + 0.0326944i \(0.989591\pi\)
\(984\) 14.6332i 0.466491i
\(985\) −5.92481 + 6.55013i −0.188780 + 0.208704i
\(986\) 19.9499 19.9499i 0.635333 0.635333i
\(987\) 32.3747 32.3747i 1.03050 1.03050i
\(988\) 2.00000 10.0000i 0.0636285 0.318142i
\(989\) 16.4169i 0.522026i
\(990\) 3.31662 0.166248i 0.105409 0.00528371i
\(991\) 59.7995 1.89959 0.949797 0.312867i \(-0.101290\pi\)
0.949797 + 0.312867i \(0.101290\pi\)
\(992\) 1.00000 1.00000i 0.0317500 0.0317500i
\(993\) −2.31662 −0.0735159
\(994\) −8.52506 + 8.52506i −0.270399 + 0.270399i
\(995\) 28.1082 + 25.4248i 0.891089 + 0.806021i
\(996\) 7.31662 7.31662i 0.231836 0.231836i
\(997\) 8.89975 + 8.89975i 0.281858 + 0.281858i 0.833850 0.551992i \(-0.186132\pi\)
−0.551992 + 0.833850i \(0.686132\pi\)
\(998\) −8.94987 8.94987i −0.283303 0.283303i
\(999\) −11.5251 11.5251i −0.364637 0.364637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.j.d.47.1 yes 4
3.2 odd 2 1170.2.w.e.307.1 4
4.3 odd 2 1040.2.cd.i.177.2 4
5.2 odd 4 650.2.g.g.593.2 4
5.3 odd 4 130.2.g.d.73.1 yes 4
5.4 even 2 650.2.j.f.307.2 4
13.5 odd 4 130.2.g.d.57.1 4
15.8 even 4 1170.2.m.e.73.1 4
20.3 even 4 1040.2.bg.k.593.2 4
39.5 even 4 1170.2.m.e.577.2 4
52.31 even 4 1040.2.bg.k.577.2 4
65.18 even 4 inner 130.2.j.d.83.1 yes 4
65.44 odd 4 650.2.g.g.57.2 4
65.57 even 4 650.2.j.f.343.2 4
195.83 odd 4 1170.2.w.e.343.1 4
260.83 odd 4 1040.2.cd.i.993.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.d.57.1 4 13.5 odd 4
130.2.g.d.73.1 yes 4 5.3 odd 4
130.2.j.d.47.1 yes 4 1.1 even 1 trivial
130.2.j.d.83.1 yes 4 65.18 even 4 inner
650.2.g.g.57.2 4 65.44 odd 4
650.2.g.g.593.2 4 5.2 odd 4
650.2.j.f.307.2 4 5.4 even 2
650.2.j.f.343.2 4 65.57 even 4
1040.2.bg.k.577.2 4 52.31 even 4
1040.2.bg.k.593.2 4 20.3 even 4
1040.2.cd.i.177.2 4 4.3 odd 2
1040.2.cd.i.993.2 4 260.83 odd 4
1170.2.m.e.73.1 4 15.8 even 4
1170.2.m.e.577.2 4 39.5 even 4
1170.2.w.e.307.1 4 3.2 odd 2
1170.2.w.e.343.1 4 195.83 odd 4