Properties

Label 1170.2.m.e.73.1
Level $1170$
Weight $2$
Character 1170.73
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(73,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.1
Root \(1.65831 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1170.73
Dual form 1170.2.m.e.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-1.50000 - 1.65831i) q^{5} -3.00000i q^{7} +1.00000 q^{8} +(-1.50000 - 1.65831i) q^{10} +(-3.31662 + 3.31662i) q^{11} +(-2.00000 - 3.00000i) q^{13} -3.00000i q^{14} +1.00000 q^{16} +(-3.15831 - 3.15831i) q^{17} +(-2.00000 + 2.00000i) q^{19} +(-1.50000 - 1.65831i) q^{20} +(-3.31662 + 3.31662i) q^{22} +(-3.31662 + 3.31662i) q^{23} +(-0.500000 + 4.97494i) q^{25} +(-2.00000 - 3.00000i) q^{26} -3.00000i q^{28} -6.31662i q^{29} +(1.00000 + 1.00000i) q^{31} +1.00000 q^{32} +(-3.15831 - 3.15831i) q^{34} +(-4.97494 + 4.50000i) q^{35} -3.00000i q^{37} +(-2.00000 + 2.00000i) q^{38} +(-1.50000 - 1.65831i) q^{40} +(6.31662 + 6.31662i) q^{41} +(-2.47494 + 2.47494i) q^{43} +(-3.31662 + 3.31662i) q^{44} +(-3.31662 + 3.31662i) q^{46} -9.31662i q^{47} -2.00000 q^{49} +(-0.500000 + 4.97494i) q^{50} +(-2.00000 - 3.00000i) q^{52} +(-9.63325 - 9.63325i) q^{53} +(10.4749 + 0.525063i) q^{55} -3.00000i q^{56} -6.31662i q^{58} +(0.316625 + 0.316625i) q^{59} +2.00000 q^{61} +(1.00000 + 1.00000i) q^{62} +1.00000 q^{64} +(-1.97494 + 7.81662i) q^{65} -4.94987 q^{67} +(-3.15831 - 3.15831i) q^{68} +(-4.97494 + 4.50000i) q^{70} +(2.84169 + 2.84169i) q^{71} -4.00000 q^{73} -3.00000i q^{74} +(-2.00000 + 2.00000i) q^{76} +(9.94987 + 9.94987i) q^{77} -12.9499i q^{79} +(-1.50000 - 1.65831i) q^{80} +(6.31662 + 6.31662i) q^{82} -6.31662i q^{83} +(-0.500000 + 9.97494i) q^{85} +(-2.47494 + 2.47494i) q^{86} +(-3.31662 + 3.31662i) q^{88} +(0.316625 + 0.316625i) q^{89} +(-9.00000 + 6.00000i) q^{91} +(-3.31662 + 3.31662i) q^{92} -9.31662i q^{94} +(6.31662 + 0.316625i) q^{95} +8.94987 q^{97} -2.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 6 q^{5} + 4 q^{8} - 6 q^{10} - 8 q^{13} + 4 q^{16} - 6 q^{17} - 8 q^{19} - 6 q^{20} - 2 q^{25} - 8 q^{26} + 4 q^{31} + 4 q^{32} - 6 q^{34} - 8 q^{38} - 6 q^{40} + 12 q^{41} + 10 q^{43}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.50000 1.65831i −0.670820 0.741620i
\(6\) 0 0
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.50000 1.65831i −0.474342 0.524404i
\(11\) −3.31662 + 3.31662i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 3.00000i 0.801784i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.15831 3.15831i −0.766003 0.766003i 0.211397 0.977400i \(-0.432199\pi\)
−0.977400 + 0.211397i \(0.932199\pi\)
\(18\) 0 0
\(19\) −2.00000 + 2.00000i −0.458831 + 0.458831i −0.898272 0.439440i \(-0.855177\pi\)
0.439440 + 0.898272i \(0.355177\pi\)
\(20\) −1.50000 1.65831i −0.335410 0.370810i
\(21\) 0 0
\(22\) −3.31662 + 3.31662i −0.707107 + 0.707107i
\(23\) −3.31662 + 3.31662i −0.691564 + 0.691564i −0.962576 0.271012i \(-0.912642\pi\)
0.271012 + 0.962576i \(0.412642\pi\)
\(24\) 0 0
\(25\) −0.500000 + 4.97494i −0.100000 + 0.994987i
\(26\) −2.00000 3.00000i −0.392232 0.588348i
\(27\) 0 0
\(28\) 3.00000i 0.566947i
\(29\) 6.31662i 1.17297i −0.809961 0.586484i \(-0.800512\pi\)
0.809961 0.586484i \(-0.199488\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.00000i 0.179605 + 0.179605i 0.791184 0.611578i \(-0.209465\pi\)
−0.611578 + 0.791184i \(0.709465\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.15831 3.15831i −0.541646 0.541646i
\(35\) −4.97494 + 4.50000i −0.840918 + 0.760639i
\(36\) 0 0
\(37\) 3.00000i 0.493197i −0.969118 0.246598i \(-0.920687\pi\)
0.969118 0.246598i \(-0.0793129\pi\)
\(38\) −2.00000 + 2.00000i −0.324443 + 0.324443i
\(39\) 0 0
\(40\) −1.50000 1.65831i −0.237171 0.262202i
\(41\) 6.31662 + 6.31662i 0.986491 + 0.986491i 0.999910 0.0134189i \(-0.00427150\pi\)
−0.0134189 + 0.999910i \(0.504271\pi\)
\(42\) 0 0
\(43\) −2.47494 + 2.47494i −0.377424 + 0.377424i −0.870172 0.492748i \(-0.835993\pi\)
0.492748 + 0.870172i \(0.335993\pi\)
\(44\) −3.31662 + 3.31662i −0.500000 + 0.500000i
\(45\) 0 0
\(46\) −3.31662 + 3.31662i −0.489010 + 0.489010i
\(47\) 9.31662i 1.35897i −0.733690 0.679485i \(-0.762203\pi\)
0.733690 0.679485i \(-0.237797\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) −0.500000 + 4.97494i −0.0707107 + 0.703562i
\(51\) 0 0
\(52\) −2.00000 3.00000i −0.277350 0.416025i
\(53\) −9.63325 9.63325i −1.32323 1.32323i −0.911147 0.412082i \(-0.864802\pi\)
−0.412082 0.911147i \(-0.635198\pi\)
\(54\) 0 0
\(55\) 10.4749 + 0.525063i 1.41244 + 0.0707995i
\(56\) 3.00000i 0.400892i
\(57\) 0 0
\(58\) 6.31662i 0.829413i
\(59\) 0.316625 + 0.316625i 0.0412210 + 0.0412210i 0.727417 0.686196i \(-0.240721\pi\)
−0.686196 + 0.727417i \(0.740721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 1.00000 + 1.00000i 0.127000 + 0.127000i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.97494 + 7.81662i −0.244961 + 0.969533i
\(66\) 0 0
\(67\) −4.94987 −0.604723 −0.302362 0.953193i \(-0.597775\pi\)
−0.302362 + 0.953193i \(0.597775\pi\)
\(68\) −3.15831 3.15831i −0.383002 0.383002i
\(69\) 0 0
\(70\) −4.97494 + 4.50000i −0.594619 + 0.537853i
\(71\) 2.84169 + 2.84169i 0.337246 + 0.337246i 0.855330 0.518084i \(-0.173354\pi\)
−0.518084 + 0.855330i \(0.673354\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 3.00000i 0.348743i
\(75\) 0 0
\(76\) −2.00000 + 2.00000i −0.229416 + 0.229416i
\(77\) 9.94987 + 9.94987i 1.13389 + 1.13389i
\(78\) 0 0
\(79\) 12.9499i 1.45697i −0.685059 0.728487i \(-0.740224\pi\)
0.685059 0.728487i \(-0.259776\pi\)
\(80\) −1.50000 1.65831i −0.167705 0.185405i
\(81\) 0 0
\(82\) 6.31662 + 6.31662i 0.697555 + 0.697555i
\(83\) 6.31662i 0.693340i −0.937987 0.346670i \(-0.887312\pi\)
0.937987 0.346670i \(-0.112688\pi\)
\(84\) 0 0
\(85\) −0.500000 + 9.97494i −0.0542326 + 1.08193i
\(86\) −2.47494 + 2.47494i −0.266879 + 0.266879i
\(87\) 0 0
\(88\) −3.31662 + 3.31662i −0.353553 + 0.353553i
\(89\) 0.316625 + 0.316625i 0.0335622 + 0.0335622i 0.723689 0.690127i \(-0.242445\pi\)
−0.690127 + 0.723689i \(0.742445\pi\)
\(90\) 0 0
\(91\) −9.00000 + 6.00000i −0.943456 + 0.628971i
\(92\) −3.31662 + 3.31662i −0.345782 + 0.345782i
\(93\) 0 0
\(94\) 9.31662i 0.960936i
\(95\) 6.31662 + 0.316625i 0.648072 + 0.0324850i
\(96\) 0 0
\(97\) 8.94987 0.908722 0.454361 0.890818i \(-0.349868\pi\)
0.454361 + 0.890818i \(0.349868\pi\)
\(98\) −2.00000 −0.202031
\(99\) 0 0
\(100\) −0.500000 + 4.97494i −0.0500000 + 0.497494i
\(101\) 19.2665i 1.91709i −0.284944 0.958544i \(-0.591975\pi\)
0.284944 0.958544i \(-0.408025\pi\)
\(102\) 0 0
\(103\) 7.94987 7.94987i 0.783324 0.783324i −0.197066 0.980390i \(-0.563141\pi\)
0.980390 + 0.197066i \(0.0631413\pi\)
\(104\) −2.00000 3.00000i −0.196116 0.294174i
\(105\) 0 0
\(106\) −9.63325 9.63325i −0.935664 0.935664i
\(107\) 9.63325 9.63325i 0.931281 0.931281i −0.0665047 0.997786i \(-0.521185\pi\)
0.997786 + 0.0665047i \(0.0211847\pi\)
\(108\) 0 0
\(109\) 1.47494 1.47494i 0.141273 0.141273i −0.632933 0.774206i \(-0.718149\pi\)
0.774206 + 0.632933i \(0.218149\pi\)
\(110\) 10.4749 + 0.525063i 0.998746 + 0.0500628i
\(111\) 0 0
\(112\) 3.00000i 0.283473i
\(113\) −2.68338 2.68338i −0.252431 0.252431i 0.569536 0.821967i \(-0.307123\pi\)
−0.821967 + 0.569536i \(0.807123\pi\)
\(114\) 0 0
\(115\) 10.4749 + 0.525063i 0.976793 + 0.0489624i
\(116\) 6.31662i 0.586484i
\(117\) 0 0
\(118\) 0.316625 + 0.316625i 0.0291477 + 0.0291477i
\(119\) −9.47494 + 9.47494i −0.868566 + 0.868566i
\(120\) 0 0
\(121\) 11.0000i 1.00000i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 1.00000 + 1.00000i 0.0898027 + 0.0898027i
\(125\) 9.00000 6.63325i 0.804984 0.593296i
\(126\) 0 0
\(127\) 7.00000 + 7.00000i 0.621150 + 0.621150i 0.945825 0.324676i \(-0.105255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −1.97494 + 7.81662i −0.173213 + 0.685563i
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 6.00000 + 6.00000i 0.520266 + 0.520266i
\(134\) −4.94987 −0.427604
\(135\) 0 0
\(136\) −3.15831 3.15831i −0.270823 0.270823i
\(137\) 5.68338i 0.485564i 0.970081 + 0.242782i \(0.0780599\pi\)
−0.970081 + 0.242782i \(0.921940\pi\)
\(138\) 0 0
\(139\) 15.9499i 1.35285i 0.736511 + 0.676425i \(0.236472\pi\)
−0.736511 + 0.676425i \(0.763528\pi\)
\(140\) −4.97494 + 4.50000i −0.420459 + 0.380319i
\(141\) 0 0
\(142\) 2.84169 + 2.84169i 0.238469 + 0.238469i
\(143\) 16.5831 + 3.31662i 1.38675 + 0.277350i
\(144\) 0 0
\(145\) −10.4749 + 9.47494i −0.869896 + 0.786851i
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 3.00000i 0.246598i
\(149\) −15.3166 + 15.3166i −1.25479 + 1.25479i −0.301238 + 0.953549i \(0.597400\pi\)
−0.953549 + 0.301238i \(0.902600\pi\)
\(150\) 0 0
\(151\) 4.47494 4.47494i 0.364165 0.364165i −0.501179 0.865344i \(-0.667100\pi\)
0.865344 + 0.501179i \(0.167100\pi\)
\(152\) −2.00000 + 2.00000i −0.162221 + 0.162221i
\(153\) 0 0
\(154\) 9.94987 + 9.94987i 0.801784 + 0.801784i
\(155\) 0.158312 3.15831i 0.0127160 0.253682i
\(156\) 0 0
\(157\) 10.0000 10.0000i 0.798087 0.798087i −0.184707 0.982794i \(-0.559134\pi\)
0.982794 + 0.184707i \(0.0591335\pi\)
\(158\) 12.9499i 1.03024i
\(159\) 0 0
\(160\) −1.50000 1.65831i −0.118585 0.131101i
\(161\) 9.94987 + 9.94987i 0.784160 + 0.784160i
\(162\) 0 0
\(163\) 2.94987 0.231052 0.115526 0.993304i \(-0.463145\pi\)
0.115526 + 0.993304i \(0.463145\pi\)
\(164\) 6.31662 + 6.31662i 0.493246 + 0.493246i
\(165\) 0 0
\(166\) 6.31662i 0.490265i
\(167\) 12.6332i 0.977590i 0.872399 + 0.488795i \(0.162563\pi\)
−0.872399 + 0.488795i \(0.837437\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) −0.500000 + 9.97494i −0.0383482 + 0.765043i
\(171\) 0 0
\(172\) −2.47494 + 2.47494i −0.188712 + 0.188712i
\(173\) −3.31662 + 3.31662i −0.252158 + 0.252158i −0.821855 0.569697i \(-0.807061\pi\)
0.569697 + 0.821855i \(0.307061\pi\)
\(174\) 0 0
\(175\) 14.9248 + 1.50000i 1.12821 + 0.113389i
\(176\) −3.31662 + 3.31662i −0.250000 + 0.250000i
\(177\) 0 0
\(178\) 0.316625 + 0.316625i 0.0237320 + 0.0237320i
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0 0
\(181\) 6.94987i 0.516580i 0.966067 + 0.258290i \(0.0831590\pi\)
−0.966067 + 0.258290i \(0.916841\pi\)
\(182\) −9.00000 + 6.00000i −0.667124 + 0.444750i
\(183\) 0 0
\(184\) −3.31662 + 3.31662i −0.244505 + 0.244505i
\(185\) −4.97494 + 4.50000i −0.365765 + 0.330847i
\(186\) 0 0
\(187\) 20.9499 1.53201
\(188\) 9.31662i 0.679485i
\(189\) 0 0
\(190\) 6.31662 + 0.316625i 0.458256 + 0.0229704i
\(191\) −5.05013 −0.365414 −0.182707 0.983167i \(-0.558486\pi\)
−0.182707 + 0.983167i \(0.558486\pi\)
\(192\) 0 0
\(193\) −10.9499 −0.788189 −0.394095 0.919070i \(-0.628942\pi\)
−0.394095 + 0.919070i \(0.628942\pi\)
\(194\) 8.94987 0.642564
\(195\) 0 0
\(196\) −2.00000 −0.142857
\(197\) −3.94987 −0.281417 −0.140708 0.990051i \(-0.544938\pi\)
−0.140708 + 0.990051i \(0.544938\pi\)
\(198\) 0 0
\(199\) −16.9499 −1.20154 −0.600772 0.799420i \(-0.705140\pi\)
−0.600772 + 0.799420i \(0.705140\pi\)
\(200\) −0.500000 + 4.97494i −0.0353553 + 0.351781i
\(201\) 0 0
\(202\) 19.2665i 1.35559i
\(203\) −18.9499 −1.33002
\(204\) 0 0
\(205\) 1.00000 19.9499i 0.0698430 1.39336i
\(206\) 7.94987 7.94987i 0.553894 0.553894i
\(207\) 0 0
\(208\) −2.00000 3.00000i −0.138675 0.208013i
\(209\) 13.2665i 0.917663i
\(210\) 0 0
\(211\) −19.9499 −1.37341 −0.686703 0.726938i \(-0.740943\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(212\) −9.63325 9.63325i −0.661614 0.661614i
\(213\) 0 0
\(214\) 9.63325 9.63325i 0.658515 0.658515i
\(215\) 7.81662 + 0.391813i 0.533089 + 0.0267214i
\(216\) 0 0
\(217\) 3.00000 3.00000i 0.203653 0.203653i
\(218\) 1.47494 1.47494i 0.0998954 0.0998954i
\(219\) 0 0
\(220\) 10.4749 + 0.525063i 0.706220 + 0.0353997i
\(221\) −3.15831 + 15.7916i −0.212451 + 1.06226i
\(222\) 0 0
\(223\) 15.9499i 1.06808i 0.845458 + 0.534041i \(0.179327\pi\)
−0.845458 + 0.534041i \(0.820673\pi\)
\(224\) 3.00000i 0.200446i
\(225\) 0 0
\(226\) −2.68338 2.68338i −0.178495 0.178495i
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 3.52506 + 3.52506i 0.232943 + 0.232943i 0.813920 0.580977i \(-0.197329\pi\)
−0.580977 + 0.813920i \(0.697329\pi\)
\(230\) 10.4749 + 0.525063i 0.690697 + 0.0346216i
\(231\) 0 0
\(232\) 6.31662i 0.414707i
\(233\) −6.79156 + 6.79156i −0.444930 + 0.444930i −0.893665 0.448735i \(-0.851875\pi\)
0.448735 + 0.893665i \(0.351875\pi\)
\(234\) 0 0
\(235\) −15.4499 + 13.9749i −1.00784 + 0.911624i
\(236\) 0.316625 + 0.316625i 0.0206105 + 0.0206105i
\(237\) 0 0
\(238\) −9.47494 + 9.47494i −0.614169 + 0.614169i
\(239\) −11.8417 + 11.8417i −0.765975 + 0.765975i −0.977395 0.211420i \(-0.932191\pi\)
0.211420 + 0.977395i \(0.432191\pi\)
\(240\) 0 0
\(241\) 16.0000 16.0000i 1.03065 1.03065i 0.0311354 0.999515i \(-0.490088\pi\)
0.999515 0.0311354i \(-0.00991232\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 3.00000 + 3.31662i 0.191663 + 0.211891i
\(246\) 0 0
\(247\) 10.0000 + 2.00000i 0.636285 + 0.127257i
\(248\) 1.00000 + 1.00000i 0.0635001 + 0.0635001i
\(249\) 0 0
\(250\) 9.00000 6.63325i 0.569210 0.419524i
\(251\) 19.2665i 1.21609i −0.793902 0.608045i \(-0.791954\pi\)
0.793902 0.608045i \(-0.208046\pi\)
\(252\) 0 0
\(253\) 22.0000i 1.38313i
\(254\) 7.00000 + 7.00000i 0.439219 + 0.439219i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 11.8417 + 11.8417i 0.738664 + 0.738664i 0.972319 0.233655i \(-0.0750687\pi\)
−0.233655 + 0.972319i \(0.575069\pi\)
\(258\) 0 0
\(259\) −9.00000 −0.559233
\(260\) −1.97494 + 7.81662i −0.122480 + 0.484766i
\(261\) 0 0
\(262\) 3.00000 0.185341
\(263\) 12.3166 + 12.3166i 0.759476 + 0.759476i 0.976227 0.216751i \(-0.0695461\pi\)
−0.216751 + 0.976227i \(0.569546\pi\)
\(264\) 0 0
\(265\) −1.52506 + 30.4248i −0.0936839 + 1.86898i
\(266\) 6.00000 + 6.00000i 0.367884 + 0.367884i
\(267\) 0 0
\(268\) −4.94987 −0.302362
\(269\) 13.2665i 0.808873i −0.914566 0.404436i \(-0.867468\pi\)
0.914566 0.404436i \(-0.132532\pi\)
\(270\) 0 0
\(271\) −10.5251 + 10.5251i −0.639352 + 0.639352i −0.950396 0.311044i \(-0.899321\pi\)
0.311044 + 0.950396i \(0.399321\pi\)
\(272\) −3.15831 3.15831i −0.191501 0.191501i
\(273\) 0 0
\(274\) 5.68338i 0.343345i
\(275\) −14.8417 18.1583i −0.894987 1.09499i
\(276\) 0 0
\(277\) −21.8997 21.8997i −1.31583 1.31583i −0.917045 0.398783i \(-0.869433\pi\)
−0.398783 0.917045i \(-0.630567\pi\)
\(278\) 15.9499i 0.956610i
\(279\) 0 0
\(280\) −4.97494 + 4.50000i −0.297309 + 0.268926i
\(281\) 11.6834 11.6834i 0.696972 0.696972i −0.266784 0.963756i \(-0.585961\pi\)
0.963756 + 0.266784i \(0.0859612\pi\)
\(282\) 0 0
\(283\) 7.94987 7.94987i 0.472571 0.472571i −0.430175 0.902746i \(-0.641548\pi\)
0.902746 + 0.430175i \(0.141548\pi\)
\(284\) 2.84169 + 2.84169i 0.168623 + 0.168623i
\(285\) 0 0
\(286\) 16.5831 + 3.31662i 0.980581 + 0.196116i
\(287\) 18.9499 18.9499i 1.11858 1.11858i
\(288\) 0 0
\(289\) 2.94987i 0.173522i
\(290\) −10.4749 + 9.47494i −0.615109 + 0.556387i
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) 22.8997 1.33782 0.668909 0.743344i \(-0.266762\pi\)
0.668909 + 0.743344i \(0.266762\pi\)
\(294\) 0 0
\(295\) 0.0501256 1.00000i 0.00291843 0.0582223i
\(296\) 3.00000i 0.174371i
\(297\) 0 0
\(298\) −15.3166 + 15.3166i −0.887268 + 0.887268i
\(299\) 16.5831 + 3.31662i 0.959027 + 0.191805i
\(300\) 0 0
\(301\) 7.42481 + 7.42481i 0.427959 + 0.427959i
\(302\) 4.47494 4.47494i 0.257504 0.257504i
\(303\) 0 0
\(304\) −2.00000 + 2.00000i −0.114708 + 0.114708i
\(305\) −3.00000 3.31662i −0.171780 0.189909i
\(306\) 0 0
\(307\) 25.8997i 1.47818i 0.673608 + 0.739088i \(0.264743\pi\)
−0.673608 + 0.739088i \(0.735257\pi\)
\(308\) 9.94987 + 9.94987i 0.566947 + 0.566947i
\(309\) 0 0
\(310\) 0.158312 3.15831i 0.00899154 0.179380i
\(311\) 19.2665i 1.09250i −0.837621 0.546251i \(-0.816054\pi\)
0.837621 0.546251i \(-0.183946\pi\)
\(312\) 0 0
\(313\) −15.4248 15.4248i −0.871862 0.871862i 0.120813 0.992675i \(-0.461450\pi\)
−0.992675 + 0.120813i \(0.961450\pi\)
\(314\) 10.0000 10.0000i 0.564333 0.564333i
\(315\) 0 0
\(316\) 12.9499i 0.728487i
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 20.9499 + 20.9499i 1.17297 + 1.17297i
\(320\) −1.50000 1.65831i −0.0838525 0.0927025i
\(321\) 0 0
\(322\) 9.94987 + 9.94987i 0.554485 + 0.554485i
\(323\) 12.6332 0.702933
\(324\) 0 0
\(325\) 15.9248 8.44987i 0.883350 0.468715i
\(326\) 2.94987 0.163378
\(327\) 0 0
\(328\) 6.31662 + 6.31662i 0.348777 + 0.348777i
\(329\) −27.9499 −1.54093
\(330\) 0 0
\(331\) 1.00000 + 1.00000i 0.0549650 + 0.0549650i 0.734055 0.679090i \(-0.237625\pi\)
−0.679090 + 0.734055i \(0.737625\pi\)
\(332\) 6.31662i 0.346670i
\(333\) 0 0
\(334\) 12.6332i 0.691261i
\(335\) 7.42481 + 8.20844i 0.405661 + 0.448475i
\(336\) 0 0
\(337\) 3.52506 + 3.52506i 0.192022 + 0.192022i 0.796569 0.604547i \(-0.206646\pi\)
−0.604547 + 0.796569i \(0.706646\pi\)
\(338\) −5.00000 + 12.0000i −0.271964 + 0.652714i
\(339\) 0 0
\(340\) −0.500000 + 9.97494i −0.0271163 + 0.540967i
\(341\) −6.63325 −0.359211
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) −2.47494 + 2.47494i −0.133440 + 0.133440i
\(345\) 0 0
\(346\) −3.31662 + 3.31662i −0.178303 + 0.178303i
\(347\) −0.791562 + 0.791562i −0.0424933 + 0.0424933i −0.728034 0.685541i \(-0.759566\pi\)
0.685541 + 0.728034i \(0.259566\pi\)
\(348\) 0 0
\(349\) −18.4248 18.4248i −0.986258 0.986258i 0.0136493 0.999907i \(-0.495655\pi\)
−0.999907 + 0.0136493i \(0.995655\pi\)
\(350\) 14.9248 + 1.50000i 0.797765 + 0.0801784i
\(351\) 0 0
\(352\) −3.31662 + 3.31662i −0.176777 + 0.176777i
\(353\) 7.58312i 0.403609i 0.979426 + 0.201804i \(0.0646806\pi\)
−0.979426 + 0.201804i \(0.935319\pi\)
\(354\) 0 0
\(355\) 0.449874 8.97494i 0.0238769 0.476340i
\(356\) 0.316625 + 0.316625i 0.0167811 + 0.0167811i
\(357\) 0 0
\(358\) 15.0000 0.792775
\(359\) 22.2665 + 22.2665i 1.17518 + 1.17518i 0.980957 + 0.194224i \(0.0622187\pi\)
0.194224 + 0.980957i \(0.437781\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 6.94987i 0.365277i
\(363\) 0 0
\(364\) −9.00000 + 6.00000i −0.471728 + 0.314485i
\(365\) 6.00000 + 6.63325i 0.314054 + 0.347200i
\(366\) 0 0
\(367\) 1.94987 1.94987i 0.101783 0.101783i −0.654382 0.756164i \(-0.727071\pi\)
0.756164 + 0.654382i \(0.227071\pi\)
\(368\) −3.31662 + 3.31662i −0.172891 + 0.172891i
\(369\) 0 0
\(370\) −4.97494 + 4.50000i −0.258635 + 0.233944i
\(371\) −28.8997 + 28.8997i −1.50040 + 1.50040i
\(372\) 0 0
\(373\) −20.0000 20.0000i −1.03556 1.03556i −0.999344 0.0362168i \(-0.988469\pi\)
−0.0362168 0.999344i \(-0.511531\pi\)
\(374\) 20.9499 1.08329
\(375\) 0 0
\(376\) 9.31662i 0.480468i
\(377\) −18.9499 + 12.6332i −0.975968 + 0.650645i
\(378\) 0 0
\(379\) 13.0000 13.0000i 0.667765 0.667765i −0.289433 0.957198i \(-0.593467\pi\)
0.957198 + 0.289433i \(0.0934668\pi\)
\(380\) 6.31662 + 0.316625i 0.324036 + 0.0162425i
\(381\) 0 0
\(382\) −5.05013 −0.258387
\(383\) 14.3668i 0.734107i −0.930200 0.367053i \(-0.880367\pi\)
0.930200 0.367053i \(-0.119633\pi\)
\(384\) 0 0
\(385\) 1.57519 31.4248i 0.0802790 1.60156i
\(386\) −10.9499 −0.557334
\(387\) 0 0
\(388\) 8.94987 0.454361
\(389\) −13.8997 −0.704745 −0.352373 0.935860i \(-0.614625\pi\)
−0.352373 + 0.935860i \(0.614625\pi\)
\(390\) 0 0
\(391\) 20.9499 1.05948
\(392\) −2.00000 −0.101015
\(393\) 0 0
\(394\) −3.94987 −0.198992
\(395\) −21.4749 + 19.4248i −1.08052 + 0.977368i
\(396\) 0 0
\(397\) 18.0000i 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) −16.9499 −0.849620
\(399\) 0 0
\(400\) −0.500000 + 4.97494i −0.0250000 + 0.248747i
\(401\) 10.5831 10.5831i 0.528496 0.528496i −0.391628 0.920124i \(-0.628088\pi\)
0.920124 + 0.391628i \(0.128088\pi\)
\(402\) 0 0
\(403\) 1.00000 5.00000i 0.0498135 0.249068i
\(404\) 19.2665i 0.958544i
\(405\) 0 0
\(406\) −18.9499 −0.940466
\(407\) 9.94987 + 9.94987i 0.493197 + 0.493197i
\(408\) 0 0
\(409\) −23.9499 + 23.9499i −1.18425 + 1.18425i −0.205611 + 0.978634i \(0.565918\pi\)
−0.978634 + 0.205611i \(0.934082\pi\)
\(410\) 1.00000 19.9499i 0.0493865 0.985254i
\(411\) 0 0
\(412\) 7.94987 7.94987i 0.391662 0.391662i
\(413\) 0.949874 0.949874i 0.0467403 0.0467403i
\(414\) 0 0
\(415\) −10.4749 + 9.47494i −0.514194 + 0.465106i
\(416\) −2.00000 3.00000i −0.0980581 0.147087i
\(417\) 0 0
\(418\) 13.2665i 0.648886i
\(419\) 8.68338i 0.424211i 0.977247 + 0.212105i \(0.0680320\pi\)
−0.977247 + 0.212105i \(0.931968\pi\)
\(420\) 0 0
\(421\) −2.47494 2.47494i −0.120621 0.120621i 0.644220 0.764841i \(-0.277182\pi\)
−0.764841 + 0.644220i \(0.777182\pi\)
\(422\) −19.9499 −0.971145
\(423\) 0 0
\(424\) −9.63325 9.63325i −0.467832 0.467832i
\(425\) 17.2916 14.1332i 0.838764 0.685563i
\(426\) 0 0
\(427\) 6.00000i 0.290360i
\(428\) 9.63325 9.63325i 0.465641 0.465641i
\(429\) 0 0
\(430\) 7.81662 + 0.391813i 0.376951 + 0.0188949i
\(431\) −12.1583 12.1583i −0.585645 0.585645i 0.350804 0.936449i \(-0.385908\pi\)
−0.936449 + 0.350804i \(0.885908\pi\)
\(432\) 0 0
\(433\) 12.5251 12.5251i 0.601916 0.601916i −0.338905 0.940821i \(-0.610056\pi\)
0.940821 + 0.338905i \(0.110056\pi\)
\(434\) 3.00000 3.00000i 0.144005 0.144005i
\(435\) 0 0
\(436\) 1.47494 1.47494i 0.0706367 0.0706367i
\(437\) 13.2665i 0.634623i
\(438\) 0 0
\(439\) 33.8997 1.61795 0.808973 0.587845i \(-0.200024\pi\)
0.808973 + 0.587845i \(0.200024\pi\)
\(440\) 10.4749 + 0.525063i 0.499373 + 0.0250314i
\(441\) 0 0
\(442\) −3.15831 + 15.7916i −0.150226 + 0.751128i
\(443\) −20.0581 20.0581i −0.952987 0.952987i 0.0459562 0.998943i \(-0.485367\pi\)
−0.998943 + 0.0459562i \(0.985367\pi\)
\(444\) 0 0
\(445\) 0.0501256 1.00000i 0.00237618 0.0474045i
\(446\) 15.9499i 0.755248i
\(447\) 0 0
\(448\) 3.00000i 0.141737i
\(449\) −21.6332 21.6332i −1.02094 1.02094i −0.999776 0.0211601i \(-0.993264\pi\)
−0.0211601 0.999776i \(-0.506736\pi\)
\(450\) 0 0
\(451\) −41.8997 −1.97298
\(452\) −2.68338 2.68338i −0.126215 0.126215i
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) 23.4499 + 5.92481i 1.09935 + 0.277759i
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 3.52506 + 3.52506i 0.164715 + 0.164715i
\(459\) 0 0
\(460\) 10.4749 + 0.525063i 0.488396 + 0.0244812i
\(461\) −4.10819 4.10819i −0.191337 0.191337i 0.604936 0.796274i \(-0.293199\pi\)
−0.796274 + 0.604936i \(0.793199\pi\)
\(462\) 0 0
\(463\) 9.89975 0.460080 0.230040 0.973181i \(-0.426114\pi\)
0.230040 + 0.973181i \(0.426114\pi\)
\(464\) 6.31662i 0.293242i
\(465\) 0 0
\(466\) −6.79156 + 6.79156i −0.314613 + 0.314613i
\(467\) 8.36675 + 8.36675i 0.387167 + 0.387167i 0.873676 0.486509i \(-0.161730\pi\)
−0.486509 + 0.873676i \(0.661730\pi\)
\(468\) 0 0
\(469\) 14.8496i 0.685692i
\(470\) −15.4499 + 13.9749i −0.712650 + 0.644616i
\(471\) 0 0
\(472\) 0.316625 + 0.316625i 0.0145738 + 0.0145738i
\(473\) 16.4169i 0.754849i
\(474\) 0 0
\(475\) −8.94987 10.9499i −0.410648 0.502415i
\(476\) −9.47494 + 9.47494i −0.434283 + 0.434283i
\(477\) 0 0
\(478\) −11.8417 + 11.8417i −0.541626 + 0.541626i
\(479\) −3.15831 3.15831i −0.144307 0.144307i 0.631262 0.775569i \(-0.282537\pi\)
−0.775569 + 0.631262i \(0.782537\pi\)
\(480\) 0 0
\(481\) −9.00000 + 6.00000i −0.410365 + 0.273576i
\(482\) 16.0000 16.0000i 0.728780 0.728780i
\(483\) 0 0
\(484\) 11.0000i 0.500000i
\(485\) −13.4248 14.8417i −0.609589 0.673926i
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 2.00000 0.0905357
\(489\) 0 0
\(490\) 3.00000 + 3.31662i 0.135526 + 0.149830i
\(491\) 32.6834i 1.47498i 0.675358 + 0.737490i \(0.263989\pi\)
−0.675358 + 0.737490i \(0.736011\pi\)
\(492\) 0 0
\(493\) −19.9499 + 19.9499i −0.898497 + 0.898497i
\(494\) 10.0000 + 2.00000i 0.449921 + 0.0899843i
\(495\) 0 0
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) 8.52506 8.52506i 0.382401 0.382401i
\(498\) 0 0
\(499\) −8.94987 + 8.94987i −0.400651 + 0.400651i −0.878463 0.477811i \(-0.841430\pi\)
0.477811 + 0.878463i \(0.341430\pi\)
\(500\) 9.00000 6.63325i 0.402492 0.296648i
\(501\) 0 0
\(502\) 19.2665i 0.859906i
\(503\) −1.58312 1.58312i −0.0705880 0.0705880i 0.670931 0.741519i \(-0.265894\pi\)
−0.741519 + 0.670931i \(0.765894\pi\)
\(504\) 0 0
\(505\) −31.9499 + 28.8997i −1.42175 + 1.28602i
\(506\) 22.0000i 0.978019i
\(507\) 0 0
\(508\) 7.00000 + 7.00000i 0.310575 + 0.310575i
\(509\) −15.3166 + 15.3166i −0.678897 + 0.678897i −0.959751 0.280853i \(-0.909383\pi\)
0.280853 + 0.959751i \(0.409383\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 11.8417 + 11.8417i 0.522314 + 0.522314i
\(515\) −25.1082 1.25856i −1.10640 0.0554589i
\(516\) 0 0
\(517\) 30.8997 + 30.8997i 1.35897 + 1.35897i
\(518\) −9.00000 −0.395437
\(519\) 0 0
\(520\) −1.97494 + 7.81662i −0.0866067 + 0.342782i
\(521\) −10.8997 −0.477527 −0.238763 0.971078i \(-0.576742\pi\)
−0.238763 + 0.971078i \(0.576742\pi\)
\(522\) 0 0
\(523\) −5.00000 5.00000i −0.218635 0.218635i 0.589288 0.807923i \(-0.299408\pi\)
−0.807923 + 0.589288i \(0.799408\pi\)
\(524\) 3.00000 0.131056
\(525\) 0 0
\(526\) 12.3166 + 12.3166i 0.537030 + 0.537030i
\(527\) 6.31662i 0.275156i
\(528\) 0 0
\(529\) 1.00000i 0.0434783i
\(530\) −1.52506 + 30.4248i −0.0662445 + 1.32157i
\(531\) 0 0
\(532\) 6.00000 + 6.00000i 0.260133 + 0.260133i
\(533\) 6.31662 31.5831i 0.273603 1.36802i
\(534\) 0 0
\(535\) −30.4248 1.52506i −1.31538 0.0659342i
\(536\) −4.94987 −0.213802
\(537\) 0 0
\(538\) 13.2665i 0.571959i
\(539\) 6.63325 6.63325i 0.285714 0.285714i
\(540\) 0 0
\(541\) 4.47494 4.47494i 0.192393 0.192393i −0.604337 0.796729i \(-0.706562\pi\)
0.796729 + 0.604337i \(0.206562\pi\)
\(542\) −10.5251 + 10.5251i −0.452090 + 0.452090i
\(543\) 0 0
\(544\) −3.15831 3.15831i −0.135412 0.135412i
\(545\) −4.65831 0.233501i −0.199540 0.0100021i
\(546\) 0 0
\(547\) 21.5251 21.5251i 0.920345 0.920345i −0.0767083 0.997054i \(-0.524441\pi\)
0.997054 + 0.0767083i \(0.0244410\pi\)
\(548\) 5.68338i 0.242782i
\(549\) 0 0
\(550\) −14.8417 18.1583i −0.632852 0.774273i
\(551\) 12.6332 + 12.6332i 0.538195 + 0.538195i
\(552\) 0 0
\(553\) −38.8496 −1.65205
\(554\) −21.8997 21.8997i −0.930431 0.930431i
\(555\) 0 0
\(556\) 15.9499i 0.676425i
\(557\) 4.58312i 0.194193i 0.995275 + 0.0970966i \(0.0309556\pi\)
−0.995275 + 0.0970966i \(0.969044\pi\)
\(558\) 0 0
\(559\) 12.3747 + 2.47494i 0.523393 + 0.104679i
\(560\) −4.97494 + 4.50000i −0.210229 + 0.190160i
\(561\) 0 0
\(562\) 11.6834 11.6834i 0.492833 0.492833i
\(563\) −6.79156 + 6.79156i −0.286230 + 0.286230i −0.835588 0.549357i \(-0.814873\pi\)
0.549357 + 0.835588i \(0.314873\pi\)
\(564\) 0 0
\(565\) −0.424812 + 8.47494i −0.0178720 + 0.356543i
\(566\) 7.94987 7.94987i 0.334158 0.334158i
\(567\) 0 0
\(568\) 2.84169 + 2.84169i 0.119235 + 0.119235i
\(569\) 42.7995 1.79425 0.897124 0.441779i \(-0.145652\pi\)
0.897124 + 0.441779i \(0.145652\pi\)
\(570\) 0 0
\(571\) 28.8997i 1.20942i −0.796447 0.604708i \(-0.793290\pi\)
0.796447 0.604708i \(-0.206710\pi\)
\(572\) 16.5831 + 3.31662i 0.693375 + 0.138675i
\(573\) 0 0
\(574\) 18.9499 18.9499i 0.790952 0.790952i
\(575\) −14.8417 18.1583i −0.618941 0.757254i
\(576\) 0 0
\(577\) −41.8997 −1.74431 −0.872155 0.489230i \(-0.837278\pi\)
−0.872155 + 0.489230i \(0.837278\pi\)
\(578\) 2.94987i 0.122699i
\(579\) 0 0
\(580\) −10.4749 + 9.47494i −0.434948 + 0.393425i
\(581\) −18.9499 −0.786173
\(582\) 0 0
\(583\) 63.8997 2.64646
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 22.8997 0.945980
\(587\) 24.9499 1.02979 0.514896 0.857253i \(-0.327831\pi\)
0.514896 + 0.857253i \(0.327831\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0.0501256 1.00000i 0.00206364 0.0411693i
\(591\) 0 0
\(592\) 3.00000i 0.123299i
\(593\) −12.9499 −0.531788 −0.265894 0.964002i \(-0.585667\pi\)
−0.265894 + 0.964002i \(0.585667\pi\)
\(594\) 0 0
\(595\) 29.9248 + 1.50000i 1.22680 + 0.0614940i
\(596\) −15.3166 + 15.3166i −0.627393 + 0.627393i
\(597\) 0 0
\(598\) 16.5831 + 3.31662i 0.678134 + 0.135627i
\(599\) 13.2665i 0.542054i −0.962572 0.271027i \(-0.912637\pi\)
0.962572 0.271027i \(-0.0873633\pi\)
\(600\) 0 0
\(601\) −6.05013 −0.246790 −0.123395 0.992358i \(-0.539378\pi\)
−0.123395 + 0.992358i \(0.539378\pi\)
\(602\) 7.42481 + 7.42481i 0.302613 + 0.302613i
\(603\) 0 0
\(604\) 4.47494 4.47494i 0.182083 0.182083i
\(605\) −18.2414 + 16.5000i −0.741620 + 0.670820i
\(606\) 0 0
\(607\) 3.05013 3.05013i 0.123801 0.123801i −0.642492 0.766293i \(-0.722099\pi\)
0.766293 + 0.642492i \(0.222099\pi\)
\(608\) −2.00000 + 2.00000i −0.0811107 + 0.0811107i
\(609\) 0 0
\(610\) −3.00000 3.31662i −0.121466 0.134286i
\(611\) −27.9499 + 18.6332i −1.13073 + 0.753821i
\(612\) 0 0
\(613\) 24.0000i 0.969351i 0.874694 + 0.484675i \(0.161062\pi\)
−0.874694 + 0.484675i \(0.838938\pi\)
\(614\) 25.8997i 1.04523i
\(615\) 0 0
\(616\) 9.94987 + 9.94987i 0.400892 + 0.400892i
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −21.8997 21.8997i −0.880225 0.880225i 0.113332 0.993557i \(-0.463848\pi\)
−0.993557 + 0.113332i \(0.963848\pi\)
\(620\) 0.158312 3.15831i 0.00635798 0.126841i
\(621\) 0 0
\(622\) 19.2665i 0.772516i
\(623\) 0.949874 0.949874i 0.0380559 0.0380559i
\(624\) 0 0
\(625\) −24.5000 4.97494i −0.980000 0.198997i
\(626\) −15.4248 15.4248i −0.616499 0.616499i
\(627\) 0 0
\(628\) 10.0000 10.0000i 0.399043 0.399043i
\(629\) −9.47494 + 9.47494i −0.377790 + 0.377790i
\(630\) 0 0
\(631\) 4.47494 4.47494i 0.178144 0.178144i −0.612402 0.790546i \(-0.709797\pi\)
0.790546 + 0.612402i \(0.209797\pi\)
\(632\) 12.9499i 0.515118i
\(633\) 0 0
\(634\) −12.0000 −0.476581
\(635\) 1.10819 22.1082i 0.0439771 0.877337i
\(636\) 0 0
\(637\) 4.00000 + 6.00000i 0.158486 + 0.237729i
\(638\) 20.9499 + 20.9499i 0.829413 + 0.829413i
\(639\) 0 0
\(640\) −1.50000 1.65831i −0.0592927 0.0655506i
\(641\) 5.36675i 0.211974i −0.994368 0.105987i \(-0.966200\pi\)
0.994368 0.105987i \(-0.0338002\pi\)
\(642\) 0 0
\(643\) 12.9499i 0.510693i −0.966850 0.255347i \(-0.917810\pi\)
0.966850 0.255347i \(-0.0821896\pi\)
\(644\) 9.94987 + 9.94987i 0.392080 + 0.392080i
\(645\) 0 0
\(646\) 12.6332 0.497049
\(647\) −6.63325 6.63325i −0.260780 0.260780i 0.564591 0.825371i \(-0.309034\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(648\) 0 0
\(649\) −2.10025 −0.0824421
\(650\) 15.9248 8.44987i 0.624622 0.331431i
\(651\) 0 0
\(652\) 2.94987 0.115526
\(653\) −31.5831 31.5831i −1.23594 1.23594i −0.961645 0.274299i \(-0.911554\pi\)
−0.274299 0.961645i \(-0.588446\pi\)
\(654\) 0 0
\(655\) −4.50000 4.97494i −0.175830 0.194387i
\(656\) 6.31662 + 6.31662i 0.246623 + 0.246623i
\(657\) 0 0
\(658\) −27.9499 −1.08960
\(659\) 0.633250i 0.0246679i 0.999924 + 0.0123340i \(0.00392612\pi\)
−0.999924 + 0.0123340i \(0.996074\pi\)
\(660\) 0 0
\(661\) −12.8997 + 12.8997i −0.501742 + 0.501742i −0.911979 0.410237i \(-0.865446\pi\)
0.410237 + 0.911979i \(0.365446\pi\)
\(662\) 1.00000 + 1.00000i 0.0388661 + 0.0388661i
\(663\) 0 0
\(664\) 6.31662i 0.245133i
\(665\) 0.949874 18.9499i 0.0368345 0.734845i
\(666\) 0 0
\(667\) 20.9499 + 20.9499i 0.811182 + 0.811182i
\(668\) 12.6332i 0.488795i
\(669\) 0 0
\(670\) 7.42481 + 8.20844i 0.286845 + 0.317120i
\(671\) −6.63325 + 6.63325i −0.256074 + 0.256074i
\(672\) 0 0
\(673\) 11.4248 11.4248i 0.440394 0.440394i −0.451750 0.892144i \(-0.649200\pi\)
0.892144 + 0.451750i \(0.149200\pi\)
\(674\) 3.52506 + 3.52506i 0.135780 + 0.135780i
\(675\) 0 0
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) 2.68338 2.68338i 0.103130 0.103130i −0.653659 0.756789i \(-0.726767\pi\)
0.756789 + 0.653659i \(0.226767\pi\)
\(678\) 0 0
\(679\) 26.8496i 1.03039i
\(680\) −0.500000 + 9.97494i −0.0191741 + 0.382521i
\(681\) 0 0
\(682\) −6.63325 −0.254000
\(683\) 30.9499 1.18426 0.592132 0.805841i \(-0.298286\pi\)
0.592132 + 0.805841i \(0.298286\pi\)
\(684\) 0 0
\(685\) 9.42481 8.52506i 0.360104 0.325726i
\(686\) 15.0000i 0.572703i
\(687\) 0 0
\(688\) −2.47494 + 2.47494i −0.0943561 + 0.0943561i
\(689\) −9.63325 + 48.1662i −0.366998 + 1.83499i
\(690\) 0 0
\(691\) −14.0000 14.0000i −0.532585 0.532585i 0.388756 0.921341i \(-0.372905\pi\)
−0.921341 + 0.388756i \(0.872905\pi\)
\(692\) −3.31662 + 3.31662i −0.126079 + 0.126079i
\(693\) 0 0
\(694\) −0.791562 + 0.791562i −0.0300473 + 0.0300473i
\(695\) 26.4499 23.9248i 1.00330 0.907520i
\(696\) 0 0
\(697\) 39.8997i 1.51131i
\(698\) −18.4248 18.4248i −0.697389 0.697389i
\(699\) 0 0
\(700\) 14.9248 + 1.50000i 0.564105 + 0.0566947i
\(701\) 45.4829i 1.71786i 0.512089 + 0.858932i \(0.328872\pi\)
−0.512089 + 0.858932i \(0.671128\pi\)
\(702\) 0 0
\(703\) 6.00000 + 6.00000i 0.226294 + 0.226294i
\(704\) −3.31662 + 3.31662i −0.125000 + 0.125000i
\(705\) 0 0
\(706\) 7.58312i 0.285395i
\(707\) −57.7995 −2.17377
\(708\) 0 0
\(709\) −29.9499 29.9499i −1.12479 1.12479i −0.991011 0.133780i \(-0.957288\pi\)
−0.133780 0.991011i \(-0.542712\pi\)
\(710\) 0.449874 8.97494i 0.0168835 0.336823i
\(711\) 0 0
\(712\) 0.316625 + 0.316625i 0.0118660 + 0.0118660i
\(713\) −6.63325 −0.248417
\(714\) 0 0
\(715\) −19.3747 32.4749i −0.724572 1.21449i
\(716\) 15.0000 0.560576
\(717\) 0 0
\(718\) 22.2665 + 22.2665i 0.830978 + 0.830978i
\(719\) −6.94987 −0.259187 −0.129593 0.991567i \(-0.541367\pi\)
−0.129593 + 0.991567i \(0.541367\pi\)
\(720\) 0 0
\(721\) −23.8496 23.8496i −0.888206 0.888206i
\(722\) 11.0000i 0.409378i
\(723\) 0 0
\(724\) 6.94987i 0.258290i
\(725\) 31.4248 + 3.15831i 1.16709 + 0.117297i
\(726\) 0 0
\(727\) 13.9499 + 13.9499i 0.517372 + 0.517372i 0.916775 0.399403i \(-0.130783\pi\)
−0.399403 + 0.916775i \(0.630783\pi\)
\(728\) −9.00000 + 6.00000i −0.333562 + 0.222375i
\(729\) 0 0
\(730\) 6.00000 + 6.63325i 0.222070 + 0.245508i
\(731\) 15.6332 0.578217
\(732\) 0 0
\(733\) 36.7995i 1.35922i 0.733573 + 0.679610i \(0.237851\pi\)
−0.733573 + 0.679610i \(0.762149\pi\)
\(734\) 1.94987 1.94987i 0.0719712 0.0719712i
\(735\) 0 0
\(736\) −3.31662 + 3.31662i −0.122252 + 0.122252i
\(737\) 16.4169 16.4169i 0.604723 0.604723i
\(738\) 0 0
\(739\) 35.8997 + 35.8997i 1.32059 + 1.32059i 0.913295 + 0.407299i \(0.133529\pi\)
0.407299 + 0.913295i \(0.366471\pi\)
\(740\) −4.97494 + 4.50000i −0.182882 + 0.165423i
\(741\) 0 0
\(742\) −28.8997 + 28.8997i −1.06094 + 1.06094i
\(743\) 15.6332i 0.573528i 0.958001 + 0.286764i \(0.0925796\pi\)
−0.958001 + 0.286764i \(0.907420\pi\)
\(744\) 0 0
\(745\) 48.3747 + 2.42481i 1.77231 + 0.0888382i
\(746\) −20.0000 20.0000i −0.732252 0.732252i
\(747\) 0 0
\(748\) 20.9499 0.766003
\(749\) −28.8997 28.8997i −1.05597 1.05597i
\(750\) 0 0
\(751\) 13.8997i 0.507209i −0.967308 0.253605i \(-0.918384\pi\)
0.967308 0.253605i \(-0.0816162\pi\)
\(752\) 9.31662i 0.339742i
\(753\) 0 0
\(754\) −18.9499 + 12.6332i −0.690114 + 0.460076i
\(755\) −14.1332 0.708438i −0.514362 0.0257827i
\(756\) 0 0
\(757\) −5.00000 + 5.00000i −0.181728 + 0.181728i −0.792108 0.610380i \(-0.791017\pi\)
0.610380 + 0.792108i \(0.291017\pi\)
\(758\) 13.0000 13.0000i 0.472181 0.472181i
\(759\) 0 0
\(760\) 6.31662 + 0.316625i 0.229128 + 0.0114852i
\(761\) 25.5831 25.5831i 0.927388 0.927388i −0.0701490 0.997537i \(-0.522347\pi\)
0.997537 + 0.0701490i \(0.0223475\pi\)
\(762\) 0 0
\(763\) −4.42481 4.42481i −0.160189 0.160189i
\(764\) −5.05013 −0.182707
\(765\) 0 0
\(766\) 14.3668i 0.519092i
\(767\) 0.316625 1.58312i 0.0114327 0.0571633i
\(768\) 0 0
\(769\) 4.94987 4.94987i 0.178497 0.178497i −0.612203 0.790700i \(-0.709717\pi\)
0.790700 + 0.612203i \(0.209717\pi\)
\(770\) 1.57519 31.4248i 0.0567659 1.13247i
\(771\) 0 0
\(772\) −10.9499 −0.394095
\(773\) 22.5831i 0.812259i 0.913816 + 0.406129i \(0.133122\pi\)
−0.913816 + 0.406129i \(0.866878\pi\)
\(774\) 0 0
\(775\) −5.47494 + 4.47494i −0.196666 + 0.160744i
\(776\) 8.94987 0.321282
\(777\) 0 0
\(778\) −13.8997 −0.498330
\(779\) −25.2665 −0.905266
\(780\) 0 0
\(781\) −18.8496 −0.674493
\(782\) 20.9499 0.749166
\(783\) 0 0
\(784\) −2.00000 −0.0714286
\(785\) −31.5831 1.58312i −1.12725 0.0565041i
\(786\) 0 0
\(787\) 25.8997i 0.923226i 0.887081 + 0.461613i \(0.152729\pi\)
−0.887081 + 0.461613i \(0.847271\pi\)
\(788\) −3.94987 −0.140708
\(789\) 0 0
\(790\) −21.4749 + 19.4248i −0.764044 + 0.691104i
\(791\) −8.05013 + 8.05013i −0.286230 + 0.286230i
\(792\) 0 0
\(793\) −4.00000 6.00000i −0.142044 0.213066i
\(794\) 18.0000i 0.638796i
\(795\) 0 0
\(796\) −16.9499 −0.600772
\(797\) 7.26650 + 7.26650i 0.257393 + 0.257393i 0.823993 0.566600i \(-0.191742\pi\)
−0.566600 + 0.823993i \(0.691742\pi\)
\(798\) 0 0
\(799\) −29.4248 + 29.4248i −1.04098 + 1.04098i
\(800\) −0.500000 + 4.97494i −0.0176777 + 0.175891i
\(801\) 0 0
\(802\) 10.5831 10.5831i 0.373703 0.373703i
\(803\) 13.2665 13.2665i 0.468165 0.468165i
\(804\) 0 0
\(805\) 1.57519 31.4248i 0.0555181 1.10758i
\(806\) 1.00000 5.00000i 0.0352235 0.176117i
\(807\) 0 0
\(808\) 19.2665i 0.677793i
\(809\) 14.3668i 0.505108i −0.967583 0.252554i \(-0.918729\pi\)
0.967583 0.252554i \(-0.0812705\pi\)
\(810\) 0 0
\(811\) 22.9499 + 22.9499i 0.805879 + 0.805879i 0.984007 0.178128i \(-0.0570042\pi\)
−0.178128 + 0.984007i \(0.557004\pi\)
\(812\) −18.9499 −0.665010
\(813\) 0 0
\(814\) 9.94987 + 9.94987i 0.348743 + 0.348743i
\(815\) −4.42481 4.89181i −0.154994 0.171353i
\(816\) 0 0
\(817\) 9.89975i 0.346348i
\(818\) −23.9499 + 23.9499i −0.837388 + 0.837388i
\(819\) 0 0
\(820\) 1.00000 19.9499i 0.0349215 0.696680i
\(821\) 24.7916 + 24.7916i 0.865231 + 0.865231i 0.991940 0.126709i \(-0.0404413\pi\)
−0.126709 + 0.991940i \(0.540441\pi\)
\(822\) 0 0
\(823\) −27.8997 + 27.8997i −0.972524 + 0.972524i −0.999632 0.0271084i \(-0.991370\pi\)
0.0271084 + 0.999632i \(0.491370\pi\)
\(824\) 7.94987 7.94987i 0.276947 0.276947i
\(825\) 0 0
\(826\) 0.949874 0.949874i 0.0330504 0.0330504i
\(827\) 31.2665i 1.08724i −0.839331 0.543621i \(-0.817053\pi\)
0.839331 0.543621i \(-0.182947\pi\)
\(828\) 0 0
\(829\) −30.8496 −1.07145 −0.535726 0.844392i \(-0.679962\pi\)
−0.535726 + 0.844392i \(0.679962\pi\)
\(830\) −10.4749 + 9.47494i −0.363590 + 0.328880i
\(831\) 0 0
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) 6.31662 + 6.31662i 0.218858 + 0.218858i
\(834\) 0 0
\(835\) 20.9499 18.9499i 0.725000 0.655787i
\(836\) 13.2665i 0.458831i
\(837\) 0 0
\(838\) 8.68338i 0.299962i
\(839\) −21.6332 21.6332i −0.746863 0.746863i 0.227026 0.973889i \(-0.427100\pi\)
−0.973889 + 0.227026i \(0.927100\pi\)
\(840\) 0 0
\(841\) −10.8997 −0.375853
\(842\) −2.47494 2.47494i −0.0852920 0.0852920i
\(843\) 0 0
\(844\) −19.9499 −0.686703
\(845\) 27.3997 9.70844i 0.942580 0.333980i
\(846\) 0 0
\(847\) −33.0000 −1.13389
\(848\) −9.63325 9.63325i −0.330807 0.330807i
\(849\) 0 0
\(850\) 17.2916 14.1332i 0.593096 0.484766i
\(851\) 9.94987 + 9.94987i 0.341077 + 0.341077i
\(852\) 0 0
\(853\) 4.05013 0.138674 0.0693368 0.997593i \(-0.477912\pi\)
0.0693368 + 0.997593i \(0.477912\pi\)
\(854\) 6.00000i 0.205316i
\(855\) 0 0
\(856\) 9.63325 9.63325i 0.329258 0.329258i
\(857\) 15.3166 + 15.3166i 0.523206 + 0.523206i 0.918538 0.395332i \(-0.129371\pi\)
−0.395332 + 0.918538i \(0.629371\pi\)
\(858\) 0 0
\(859\) 19.8997i 0.678971i −0.940611 0.339485i \(-0.889747\pi\)
0.940611 0.339485i \(-0.110253\pi\)
\(860\) 7.81662 + 0.391813i 0.266545 + 0.0133607i
\(861\) 0 0
\(862\) −12.1583 12.1583i −0.414114 0.414114i
\(863\) 22.5831i 0.768738i 0.923179 + 0.384369i \(0.125581\pi\)
−0.923179 + 0.384369i \(0.874419\pi\)
\(864\) 0 0
\(865\) 10.4749 + 0.525063i 0.356159 + 0.0178527i
\(866\) 12.5251 12.5251i 0.425619 0.425619i
\(867\) 0 0
\(868\) 3.00000 3.00000i 0.101827 0.101827i
\(869\) 42.9499 + 42.9499i 1.45697 + 1.45697i
\(870\) 0 0
\(871\) 9.89975 + 14.8496i 0.335440 + 0.503160i
\(872\) 1.47494 1.47494i 0.0499477 0.0499477i
\(873\) 0 0
\(874\) 13.2665i 0.448746i
\(875\) −19.8997 27.0000i −0.672734 0.912767i
\(876\) 0 0
\(877\) −6.05013 −0.204298 −0.102149 0.994769i \(-0.532572\pi\)
−0.102149 + 0.994769i \(0.532572\pi\)
\(878\) 33.8997 1.14406
\(879\) 0 0
\(880\) 10.4749 + 0.525063i 0.353110 + 0.0176999i
\(881\) 16.5831i 0.558700i 0.960189 + 0.279350i \(0.0901189\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0 0
\(883\) −24.4248 + 24.4248i −0.821960 + 0.821960i −0.986389 0.164429i \(-0.947422\pi\)
0.164429 + 0.986389i \(0.447422\pi\)
\(884\) −3.15831 + 15.7916i −0.106226 + 0.531128i
\(885\) 0 0
\(886\) −20.0581 20.0581i −0.673864 0.673864i
\(887\) −5.36675 + 5.36675i −0.180198 + 0.180198i −0.791442 0.611244i \(-0.790669\pi\)
0.611244 + 0.791442i \(0.290669\pi\)
\(888\) 0 0
\(889\) 21.0000 21.0000i 0.704317 0.704317i
\(890\) 0.0501256 1.00000i 0.00168021 0.0335201i
\(891\) 0 0
\(892\) 15.9499i 0.534041i
\(893\) 18.6332 + 18.6332i 0.623538 + 0.623538i
\(894\) 0 0
\(895\) −22.5000 24.8747i −0.752092 0.831469i
\(896\) 3.00000i 0.100223i
\(897\) 0 0
\(898\) −21.6332 21.6332i −0.721911 0.721911i
\(899\) 6.31662 6.31662i 0.210671 0.210671i
\(900\) 0 0
\(901\) 60.8496i 2.02719i
\(902\) −41.8997 −1.39511
\(903\) 0 0
\(904\) −2.68338 2.68338i −0.0892477 0.0892477i
\(905\) 11.5251 10.4248i 0.383106 0.346532i
\(906\) 0 0
\(907\) −32.3246 32.3246i −1.07332 1.07332i −0.997090 0.0762291i \(-0.975712\pi\)
−0.0762291 0.997090i \(-0.524288\pi\)
\(908\) 18.0000 0.597351
\(909\) 0 0
\(910\) 23.4499 + 5.92481i 0.777356 + 0.196406i
\(911\) 11.0501 0.366107 0.183053 0.983103i \(-0.441402\pi\)
0.183053 + 0.983103i \(0.441402\pi\)
\(912\) 0 0
\(913\) 20.9499 + 20.9499i 0.693340 + 0.693340i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 3.52506 + 3.52506i 0.116471 + 0.116471i
\(917\) 9.00000i 0.297206i
\(918\) 0 0
\(919\) 10.1003i 0.333177i 0.986027 + 0.166588i \(0.0532751\pi\)
−0.986027 + 0.166588i \(0.946725\pi\)
\(920\) 10.4749 + 0.525063i 0.345348 + 0.0173108i
\(921\) 0 0
\(922\) −4.10819 4.10819i −0.135296 0.135296i
\(923\) 2.84169 14.2084i 0.0935353 0.467676i
\(924\) 0 0
\(925\) 14.9248 + 1.50000i 0.490725 + 0.0493197i
\(926\) 9.89975 0.325326
\(927\) 0 0
\(928\) 6.31662i 0.207353i
\(929\) 13.5831 13.5831i 0.445648 0.445648i −0.448257 0.893905i \(-0.647955\pi\)
0.893905 + 0.448257i \(0.147955\pi\)
\(930\) 0 0
\(931\) 4.00000 4.00000i 0.131095 0.131095i
\(932\) −6.79156 + 6.79156i −0.222465 + 0.222465i
\(933\) 0 0
\(934\) 8.36675 + 8.36675i 0.273768 + 0.273768i
\(935\) −31.4248 34.7414i −1.02770 1.13617i
\(936\) 0 0
\(937\) 1.94987 1.94987i 0.0636996 0.0636996i −0.674539 0.738239i \(-0.735658\pi\)
0.738239 + 0.674539i \(0.235658\pi\)
\(938\) 14.8496i 0.484857i
\(939\) 0 0
\(940\) −15.4499 + 13.9749i −0.503919 + 0.455812i
\(941\) 1.74144 + 1.74144i 0.0567692 + 0.0567692i 0.734921 0.678152i \(-0.237219\pi\)
−0.678152 + 0.734921i \(0.737219\pi\)
\(942\) 0 0
\(943\) −41.8997 −1.36444
\(944\) 0.316625 + 0.316625i 0.0103053 + 0.0103053i
\(945\) 0 0
\(946\) 16.4169i 0.533759i
\(947\) 5.68338i 0.184685i 0.995727 + 0.0923424i \(0.0294354\pi\)
−0.995727 + 0.0923424i \(0.970565\pi\)
\(948\) 0 0
\(949\) 8.00000 + 12.0000i 0.259691 + 0.389536i
\(950\) −8.94987 10.9499i −0.290372 0.355261i
\(951\) 0 0
\(952\) −9.47494 + 9.47494i −0.307084 + 0.307084i
\(953\) 21.0079 21.0079i 0.680514 0.680514i −0.279602 0.960116i \(-0.590203\pi\)
0.960116 + 0.279602i \(0.0902026\pi\)
\(954\) 0 0
\(955\) 7.57519 + 8.37469i 0.245127 + 0.270998i
\(956\) −11.8417 + 11.8417i −0.382988 + 0.382988i
\(957\) 0 0
\(958\) −3.15831 3.15831i −0.102040 0.102040i
\(959\) 17.0501 0.550577
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) −9.00000 + 6.00000i −0.290172 + 0.193448i
\(963\) 0 0
\(964\) 16.0000 16.0000i 0.515325 0.515325i
\(965\) 16.4248 + 18.1583i 0.528733 + 0.584537i
\(966\) 0 0
\(967\) −36.0501 −1.15929 −0.579647 0.814868i \(-0.696810\pi\)
−0.579647 + 0.814868i \(0.696810\pi\)
\(968\) 11.0000i 0.353553i
\(969\) 0 0
\(970\) −13.4248 14.8417i −0.431045 0.476538i
\(971\) −20.0501 −0.643439 −0.321720 0.946835i \(-0.604261\pi\)
−0.321720 + 0.946835i \(0.604261\pi\)
\(972\) 0 0
\(973\) 47.8496 1.53399
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −35.0501 −1.12135 −0.560676 0.828035i \(-0.689459\pi\)
−0.560676 + 0.828035i \(0.689459\pi\)
\(978\) 0 0
\(979\) −2.10025 −0.0671243
\(980\) 3.00000 + 3.31662i 0.0958315 + 0.105946i
\(981\) 0 0
\(982\) 32.6834i 1.04297i
\(983\) 2.05013 0.0653889 0.0326944 0.999465i \(-0.489591\pi\)
0.0326944 + 0.999465i \(0.489591\pi\)
\(984\) 0 0
\(985\) 5.92481 + 6.55013i 0.188780 + 0.208704i
\(986\) −19.9499 + 19.9499i −0.635333 + 0.635333i
\(987\) 0 0
\(988\) 10.0000 + 2.00000i 0.318142 + 0.0636285i
\(989\) 16.4169i 0.522026i
\(990\) 0 0
\(991\) 59.7995 1.89959 0.949797 0.312867i \(-0.101290\pi\)
0.949797 + 0.312867i \(0.101290\pi\)
\(992\) 1.00000 + 1.00000i 0.0317500 + 0.0317500i
\(993\) 0 0
\(994\) 8.52506 8.52506i 0.270399 0.270399i
\(995\) 25.4248 + 28.1082i 0.806021 + 0.891089i
\(996\) 0 0
\(997\) 8.89975 8.89975i 0.281858 0.281858i −0.551992 0.833850i \(-0.686132\pi\)
0.833850 + 0.551992i \(0.186132\pi\)
\(998\) −8.94987 + 8.94987i −0.283303 + 0.283303i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.m.e.73.1 4
3.2 odd 2 130.2.g.d.73.1 yes 4
5.2 odd 4 1170.2.w.e.307.1 4
12.11 even 2 1040.2.bg.k.593.2 4
13.5 odd 4 1170.2.w.e.343.1 4
15.2 even 4 130.2.j.d.47.1 yes 4
15.8 even 4 650.2.j.f.307.2 4
15.14 odd 2 650.2.g.g.593.2 4
39.5 even 4 130.2.j.d.83.1 yes 4
60.47 odd 4 1040.2.cd.i.177.2 4
65.57 even 4 inner 1170.2.m.e.577.2 4
156.83 odd 4 1040.2.cd.i.993.2 4
195.44 even 4 650.2.j.f.343.2 4
195.83 odd 4 650.2.g.g.57.2 4
195.122 odd 4 130.2.g.d.57.1 4
780.707 even 4 1040.2.bg.k.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.d.57.1 4 195.122 odd 4
130.2.g.d.73.1 yes 4 3.2 odd 2
130.2.j.d.47.1 yes 4 15.2 even 4
130.2.j.d.83.1 yes 4 39.5 even 4
650.2.g.g.57.2 4 195.83 odd 4
650.2.g.g.593.2 4 15.14 odd 2
650.2.j.f.307.2 4 15.8 even 4
650.2.j.f.343.2 4 195.44 even 4
1040.2.bg.k.577.2 4 780.707 even 4
1040.2.bg.k.593.2 4 12.11 even 2
1040.2.cd.i.177.2 4 60.47 odd 4
1040.2.cd.i.993.2 4 156.83 odd 4
1170.2.m.e.73.1 4 1.1 even 1 trivial
1170.2.m.e.577.2 4 65.57 even 4 inner
1170.2.w.e.307.1 4 5.2 odd 4
1170.2.w.e.343.1 4 13.5 odd 4