Properties

Label 130.2.g.d.57.1
Level $130$
Weight $2$
Character 130.57
Analytic conductor $1.038$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(57,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(1.65831 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 130.57
Dual form 130.2.g.d.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.15831 + 1.15831i) q^{3} +1.00000 q^{4} +(1.50000 - 1.65831i) q^{5} +(1.15831 - 1.15831i) q^{6} +3.00000i q^{7} -1.00000 q^{8} +0.316625i q^{9} +(-1.50000 + 1.65831i) q^{10} +(3.31662 + 3.31662i) q^{11} +(-1.15831 + 1.15831i) q^{12} +(-2.00000 + 3.00000i) q^{13} -3.00000i q^{14} +(0.183375 + 3.65831i) q^{15} +1.00000 q^{16} +(3.15831 - 3.15831i) q^{17} -0.316625i q^{18} +(-2.00000 - 2.00000i) q^{19} +(1.50000 - 1.65831i) q^{20} +(-3.47494 - 3.47494i) q^{21} +(-3.31662 - 3.31662i) q^{22} +(3.31662 + 3.31662i) q^{23} +(1.15831 - 1.15831i) q^{24} +(-0.500000 - 4.97494i) q^{25} +(2.00000 - 3.00000i) q^{26} +(-3.84169 - 3.84169i) q^{27} +3.00000i q^{28} -6.31662i q^{29} +(-0.183375 - 3.65831i) q^{30} +(1.00000 - 1.00000i) q^{31} -1.00000 q^{32} -7.68338 q^{33} +(-3.15831 + 3.15831i) q^{34} +(4.97494 + 4.50000i) q^{35} +0.316625i q^{36} +3.00000i q^{37} +(2.00000 + 2.00000i) q^{38} +(-1.15831 - 5.79156i) q^{39} +(-1.50000 + 1.65831i) q^{40} +(-6.31662 + 6.31662i) q^{41} +(3.47494 + 3.47494i) q^{42} +(-2.47494 - 2.47494i) q^{43} +(3.31662 + 3.31662i) q^{44} +(0.525063 + 0.474937i) q^{45} +(-3.31662 - 3.31662i) q^{46} -9.31662i q^{47} +(-1.15831 + 1.15831i) q^{48} -2.00000 q^{49} +(0.500000 + 4.97494i) q^{50} +7.31662i q^{51} +(-2.00000 + 3.00000i) q^{52} +(9.63325 - 9.63325i) q^{53} +(3.84169 + 3.84169i) q^{54} +(10.4749 - 0.525063i) q^{55} -3.00000i q^{56} +4.63325 q^{57} +6.31662i q^{58} +(-0.316625 + 0.316625i) q^{59} +(0.183375 + 3.65831i) q^{60} +2.00000 q^{61} +(-1.00000 + 1.00000i) q^{62} -0.949874 q^{63} +1.00000 q^{64} +(1.97494 + 7.81662i) q^{65} +7.68338 q^{66} -4.94987 q^{67} +(3.15831 - 3.15831i) q^{68} -7.68338 q^{69} +(-4.97494 - 4.50000i) q^{70} +(-2.84169 + 2.84169i) q^{71} -0.316625i q^{72} -4.00000 q^{73} -3.00000i q^{74} +(6.34169 + 5.18338i) q^{75} +(-2.00000 - 2.00000i) q^{76} +(-9.94987 + 9.94987i) q^{77} +(1.15831 + 5.79156i) q^{78} +12.9499i q^{79} +(1.50000 - 1.65831i) q^{80} +7.94987 q^{81} +(6.31662 - 6.31662i) q^{82} -6.31662i q^{83} +(-3.47494 - 3.47494i) q^{84} +(-0.500000 - 9.97494i) q^{85} +(2.47494 + 2.47494i) q^{86} +(7.31662 + 7.31662i) q^{87} +(-3.31662 - 3.31662i) q^{88} +(-0.316625 + 0.316625i) q^{89} +(-0.525063 - 0.474937i) q^{90} +(-9.00000 - 6.00000i) q^{91} +(3.31662 + 3.31662i) q^{92} +2.31662i q^{93} +9.31662i q^{94} +(-6.31662 + 0.316625i) q^{95} +(1.15831 - 1.15831i) q^{96} +8.94987 q^{97} +2.00000 q^{98} +(-1.05013 + 1.05013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 2 q^{3} + 4 q^{4} + 6 q^{5} - 2 q^{6} - 4 q^{8} - 6 q^{10} + 2 q^{12} - 8 q^{13} + 14 q^{15} + 4 q^{16} + 6 q^{17} - 8 q^{19} + 6 q^{20} + 6 q^{21} - 2 q^{24} - 2 q^{25} + 8 q^{26} - 22 q^{27}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.15831 + 1.15831i −0.668752 + 0.668752i −0.957427 0.288675i \(-0.906785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.50000 1.65831i 0.670820 0.741620i
\(6\) 1.15831 1.15831i 0.472879 0.472879i
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.316625i 0.105542i
\(10\) −1.50000 + 1.65831i −0.474342 + 0.524404i
\(11\) 3.31662 + 3.31662i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(12\) −1.15831 + 1.15831i −0.334376 + 0.334376i
\(13\) −2.00000 + 3.00000i −0.554700 + 0.832050i
\(14\) 3.00000i 0.801784i
\(15\) 0.183375 + 3.65831i 0.0473473 + 0.944572i
\(16\) 1.00000 0.250000
\(17\) 3.15831 3.15831i 0.766003 0.766003i −0.211397 0.977400i \(-0.567801\pi\)
0.977400 + 0.211397i \(0.0678013\pi\)
\(18\) 0.316625i 0.0746292i
\(19\) −2.00000 2.00000i −0.458831 0.458831i 0.439440 0.898272i \(-0.355177\pi\)
−0.898272 + 0.439440i \(0.855177\pi\)
\(20\) 1.50000 1.65831i 0.335410 0.370810i
\(21\) −3.47494 3.47494i −0.758293 0.758293i
\(22\) −3.31662 3.31662i −0.707107 0.707107i
\(23\) 3.31662 + 3.31662i 0.691564 + 0.691564i 0.962576 0.271012i \(-0.0873583\pi\)
−0.271012 + 0.962576i \(0.587358\pi\)
\(24\) 1.15831 1.15831i 0.236440 0.236440i
\(25\) −0.500000 4.97494i −0.100000 0.994987i
\(26\) 2.00000 3.00000i 0.392232 0.588348i
\(27\) −3.84169 3.84169i −0.739333 0.739333i
\(28\) 3.00000i 0.566947i
\(29\) 6.31662i 1.17297i −0.809961 0.586484i \(-0.800512\pi\)
0.809961 0.586484i \(-0.199488\pi\)
\(30\) −0.183375 3.65831i −0.0334796 0.667913i
\(31\) 1.00000 1.00000i 0.179605 0.179605i −0.611578 0.791184i \(-0.709465\pi\)
0.791184 + 0.611578i \(0.209465\pi\)
\(32\) −1.00000 −0.176777
\(33\) −7.68338 −1.33750
\(34\) −3.15831 + 3.15831i −0.541646 + 0.541646i
\(35\) 4.97494 + 4.50000i 0.840918 + 0.760639i
\(36\) 0.316625i 0.0527708i
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) 2.00000 + 2.00000i 0.324443 + 0.324443i
\(39\) −1.15831 5.79156i −0.185478 0.927392i
\(40\) −1.50000 + 1.65831i −0.237171 + 0.262202i
\(41\) −6.31662 + 6.31662i −0.986491 + 0.986491i −0.999910 0.0134189i \(-0.995729\pi\)
0.0134189 + 0.999910i \(0.495729\pi\)
\(42\) 3.47494 + 3.47494i 0.536194 + 0.536194i
\(43\) −2.47494 2.47494i −0.377424 0.377424i 0.492748 0.870172i \(-0.335993\pi\)
−0.870172 + 0.492748i \(0.835993\pi\)
\(44\) 3.31662 + 3.31662i 0.500000 + 0.500000i
\(45\) 0.525063 + 0.474937i 0.0782717 + 0.0707995i
\(46\) −3.31662 3.31662i −0.489010 0.489010i
\(47\) 9.31662i 1.35897i −0.733690 0.679485i \(-0.762203\pi\)
0.733690 0.679485i \(-0.237797\pi\)
\(48\) −1.15831 + 1.15831i −0.167188 + 0.167188i
\(49\) −2.00000 −0.285714
\(50\) 0.500000 + 4.97494i 0.0707107 + 0.703562i
\(51\) 7.31662i 1.02453i
\(52\) −2.00000 + 3.00000i −0.277350 + 0.416025i
\(53\) 9.63325 9.63325i 1.32323 1.32323i 0.412082 0.911147i \(-0.364802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 3.84169 + 3.84169i 0.522787 + 0.522787i
\(55\) 10.4749 0.525063i 1.41244 0.0707995i
\(56\) 3.00000i 0.400892i
\(57\) 4.63325 0.613689
\(58\) 6.31662i 0.829413i
\(59\) −0.316625 + 0.316625i −0.0412210 + 0.0412210i −0.727417 0.686196i \(-0.759279\pi\)
0.686196 + 0.727417i \(0.259279\pi\)
\(60\) 0.183375 + 3.65831i 0.0236736 + 0.472286i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 + 1.00000i −0.127000 + 0.127000i
\(63\) −0.949874 −0.119673
\(64\) 1.00000 0.125000
\(65\) 1.97494 + 7.81662i 0.244961 + 0.969533i
\(66\) 7.68338 0.945758
\(67\) −4.94987 −0.604723 −0.302362 0.953193i \(-0.597775\pi\)
−0.302362 + 0.953193i \(0.597775\pi\)
\(68\) 3.15831 3.15831i 0.383002 0.383002i
\(69\) −7.68338 −0.924970
\(70\) −4.97494 4.50000i −0.594619 0.537853i
\(71\) −2.84169 + 2.84169i −0.337246 + 0.337246i −0.855330 0.518084i \(-0.826646\pi\)
0.518084 + 0.855330i \(0.326646\pi\)
\(72\) 0.316625i 0.0373146i
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 3.00000i 0.348743i
\(75\) 6.34169 + 5.18338i 0.732275 + 0.598525i
\(76\) −2.00000 2.00000i −0.229416 0.229416i
\(77\) −9.94987 + 9.94987i −1.13389 + 1.13389i
\(78\) 1.15831 + 5.79156i 0.131153 + 0.655765i
\(79\) 12.9499i 1.45697i 0.685059 + 0.728487i \(0.259776\pi\)
−0.685059 + 0.728487i \(0.740224\pi\)
\(80\) 1.50000 1.65831i 0.167705 0.185405i
\(81\) 7.94987 0.883319
\(82\) 6.31662 6.31662i 0.697555 0.697555i
\(83\) 6.31662i 0.693340i −0.937987 0.346670i \(-0.887312\pi\)
0.937987 0.346670i \(-0.112688\pi\)
\(84\) −3.47494 3.47494i −0.379147 0.379147i
\(85\) −0.500000 9.97494i −0.0542326 1.08193i
\(86\) 2.47494 + 2.47494i 0.266879 + 0.266879i
\(87\) 7.31662 + 7.31662i 0.784425 + 0.784425i
\(88\) −3.31662 3.31662i −0.353553 0.353553i
\(89\) −0.316625 + 0.316625i −0.0335622 + 0.0335622i −0.723689 0.690127i \(-0.757555\pi\)
0.690127 + 0.723689i \(0.257555\pi\)
\(90\) −0.525063 0.474937i −0.0553465 0.0500628i
\(91\) −9.00000 6.00000i −0.943456 0.628971i
\(92\) 3.31662 + 3.31662i 0.345782 + 0.345782i
\(93\) 2.31662i 0.240223i
\(94\) 9.31662i 0.960936i
\(95\) −6.31662 + 0.316625i −0.648072 + 0.0324850i
\(96\) 1.15831 1.15831i 0.118220 0.118220i
\(97\) 8.94987 0.908722 0.454361 0.890818i \(-0.349868\pi\)
0.454361 + 0.890818i \(0.349868\pi\)
\(98\) 2.00000 0.202031
\(99\) −1.05013 + 1.05013i −0.105542 + 0.105542i
\(100\) −0.500000 4.97494i −0.0500000 0.497494i
\(101\) 19.2665i 1.91709i −0.284944 0.958544i \(-0.591975\pi\)
0.284944 0.958544i \(-0.408025\pi\)
\(102\) 7.31662i 0.724454i
\(103\) 7.94987 + 7.94987i 0.783324 + 0.783324i 0.980390 0.197066i \(-0.0631413\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.00000 3.00000i 0.196116 0.294174i
\(105\) −10.9749 + 0.550126i −1.07104 + 0.0536868i
\(106\) −9.63325 + 9.63325i −0.935664 + 0.935664i
\(107\) −9.63325 9.63325i −0.931281 0.931281i 0.0665047 0.997786i \(-0.478815\pi\)
−0.997786 + 0.0665047i \(0.978815\pi\)
\(108\) −3.84169 3.84169i −0.369667 0.369667i
\(109\) 1.47494 + 1.47494i 0.141273 + 0.141273i 0.774206 0.632933i \(-0.218149\pi\)
−0.632933 + 0.774206i \(0.718149\pi\)
\(110\) −10.4749 + 0.525063i −0.998746 + 0.0500628i
\(111\) −3.47494 3.47494i −0.329826 0.329826i
\(112\) 3.00000i 0.283473i
\(113\) 2.68338 2.68338i 0.252431 0.252431i −0.569536 0.821967i \(-0.692877\pi\)
0.821967 + 0.569536i \(0.192877\pi\)
\(114\) −4.63325 −0.433944
\(115\) 10.4749 0.525063i 0.976793 0.0489624i
\(116\) 6.31662i 0.586484i
\(117\) −0.949874 0.633250i −0.0878159 0.0585439i
\(118\) 0.316625 0.316625i 0.0291477 0.0291477i
\(119\) 9.47494 + 9.47494i 0.868566 + 0.868566i
\(120\) −0.183375 3.65831i −0.0167398 0.333957i
\(121\) 11.0000i 1.00000i
\(122\) −2.00000 −0.181071
\(123\) 14.6332i 1.31944i
\(124\) 1.00000 1.00000i 0.0898027 0.0898027i
\(125\) −9.00000 6.63325i −0.804984 0.593296i
\(126\) 0.949874 0.0846215
\(127\) 7.00000 7.00000i 0.621150 0.621150i −0.324676 0.945825i \(-0.605255\pi\)
0.945825 + 0.324676i \(0.105255\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 5.73350 0.504807
\(130\) −1.97494 7.81662i −0.173213 0.685563i
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) −7.68338 −0.668752
\(133\) 6.00000 6.00000i 0.520266 0.520266i
\(134\) 4.94987 0.427604
\(135\) −12.1332 + 0.608187i −1.04426 + 0.0523444i
\(136\) −3.15831 + 3.15831i −0.270823 + 0.270823i
\(137\) 5.68338i 0.485564i 0.970081 + 0.242782i \(0.0780599\pi\)
−0.970081 + 0.242782i \(0.921940\pi\)
\(138\) 7.68338 0.654052
\(139\) 15.9499i 1.35285i −0.736511 0.676425i \(-0.763528\pi\)
0.736511 0.676425i \(-0.236472\pi\)
\(140\) 4.97494 + 4.50000i 0.420459 + 0.380319i
\(141\) 10.7916 + 10.7916i 0.908813 + 0.908813i
\(142\) 2.84169 2.84169i 0.238469 0.238469i
\(143\) −16.5831 + 3.31662i −1.38675 + 0.277350i
\(144\) 0.316625i 0.0263854i
\(145\) −10.4749 9.47494i −0.869896 0.786851i
\(146\) 4.00000 0.331042
\(147\) 2.31662 2.31662i 0.191072 0.191072i
\(148\) 3.00000i 0.246598i
\(149\) 15.3166 + 15.3166i 1.25479 + 1.25479i 0.953549 + 0.301238i \(0.0973998\pi\)
0.301238 + 0.953549i \(0.402600\pi\)
\(150\) −6.34169 5.18338i −0.517797 0.423221i
\(151\) 4.47494 + 4.47494i 0.364165 + 0.364165i 0.865344 0.501179i \(-0.167100\pi\)
−0.501179 + 0.865344i \(0.667100\pi\)
\(152\) 2.00000 + 2.00000i 0.162221 + 0.162221i
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) 9.94987 9.94987i 0.801784 0.801784i
\(155\) −0.158312 3.15831i −0.0127160 0.253682i
\(156\) −1.15831 5.79156i −0.0927392 0.463696i
\(157\) 10.0000 + 10.0000i 0.798087 + 0.798087i 0.982794 0.184707i \(-0.0591335\pi\)
−0.184707 + 0.982794i \(0.559134\pi\)
\(158\) 12.9499i 1.03024i
\(159\) 22.3166i 1.76982i
\(160\) −1.50000 + 1.65831i −0.118585 + 0.131101i
\(161\) −9.94987 + 9.94987i −0.784160 + 0.784160i
\(162\) −7.94987 −0.624601
\(163\) 2.94987 0.231052 0.115526 0.993304i \(-0.463145\pi\)
0.115526 + 0.993304i \(0.463145\pi\)
\(164\) −6.31662 + 6.31662i −0.493246 + 0.493246i
\(165\) −11.5251 + 12.7414i −0.897225 + 0.991919i
\(166\) 6.31662i 0.490265i
\(167\) 12.6332i 0.977590i 0.872399 + 0.488795i \(0.162563\pi\)
−0.872399 + 0.488795i \(0.837437\pi\)
\(168\) 3.47494 + 3.47494i 0.268097 + 0.268097i
\(169\) −5.00000 12.0000i −0.384615 0.923077i
\(170\) 0.500000 + 9.97494i 0.0383482 + 0.765043i
\(171\) 0.633250 0.633250i 0.0484258 0.0484258i
\(172\) −2.47494 2.47494i −0.188712 0.188712i
\(173\) 3.31662 + 3.31662i 0.252158 + 0.252158i 0.821855 0.569697i \(-0.192939\pi\)
−0.569697 + 0.821855i \(0.692939\pi\)
\(174\) −7.31662 7.31662i −0.554672 0.554672i
\(175\) 14.9248 1.50000i 1.12821 0.113389i
\(176\) 3.31662 + 3.31662i 0.250000 + 0.250000i
\(177\) 0.733501i 0.0551333i
\(178\) 0.316625 0.316625i 0.0237320 0.0237320i
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0.525063 + 0.474937i 0.0391359 + 0.0353997i
\(181\) 6.94987i 0.516580i −0.966067 0.258290i \(-0.916841\pi\)
0.966067 0.258290i \(-0.0831590\pi\)
\(182\) 9.00000 + 6.00000i 0.667124 + 0.444750i
\(183\) −2.31662 + 2.31662i −0.171250 + 0.171250i
\(184\) −3.31662 3.31662i −0.244505 0.244505i
\(185\) 4.97494 + 4.50000i 0.365765 + 0.330847i
\(186\) 2.31662i 0.169863i
\(187\) 20.9499 1.53201
\(188\) 9.31662i 0.679485i
\(189\) 11.5251 11.5251i 0.838325 0.838325i
\(190\) 6.31662 0.316625i 0.458256 0.0229704i
\(191\) 5.05013 0.365414 0.182707 0.983167i \(-0.441514\pi\)
0.182707 + 0.983167i \(0.441514\pi\)
\(192\) −1.15831 + 1.15831i −0.0835940 + 0.0835940i
\(193\) −10.9499 −0.788189 −0.394095 0.919070i \(-0.628942\pi\)
−0.394095 + 0.919070i \(0.628942\pi\)
\(194\) −8.94987 −0.642564
\(195\) −11.3417 6.76650i −0.812195 0.484559i
\(196\) −2.00000 −0.142857
\(197\) 3.94987 0.281417 0.140708 0.990051i \(-0.455062\pi\)
0.140708 + 0.990051i \(0.455062\pi\)
\(198\) 1.05013 1.05013i 0.0746292 0.0746292i
\(199\) −16.9499 −1.20154 −0.600772 0.799420i \(-0.705140\pi\)
−0.600772 + 0.799420i \(0.705140\pi\)
\(200\) 0.500000 + 4.97494i 0.0353553 + 0.351781i
\(201\) 5.73350 5.73350i 0.404410 0.404410i
\(202\) 19.2665i 1.35559i
\(203\) 18.9499 1.33002
\(204\) 7.31662i 0.512266i
\(205\) 1.00000 + 19.9499i 0.0698430 + 1.39336i
\(206\) −7.94987 7.94987i −0.553894 0.553894i
\(207\) −1.05013 + 1.05013i −0.0729888 + 0.0729888i
\(208\) −2.00000 + 3.00000i −0.138675 + 0.208013i
\(209\) 13.2665i 0.917663i
\(210\) 10.9749 0.550126i 0.757343 0.0379623i
\(211\) −19.9499 −1.37341 −0.686703 0.726938i \(-0.740943\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(212\) 9.63325 9.63325i 0.661614 0.661614i
\(213\) 6.58312i 0.451068i
\(214\) 9.63325 + 9.63325i 0.658515 + 0.658515i
\(215\) −7.81662 + 0.391813i −0.533089 + 0.0267214i
\(216\) 3.84169 + 3.84169i 0.261394 + 0.261394i
\(217\) 3.00000 + 3.00000i 0.203653 + 0.203653i
\(218\) −1.47494 1.47494i −0.0998954 0.0998954i
\(219\) 4.63325 4.63325i 0.313086 0.313086i
\(220\) 10.4749 0.525063i 0.706220 0.0353997i
\(221\) 3.15831 + 15.7916i 0.212451 + 1.06226i
\(222\) 3.47494 + 3.47494i 0.233223 + 0.233223i
\(223\) 15.9499i 1.06808i −0.845458 0.534041i \(-0.820673\pi\)
0.845458 0.534041i \(-0.179327\pi\)
\(224\) 3.00000i 0.200446i
\(225\) 1.57519 0.158312i 0.105013 0.0105542i
\(226\) −2.68338 + 2.68338i −0.178495 + 0.178495i
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 4.63325 0.306844
\(229\) 3.52506 3.52506i 0.232943 0.232943i −0.580977 0.813920i \(-0.697329\pi\)
0.813920 + 0.580977i \(0.197329\pi\)
\(230\) −10.4749 + 0.525063i −0.690697 + 0.0346216i
\(231\) 23.0501i 1.51659i
\(232\) 6.31662i 0.414707i
\(233\) 6.79156 + 6.79156i 0.444930 + 0.444930i 0.893665 0.448735i \(-0.148125\pi\)
−0.448735 + 0.893665i \(0.648125\pi\)
\(234\) 0.949874 + 0.633250i 0.0620952 + 0.0413968i
\(235\) −15.4499 13.9749i −1.00784 0.911624i
\(236\) −0.316625 + 0.316625i −0.0206105 + 0.0206105i
\(237\) −15.0000 15.0000i −0.974355 0.974355i
\(238\) −9.47494 9.47494i −0.614169 0.614169i
\(239\) 11.8417 + 11.8417i 0.765975 + 0.765975i 0.977395 0.211420i \(-0.0678088\pi\)
−0.211420 + 0.977395i \(0.567809\pi\)
\(240\) 0.183375 + 3.65831i 0.0118368 + 0.236143i
\(241\) 16.0000 + 16.0000i 1.03065 + 1.03065i 0.999515 + 0.0311354i \(0.00991232\pi\)
0.0311354 + 0.999515i \(0.490088\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 2.31662 2.31662i 0.148612 0.148612i
\(244\) 2.00000 0.128037
\(245\) −3.00000 + 3.31662i −0.191663 + 0.211891i
\(246\) 14.6332i 0.932982i
\(247\) 10.0000 2.00000i 0.636285 0.127257i
\(248\) −1.00000 + 1.00000i −0.0635001 + 0.0635001i
\(249\) 7.31662 + 7.31662i 0.463672 + 0.463672i
\(250\) 9.00000 + 6.63325i 0.569210 + 0.419524i
\(251\) 19.2665i 1.21609i −0.793902 0.608045i \(-0.791954\pi\)
0.793902 0.608045i \(-0.208046\pi\)
\(252\) −0.949874 −0.0598365
\(253\) 22.0000i 1.38313i
\(254\) −7.00000 + 7.00000i −0.439219 + 0.439219i
\(255\) 12.1332 + 10.9749i 0.759814 + 0.687277i
\(256\) 1.00000 0.0625000
\(257\) −11.8417 + 11.8417i −0.738664 + 0.738664i −0.972319 0.233655i \(-0.924931\pi\)
0.233655 + 0.972319i \(0.424931\pi\)
\(258\) −5.73350 −0.356952
\(259\) −9.00000 −0.559233
\(260\) 1.97494 + 7.81662i 0.122480 + 0.484766i
\(261\) 2.00000 0.123797
\(262\) 3.00000 0.185341
\(263\) −12.3166 + 12.3166i −0.759476 + 0.759476i −0.976227 0.216751i \(-0.930454\pi\)
0.216751 + 0.976227i \(0.430454\pi\)
\(264\) 7.68338 0.472879
\(265\) −1.52506 30.4248i −0.0936839 1.86898i
\(266\) −6.00000 + 6.00000i −0.367884 + 0.367884i
\(267\) 0.733501i 0.0448895i
\(268\) −4.94987 −0.302362
\(269\) 13.2665i 0.808873i −0.914566 0.404436i \(-0.867468\pi\)
0.914566 0.404436i \(-0.132532\pi\)
\(270\) 12.1332 0.608187i 0.738406 0.0370131i
\(271\) −10.5251 10.5251i −0.639352 0.639352i 0.311044 0.950396i \(-0.399321\pi\)
−0.950396 + 0.311044i \(0.899321\pi\)
\(272\) 3.15831 3.15831i 0.191501 0.191501i
\(273\) 17.3747 3.47494i 1.05156 0.210313i
\(274\) 5.68338i 0.343345i
\(275\) 14.8417 18.1583i 0.894987 1.09499i
\(276\) −7.68338 −0.462485
\(277\) −21.8997 + 21.8997i −1.31583 + 1.31583i −0.398783 + 0.917045i \(0.630567\pi\)
−0.917045 + 0.398783i \(0.869433\pi\)
\(278\) 15.9499i 0.956610i
\(279\) 0.316625 + 0.316625i 0.0189558 + 0.0189558i
\(280\) −4.97494 4.50000i −0.297309 0.268926i
\(281\) −11.6834 11.6834i −0.696972 0.696972i 0.266784 0.963756i \(-0.414039\pi\)
−0.963756 + 0.266784i \(0.914039\pi\)
\(282\) −10.7916 10.7916i −0.642628 0.642628i
\(283\) 7.94987 + 7.94987i 0.472571 + 0.472571i 0.902746 0.430175i \(-0.141548\pi\)
−0.430175 + 0.902746i \(0.641548\pi\)
\(284\) −2.84169 + 2.84169i −0.168623 + 0.168623i
\(285\) 6.94987 7.68338i 0.411675 0.455124i
\(286\) 16.5831 3.31662i 0.980581 0.196116i
\(287\) −18.9499 18.9499i −1.11858 1.11858i
\(288\) 0.316625i 0.0186573i
\(289\) 2.94987i 0.173522i
\(290\) 10.4749 + 9.47494i 0.615109 + 0.556387i
\(291\) −10.3668 + 10.3668i −0.607710 + 0.607710i
\(292\) −4.00000 −0.234082
\(293\) −22.8997 −1.33782 −0.668909 0.743344i \(-0.733238\pi\)
−0.668909 + 0.743344i \(0.733238\pi\)
\(294\) −2.31662 + 2.31662i −0.135108 + 0.135108i
\(295\) 0.0501256 + 1.00000i 0.00291843 + 0.0582223i
\(296\) 3.00000i 0.174371i
\(297\) 25.4829i 1.47867i
\(298\) −15.3166 15.3166i −0.887268 0.887268i
\(299\) −16.5831 + 3.31662i −0.959027 + 0.191805i
\(300\) 6.34169 + 5.18338i 0.366138 + 0.299262i
\(301\) 7.42481 7.42481i 0.427959 0.427959i
\(302\) −4.47494 4.47494i −0.257504 0.257504i
\(303\) 22.3166 + 22.3166i 1.28206 + 1.28206i
\(304\) −2.00000 2.00000i −0.114708 0.114708i
\(305\) 3.00000 3.31662i 0.171780 0.189909i
\(306\) −1.00000 1.00000i −0.0571662 0.0571662i
\(307\) 25.8997i 1.47818i −0.673608 0.739088i \(-0.735257\pi\)
0.673608 0.739088i \(-0.264743\pi\)
\(308\) −9.94987 + 9.94987i −0.566947 + 0.566947i
\(309\) −18.4169 −1.04770
\(310\) 0.158312 + 3.15831i 0.00899154 + 0.179380i
\(311\) 19.2665i 1.09250i −0.837621 0.546251i \(-0.816054\pi\)
0.837621 0.546251i \(-0.183946\pi\)
\(312\) 1.15831 + 5.79156i 0.0655765 + 0.327883i
\(313\) −15.4248 + 15.4248i −0.871862 + 0.871862i −0.992675 0.120813i \(-0.961450\pi\)
0.120813 + 0.992675i \(0.461450\pi\)
\(314\) −10.0000 10.0000i −0.564333 0.564333i
\(315\) −1.42481 + 1.57519i −0.0802790 + 0.0887518i
\(316\) 12.9499i 0.728487i
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 22.3166i 1.25145i
\(319\) 20.9499 20.9499i 1.17297 1.17297i
\(320\) 1.50000 1.65831i 0.0838525 0.0927025i
\(321\) 22.3166 1.24559
\(322\) 9.94987 9.94987i 0.554485 0.554485i
\(323\) −12.6332 −0.702933
\(324\) 7.94987 0.441660
\(325\) 15.9248 + 8.44987i 0.883350 + 0.468715i
\(326\) −2.94987 −0.163378
\(327\) −3.41688 −0.188954
\(328\) 6.31662 6.31662i 0.348777 0.348777i
\(329\) 27.9499 1.54093
\(330\) 11.5251 12.7414i 0.634434 0.701393i
\(331\) 1.00000 1.00000i 0.0549650 0.0549650i −0.679090 0.734055i \(-0.737625\pi\)
0.734055 + 0.679090i \(0.237625\pi\)
\(332\) 6.31662i 0.346670i
\(333\) −0.949874 −0.0520528
\(334\) 12.6332i 0.691261i
\(335\) −7.42481 + 8.20844i −0.405661 + 0.448475i
\(336\) −3.47494 3.47494i −0.189573 0.189573i
\(337\) 3.52506 3.52506i 0.192022 0.192022i −0.604547 0.796569i \(-0.706646\pi\)
0.796569 + 0.604547i \(0.206646\pi\)
\(338\) 5.00000 + 12.0000i 0.271964 + 0.652714i
\(339\) 6.21637i 0.337627i
\(340\) −0.500000 9.97494i −0.0271163 0.540967i
\(341\) 6.63325 0.359211
\(342\) −0.633250 + 0.633250i −0.0342422 + 0.0342422i
\(343\) 15.0000i 0.809924i
\(344\) 2.47494 + 2.47494i 0.133440 + 0.133440i
\(345\) −11.5251 + 12.7414i −0.620489 + 0.685976i
\(346\) −3.31662 3.31662i −0.178303 0.178303i
\(347\) 0.791562 + 0.791562i 0.0424933 + 0.0424933i 0.728034 0.685541i \(-0.240434\pi\)
−0.685541 + 0.728034i \(0.740434\pi\)
\(348\) 7.31662 + 7.31662i 0.392212 + 0.392212i
\(349\) −18.4248 + 18.4248i −0.986258 + 0.986258i −0.999907 0.0136493i \(-0.995655\pi\)
0.0136493 + 0.999907i \(0.495655\pi\)
\(350\) −14.9248 + 1.50000i −0.797765 + 0.0801784i
\(351\) 19.2084 3.84169i 1.02527 0.205054i
\(352\) −3.31662 3.31662i −0.176777 0.176777i
\(353\) 7.58312i 0.403609i 0.979426 + 0.201804i \(0.0646806\pi\)
−0.979426 + 0.201804i \(0.935319\pi\)
\(354\) 0.733501i 0.0389851i
\(355\) 0.449874 + 8.97494i 0.0238769 + 0.476340i
\(356\) −0.316625 + 0.316625i −0.0167811 + 0.0167811i
\(357\) −21.9499 −1.16171
\(358\) 15.0000 0.792775
\(359\) −22.2665 + 22.2665i −1.17518 + 1.17518i −0.194224 + 0.980957i \(0.562219\pi\)
−0.980957 + 0.194224i \(0.937781\pi\)
\(360\) −0.525063 0.474937i −0.0276732 0.0250314i
\(361\) 11.0000i 0.578947i
\(362\) 6.94987i 0.365277i
\(363\) −12.7414 12.7414i −0.668752 0.668752i
\(364\) −9.00000 6.00000i −0.471728 0.314485i
\(365\) −6.00000 + 6.63325i −0.314054 + 0.347200i
\(366\) 2.31662 2.31662i 0.121092 0.121092i
\(367\) 1.94987 + 1.94987i 0.101783 + 0.101783i 0.756164 0.654382i \(-0.227071\pi\)
−0.654382 + 0.756164i \(0.727071\pi\)
\(368\) 3.31662 + 3.31662i 0.172891 + 0.172891i
\(369\) −2.00000 2.00000i −0.104116 0.104116i
\(370\) −4.97494 4.50000i −0.258635 0.233944i
\(371\) 28.8997 + 28.8997i 1.50040 + 1.50040i
\(372\) 2.31662i 0.120111i
\(373\) −20.0000 + 20.0000i −1.03556 + 1.03556i −0.0362168 + 0.999344i \(0.511531\pi\)
−0.999344 + 0.0362168i \(0.988469\pi\)
\(374\) −20.9499 −1.08329
\(375\) 18.1082 2.74144i 0.935103 0.141567i
\(376\) 9.31662i 0.480468i
\(377\) 18.9499 + 12.6332i 0.975968 + 0.650645i
\(378\) −11.5251 + 11.5251i −0.592785 + 0.592785i
\(379\) 13.0000 + 13.0000i 0.667765 + 0.667765i 0.957198 0.289433i \(-0.0934668\pi\)
−0.289433 + 0.957198i \(0.593467\pi\)
\(380\) −6.31662 + 0.316625i −0.324036 + 0.0162425i
\(381\) 16.2164i 0.830790i
\(382\) −5.05013 −0.258387
\(383\) 14.3668i 0.734107i −0.930200 0.367053i \(-0.880367\pi\)
0.930200 0.367053i \(-0.119633\pi\)
\(384\) 1.15831 1.15831i 0.0591099 0.0591099i
\(385\) 1.57519 + 31.4248i 0.0802790 + 1.60156i
\(386\) 10.9499 0.557334
\(387\) 0.783626 0.783626i 0.0398340 0.0398340i
\(388\) 8.94987 0.454361
\(389\) 13.8997 0.704745 0.352373 0.935860i \(-0.385375\pi\)
0.352373 + 0.935860i \(0.385375\pi\)
\(390\) 11.3417 + 6.76650i 0.574309 + 0.342635i
\(391\) 20.9499 1.05948
\(392\) 2.00000 0.101015
\(393\) 3.47494 3.47494i 0.175287 0.175287i
\(394\) −3.94987 −0.198992
\(395\) 21.4749 + 19.4248i 1.08052 + 0.977368i
\(396\) −1.05013 + 1.05013i −0.0527708 + 0.0527708i
\(397\) 18.0000i 0.903394i 0.892171 + 0.451697i \(0.149181\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(398\) 16.9499 0.849620
\(399\) 13.8997i 0.695858i
\(400\) −0.500000 4.97494i −0.0250000 0.248747i
\(401\) −10.5831 10.5831i −0.528496 0.528496i 0.391628 0.920124i \(-0.371912\pi\)
−0.920124 + 0.391628i \(0.871912\pi\)
\(402\) −5.73350 + 5.73350i −0.285961 + 0.285961i
\(403\) 1.00000 + 5.00000i 0.0498135 + 0.249068i
\(404\) 19.2665i 0.958544i
\(405\) 11.9248 13.1834i 0.592549 0.655087i
\(406\) −18.9499 −0.940466
\(407\) −9.94987 + 9.94987i −0.493197 + 0.493197i
\(408\) 7.31662i 0.362227i
\(409\) −23.9499 23.9499i −1.18425 1.18425i −0.978634 0.205611i \(-0.934082\pi\)
−0.205611 0.978634i \(-0.565918\pi\)
\(410\) −1.00000 19.9499i −0.0493865 0.985254i
\(411\) −6.58312 6.58312i −0.324722 0.324722i
\(412\) 7.94987 + 7.94987i 0.391662 + 0.391662i
\(413\) −0.949874 0.949874i −0.0467403 0.0467403i
\(414\) 1.05013 1.05013i 0.0516109 0.0516109i
\(415\) −10.4749 9.47494i −0.514194 0.465106i
\(416\) 2.00000 3.00000i 0.0980581 0.147087i
\(417\) 18.4749 + 18.4749i 0.904722 + 0.904722i
\(418\) 13.2665i 0.648886i
\(419\) 8.68338i 0.424211i 0.977247 + 0.212105i \(0.0680320\pi\)
−0.977247 + 0.212105i \(0.931968\pi\)
\(420\) −10.9749 + 0.550126i −0.535522 + 0.0268434i
\(421\) −2.47494 + 2.47494i −0.120621 + 0.120621i −0.764841 0.644220i \(-0.777182\pi\)
0.644220 + 0.764841i \(0.277182\pi\)
\(422\) 19.9499 0.971145
\(423\) 2.94987 0.143428
\(424\) −9.63325 + 9.63325i −0.467832 + 0.467832i
\(425\) −17.2916 14.1332i −0.838764 0.685563i
\(426\) 6.58312i 0.318953i
\(427\) 6.00000i 0.290360i
\(428\) −9.63325 9.63325i −0.465641 0.465641i
\(429\) 15.3668 23.0501i 0.741914 1.11287i
\(430\) 7.81662 0.391813i 0.376951 0.0188949i
\(431\) 12.1583 12.1583i 0.585645 0.585645i −0.350804 0.936449i \(-0.614092\pi\)
0.936449 + 0.350804i \(0.114092\pi\)
\(432\) −3.84169 3.84169i −0.184833 0.184833i
\(433\) 12.5251 + 12.5251i 0.601916 + 0.601916i 0.940821 0.338905i \(-0.110056\pi\)
−0.338905 + 0.940821i \(0.610056\pi\)
\(434\) −3.00000 3.00000i −0.144005 0.144005i
\(435\) 23.1082 1.15831i 1.10795 0.0555368i
\(436\) 1.47494 + 1.47494i 0.0706367 + 0.0706367i
\(437\) 13.2665i 0.634623i
\(438\) −4.63325 + 4.63325i −0.221385 + 0.221385i
\(439\) 33.8997 1.61795 0.808973 0.587845i \(-0.200024\pi\)
0.808973 + 0.587845i \(0.200024\pi\)
\(440\) −10.4749 + 0.525063i −0.499373 + 0.0250314i
\(441\) 0.633250i 0.0301547i
\(442\) −3.15831 15.7916i −0.150226 0.751128i
\(443\) 20.0581 20.0581i 0.952987 0.952987i −0.0459562 0.998943i \(-0.514633\pi\)
0.998943 + 0.0459562i \(0.0146335\pi\)
\(444\) −3.47494 3.47494i −0.164913 0.164913i
\(445\) 0.0501256 + 1.00000i 0.00237618 + 0.0474045i
\(446\) 15.9499i 0.755248i
\(447\) −35.4829 −1.67828
\(448\) 3.00000i 0.141737i
\(449\) 21.6332 21.6332i 1.02094 1.02094i 0.0211601 0.999776i \(-0.493264\pi\)
0.999776 0.0211601i \(-0.00673596\pi\)
\(450\) −1.57519 + 0.158312i −0.0742551 + 0.00746292i
\(451\) −41.8997 −1.97298
\(452\) 2.68338 2.68338i 0.126215 0.126215i
\(453\) −10.3668 −0.487072
\(454\) 18.0000 0.844782
\(455\) −23.4499 + 5.92481i −1.09935 + 0.277759i
\(456\) −4.63325 −0.216972
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) −3.52506 + 3.52506i −0.164715 + 0.164715i
\(459\) −24.2665 −1.13266
\(460\) 10.4749 0.525063i 0.488396 0.0244812i
\(461\) 4.10819 4.10819i 0.191337 0.191337i −0.604936 0.796274i \(-0.706801\pi\)
0.796274 + 0.604936i \(0.206801\pi\)
\(462\) 23.0501i 1.07239i
\(463\) 9.89975 0.460080 0.230040 0.973181i \(-0.426114\pi\)
0.230040 + 0.973181i \(0.426114\pi\)
\(464\) 6.31662i 0.293242i
\(465\) 3.84169 + 3.47494i 0.178154 + 0.161146i
\(466\) −6.79156 6.79156i −0.314613 0.314613i
\(467\) −8.36675 + 8.36675i −0.387167 + 0.387167i −0.873676 0.486509i \(-0.838270\pi\)
0.486509 + 0.873676i \(0.338270\pi\)
\(468\) −0.949874 0.633250i −0.0439080 0.0292720i
\(469\) 14.8496i 0.685692i
\(470\) 15.4499 + 13.9749i 0.712650 + 0.644616i
\(471\) −23.1662 −1.06744
\(472\) 0.316625 0.316625i 0.0145738 0.0145738i
\(473\) 16.4169i 0.754849i
\(474\) 15.0000 + 15.0000i 0.688973 + 0.688973i
\(475\) −8.94987 + 10.9499i −0.410648 + 0.502415i
\(476\) 9.47494 + 9.47494i 0.434283 + 0.434283i
\(477\) 3.05013 + 3.05013i 0.139656 + 0.139656i
\(478\) −11.8417 11.8417i −0.541626 0.541626i
\(479\) 3.15831 3.15831i 0.144307 0.144307i −0.631262 0.775569i \(-0.717463\pi\)
0.775569 + 0.631262i \(0.217463\pi\)
\(480\) −0.183375 3.65831i −0.00836989 0.166978i
\(481\) −9.00000 6.00000i −0.410365 0.273576i
\(482\) −16.0000 16.0000i −0.728780 0.728780i
\(483\) 23.0501i 1.04882i
\(484\) 11.0000i 0.500000i
\(485\) 13.4248 14.8417i 0.609589 0.673926i
\(486\) −2.31662 + 2.31662i −0.105084 + 0.105084i
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −3.41688 + 3.41688i −0.154516 + 0.154516i
\(490\) 3.00000 3.31662i 0.135526 0.149830i
\(491\) 32.6834i 1.47498i 0.675358 + 0.737490i \(0.263989\pi\)
−0.675358 + 0.737490i \(0.736011\pi\)
\(492\) 14.6332i 0.659718i
\(493\) −19.9499 19.9499i −0.898497 0.898497i
\(494\) −10.0000 + 2.00000i −0.449921 + 0.0899843i
\(495\) 0.166248 + 3.31662i 0.00747229 + 0.149071i
\(496\) 1.00000 1.00000i 0.0449013 0.0449013i
\(497\) −8.52506 8.52506i −0.382401 0.382401i
\(498\) −7.31662 7.31662i −0.327866 0.327866i
\(499\) −8.94987 8.94987i −0.400651 0.400651i 0.477811 0.878463i \(-0.341430\pi\)
−0.878463 + 0.477811i \(0.841430\pi\)
\(500\) −9.00000 6.63325i −0.402492 0.296648i
\(501\) −14.6332 14.6332i −0.653765 0.653765i
\(502\) 19.2665i 0.859906i
\(503\) 1.58312 1.58312i 0.0705880 0.0705880i −0.670931 0.741519i \(-0.734106\pi\)
0.741519 + 0.670931i \(0.234106\pi\)
\(504\) 0.949874 0.0423108
\(505\) −31.9499 28.8997i −1.42175 1.28602i
\(506\) 22.0000i 0.978019i
\(507\) 19.6913 + 8.10819i 0.874522 + 0.360097i
\(508\) 7.00000 7.00000i 0.310575 0.310575i
\(509\) 15.3166 + 15.3166i 0.678897 + 0.678897i 0.959751 0.280853i \(-0.0906174\pi\)
−0.280853 + 0.959751i \(0.590617\pi\)
\(510\) −12.1332 10.9749i −0.537269 0.485978i
\(511\) 12.0000i 0.530849i
\(512\) −1.00000 −0.0441942
\(513\) 15.3668i 0.678459i
\(514\) 11.8417 11.8417i 0.522314 0.522314i
\(515\) 25.1082 1.25856i 1.10640 0.0554589i
\(516\) 5.73350 0.252403
\(517\) 30.8997 30.8997i 1.35897 1.35897i
\(518\) 9.00000 0.395437
\(519\) −7.68338 −0.337263
\(520\) −1.97494 7.81662i −0.0866067 0.342782i
\(521\) 10.8997 0.477527 0.238763 0.971078i \(-0.423258\pi\)
0.238763 + 0.971078i \(0.423258\pi\)
\(522\) −2.00000 −0.0875376
\(523\) −5.00000 + 5.00000i −0.218635 + 0.218635i −0.807923 0.589288i \(-0.799408\pi\)
0.589288 + 0.807923i \(0.299408\pi\)
\(524\) −3.00000 −0.131056
\(525\) −15.5501 + 19.0251i −0.678663 + 0.830322i
\(526\) 12.3166 12.3166i 0.537030 0.537030i
\(527\) 6.31662i 0.275156i
\(528\) −7.68338 −0.334376
\(529\) 1.00000i 0.0434783i
\(530\) 1.52506 + 30.4248i 0.0662445 + 1.32157i
\(531\) −0.100251 0.100251i −0.00435053 0.00435053i
\(532\) 6.00000 6.00000i 0.260133 0.260133i
\(533\) −6.31662 31.5831i −0.273603 1.36802i
\(534\) 0.733501i 0.0317417i
\(535\) −30.4248 + 1.52506i −1.31538 + 0.0659342i
\(536\) 4.94987 0.213802
\(537\) 17.3747 17.3747i 0.749773 0.749773i
\(538\) 13.2665i 0.571959i
\(539\) −6.63325 6.63325i −0.285714 0.285714i
\(540\) −12.1332 + 0.608187i −0.522132 + 0.0261722i
\(541\) 4.47494 + 4.47494i 0.192393 + 0.192393i 0.796729 0.604337i \(-0.206562\pi\)
−0.604337 + 0.796729i \(0.706562\pi\)
\(542\) 10.5251 + 10.5251i 0.452090 + 0.452090i
\(543\) 8.05013 + 8.05013i 0.345464 + 0.345464i
\(544\) −3.15831 + 3.15831i −0.135412 + 0.135412i
\(545\) 4.65831 0.233501i 0.199540 0.0100021i
\(546\) −17.3747 + 3.47494i −0.743568 + 0.148714i
\(547\) 21.5251 + 21.5251i 0.920345 + 0.920345i 0.997054 0.0767083i \(-0.0244410\pi\)
−0.0767083 + 0.997054i \(0.524441\pi\)
\(548\) 5.68338i 0.242782i
\(549\) 0.633250i 0.0270264i
\(550\) −14.8417 + 18.1583i −0.632852 + 0.774273i
\(551\) −12.6332 + 12.6332i −0.538195 + 0.538195i
\(552\) 7.68338 0.327026
\(553\) −38.8496 −1.65205
\(554\) 21.8997 21.8997i 0.930431 0.930431i
\(555\) −10.9749 + 0.550126i −0.465860 + 0.0233515i
\(556\) 15.9499i 0.676425i
\(557\) 4.58312i 0.194193i 0.995275 + 0.0970966i \(0.0309556\pi\)
−0.995275 + 0.0970966i \(0.969044\pi\)
\(558\) −0.316625 0.316625i −0.0134038 0.0134038i
\(559\) 12.3747 2.47494i 0.523393 0.104679i
\(560\) 4.97494 + 4.50000i 0.210229 + 0.190160i
\(561\) −24.2665 + 24.2665i −1.02453 + 1.02453i
\(562\) 11.6834 + 11.6834i 0.492833 + 0.492833i
\(563\) 6.79156 + 6.79156i 0.286230 + 0.286230i 0.835588 0.549357i \(-0.185127\pi\)
−0.549357 + 0.835588i \(0.685127\pi\)
\(564\) 10.7916 + 10.7916i 0.454407 + 0.454407i
\(565\) −0.424812 8.47494i −0.0178720 0.356543i
\(566\) −7.94987 7.94987i −0.334158 0.334158i
\(567\) 23.8496i 1.00159i
\(568\) 2.84169 2.84169i 0.119235 0.119235i
\(569\) −42.7995 −1.79425 −0.897124 0.441779i \(-0.854348\pi\)
−0.897124 + 0.441779i \(0.854348\pi\)
\(570\) −6.94987 + 7.68338i −0.291098 + 0.321821i
\(571\) 28.8997i 1.20942i 0.796447 + 0.604708i \(0.206710\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(572\) −16.5831 + 3.31662i −0.693375 + 0.138675i
\(573\) −5.84962 + 5.84962i −0.244372 + 0.244372i
\(574\) 18.9499 + 18.9499i 0.790952 + 0.790952i
\(575\) 14.8417 18.1583i 0.618941 0.757254i
\(576\) 0.316625i 0.0131927i
\(577\) −41.8997 −1.74431 −0.872155 0.489230i \(-0.837278\pi\)
−0.872155 + 0.489230i \(0.837278\pi\)
\(578\) 2.94987i 0.122699i
\(579\) 12.6834 12.6834i 0.527103 0.527103i
\(580\) −10.4749 9.47494i −0.434948 0.393425i
\(581\) 18.9499 0.786173
\(582\) 10.3668 10.3668i 0.429716 0.429716i
\(583\) 63.8997 2.64646
\(584\) 4.00000 0.165521
\(585\) −2.47494 + 0.625314i −0.102326 + 0.0258536i
\(586\) 22.8997 0.945980
\(587\) −24.9499 −1.02979 −0.514896 0.857253i \(-0.672169\pi\)
−0.514896 + 0.857253i \(0.672169\pi\)
\(588\) 2.31662 2.31662i 0.0955360 0.0955360i
\(589\) −4.00000 −0.164817
\(590\) −0.0501256 1.00000i −0.00206364 0.0411693i
\(591\) −4.57519 + 4.57519i −0.188198 + 0.188198i
\(592\) 3.00000i 0.123299i
\(593\) 12.9499 0.531788 0.265894 0.964002i \(-0.414333\pi\)
0.265894 + 0.964002i \(0.414333\pi\)
\(594\) 25.4829i 1.04557i
\(595\) 29.9248 1.50000i 1.22680 0.0614940i
\(596\) 15.3166 + 15.3166i 0.627393 + 0.627393i
\(597\) 19.6332 19.6332i 0.803535 0.803535i
\(598\) 16.5831 3.31662i 0.678134 0.135627i
\(599\) 13.2665i 0.542054i −0.962572 0.271027i \(-0.912637\pi\)
0.962572 0.271027i \(-0.0873633\pi\)
\(600\) −6.34169 5.18338i −0.258898 0.211610i
\(601\) −6.05013 −0.246790 −0.123395 0.992358i \(-0.539378\pi\)
−0.123395 + 0.992358i \(0.539378\pi\)
\(602\) −7.42481 + 7.42481i −0.302613 + 0.302613i
\(603\) 1.56725i 0.0638235i
\(604\) 4.47494 + 4.47494i 0.182083 + 0.182083i
\(605\) 18.2414 + 16.5000i 0.741620 + 0.670820i
\(606\) −22.3166 22.3166i −0.906551 0.906551i
\(607\) 3.05013 + 3.05013i 0.123801 + 0.123801i 0.766293 0.642492i \(-0.222099\pi\)
−0.642492 + 0.766293i \(0.722099\pi\)
\(608\) 2.00000 + 2.00000i 0.0811107 + 0.0811107i
\(609\) −21.9499 + 21.9499i −0.889454 + 0.889454i
\(610\) −3.00000 + 3.31662i −0.121466 + 0.134286i
\(611\) 27.9499 + 18.6332i 1.13073 + 0.753821i
\(612\) 1.00000 + 1.00000i 0.0404226 + 0.0404226i
\(613\) 24.0000i 0.969351i −0.874694 0.484675i \(-0.838938\pi\)
0.874694 0.484675i \(-0.161062\pi\)
\(614\) 25.8997i 1.04523i
\(615\) −24.2665 21.9499i −0.978520 0.885104i
\(616\) 9.94987 9.94987i 0.400892 0.400892i
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 18.4169 0.740835
\(619\) −21.8997 + 21.8997i −0.880225 + 0.880225i −0.993557 0.113332i \(-0.963848\pi\)
0.113332 + 0.993557i \(0.463848\pi\)
\(620\) −0.158312 3.15831i −0.00635798 0.126841i
\(621\) 25.4829i 1.02259i
\(622\) 19.2665i 0.772516i
\(623\) −0.949874 0.949874i −0.0380559 0.0380559i
\(624\) −1.15831 5.79156i −0.0463696 0.231848i
\(625\) −24.5000 + 4.97494i −0.980000 + 0.198997i
\(626\) 15.4248 15.4248i 0.616499 0.616499i
\(627\) 15.3668 + 15.3668i 0.613689 + 0.613689i
\(628\) 10.0000 + 10.0000i 0.399043 + 0.399043i
\(629\) 9.47494 + 9.47494i 0.377790 + 0.377790i
\(630\) 1.42481 1.57519i 0.0567659 0.0627570i
\(631\) 4.47494 + 4.47494i 0.178144 + 0.178144i 0.790546 0.612402i \(-0.209797\pi\)
−0.612402 + 0.790546i \(0.709797\pi\)
\(632\) 12.9499i 0.515118i
\(633\) 23.1082 23.1082i 0.918468 0.918468i
\(634\) −12.0000 −0.476581
\(635\) −1.10819 22.1082i −0.0439771 0.877337i
\(636\) 22.3166i 0.884912i
\(637\) 4.00000 6.00000i 0.158486 0.237729i
\(638\) −20.9499 + 20.9499i −0.829413 + 0.829413i
\(639\) −0.899749 0.899749i −0.0355935 0.0355935i
\(640\) −1.50000 + 1.65831i −0.0592927 + 0.0655506i
\(641\) 5.36675i 0.211974i −0.994368 0.105987i \(-0.966200\pi\)
0.994368 0.105987i \(-0.0338002\pi\)
\(642\) −22.3166 −0.880767
\(643\) 12.9499i 0.510693i 0.966850 + 0.255347i \(0.0821896\pi\)
−0.966850 + 0.255347i \(0.917810\pi\)
\(644\) −9.94987 + 9.94987i −0.392080 + 0.392080i
\(645\) 8.60025 9.50794i 0.338635 0.374375i
\(646\) 12.6332 0.497049
\(647\) 6.63325 6.63325i 0.260780 0.260780i −0.564591 0.825371i \(-0.690966\pi\)
0.825371 + 0.564591i \(0.190966\pi\)
\(648\) −7.94987 −0.312301
\(649\) −2.10025 −0.0824421
\(650\) −15.9248 8.44987i −0.624622 0.331431i
\(651\) −6.94987 −0.272387
\(652\) 2.94987 0.115526
\(653\) 31.5831 31.5831i 1.23594 1.23594i 0.274299 0.961645i \(-0.411554\pi\)
0.961645 0.274299i \(-0.0884457\pi\)
\(654\) 3.41688 0.133610
\(655\) −4.50000 + 4.97494i −0.175830 + 0.194387i
\(656\) −6.31662 + 6.31662i −0.246623 + 0.246623i
\(657\) 1.26650i 0.0494108i
\(658\) −27.9499 −1.08960
\(659\) 0.633250i 0.0246679i 0.999924 + 0.0123340i \(0.00392612\pi\)
−0.999924 + 0.0123340i \(0.996074\pi\)
\(660\) −11.5251 + 12.7414i −0.448612 + 0.495960i
\(661\) −12.8997 12.8997i −0.501742 0.501742i 0.410237 0.911979i \(-0.365446\pi\)
−0.911979 + 0.410237i \(0.865446\pi\)
\(662\) −1.00000 + 1.00000i −0.0388661 + 0.0388661i
\(663\) −21.9499 14.6332i −0.852462 0.568308i
\(664\) 6.31662i 0.245133i
\(665\) −0.949874 18.9499i −0.0368345 0.734845i
\(666\) 0.949874 0.0368069
\(667\) 20.9499 20.9499i 0.811182 0.811182i
\(668\) 12.6332i 0.488795i
\(669\) 18.4749 + 18.4749i 0.714282 + 0.714282i
\(670\) 7.42481 8.20844i 0.286845 0.317120i
\(671\) 6.63325 + 6.63325i 0.256074 + 0.256074i
\(672\) 3.47494 + 3.47494i 0.134049 + 0.134049i
\(673\) 11.4248 + 11.4248i 0.440394 + 0.440394i 0.892144 0.451750i \(-0.149200\pi\)
−0.451750 + 0.892144i \(0.649200\pi\)
\(674\) −3.52506 + 3.52506i −0.135780 + 0.135780i
\(675\) −17.1913 + 21.0330i −0.661694 + 0.809560i
\(676\) −5.00000 12.0000i −0.192308 0.461538i
\(677\) −2.68338 2.68338i −0.103130 0.103130i 0.653659 0.756789i \(-0.273233\pi\)
−0.756789 + 0.653659i \(0.773233\pi\)
\(678\) 6.21637i 0.238738i
\(679\) 26.8496i 1.03039i
\(680\) 0.500000 + 9.97494i 0.0191741 + 0.382521i
\(681\) 20.8496 20.8496i 0.798959 0.798959i
\(682\) −6.63325 −0.254000
\(683\) −30.9499 −1.18426 −0.592132 0.805841i \(-0.701714\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(684\) 0.633250 0.633250i 0.0242129 0.0242129i
\(685\) 9.42481 + 8.52506i 0.360104 + 0.325726i
\(686\) 15.0000i 0.572703i
\(687\) 8.16625i 0.311562i
\(688\) −2.47494 2.47494i −0.0943561 0.0943561i
\(689\) 9.63325 + 48.1662i 0.366998 + 1.83499i
\(690\) 11.5251 12.7414i 0.438752 0.485058i
\(691\) −14.0000 + 14.0000i −0.532585 + 0.532585i −0.921341 0.388756i \(-0.872905\pi\)
0.388756 + 0.921341i \(0.372905\pi\)
\(692\) 3.31662 + 3.31662i 0.126079 + 0.126079i
\(693\) −3.15038 3.15038i −0.119673 0.119673i
\(694\) −0.791562 0.791562i −0.0300473 0.0300473i
\(695\) −26.4499 23.9248i −1.00330 0.907520i
\(696\) −7.31662 7.31662i −0.277336 0.277336i
\(697\) 39.8997i 1.51131i
\(698\) 18.4248 18.4248i 0.697389 0.697389i
\(699\) −15.7335 −0.595096
\(700\) 14.9248 1.50000i 0.564105 0.0566947i
\(701\) 45.4829i 1.71786i 0.512089 + 0.858932i \(0.328872\pi\)
−0.512089 + 0.858932i \(0.671128\pi\)
\(702\) −19.2084 + 3.84169i −0.724976 + 0.144995i
\(703\) 6.00000 6.00000i 0.226294 0.226294i
\(704\) 3.31662 + 3.31662i 0.125000 + 0.125000i
\(705\) 34.0831 1.70844i 1.28364 0.0643435i
\(706\) 7.58312i 0.285395i
\(707\) 57.7995 2.17377
\(708\) 0.733501i 0.0275666i
\(709\) −29.9499 + 29.9499i −1.12479 + 1.12479i −0.133780 + 0.991011i \(0.542712\pi\)
−0.991011 + 0.133780i \(0.957288\pi\)
\(710\) −0.449874 8.97494i −0.0168835 0.336823i
\(711\) −4.10025 −0.153771
\(712\) 0.316625 0.316625i 0.0118660 0.0118660i
\(713\) 6.63325 0.248417
\(714\) 21.9499 0.821453
\(715\) −19.3747 + 32.4749i −0.724572 + 1.21449i
\(716\) −15.0000 −0.560576
\(717\) −27.4327 −1.02449
\(718\) 22.2665 22.2665i 0.830978 0.830978i
\(719\) 6.94987 0.259187 0.129593 0.991567i \(-0.458633\pi\)
0.129593 + 0.991567i \(0.458633\pi\)
\(720\) 0.525063 + 0.474937i 0.0195679 + 0.0176999i
\(721\) −23.8496 + 23.8496i −0.888206 + 0.888206i
\(722\) 11.0000i 0.409378i
\(723\) −37.0660 −1.37850
\(724\) 6.94987i 0.258290i
\(725\) −31.4248 + 3.15831i −1.16709 + 0.117297i
\(726\) 12.7414 + 12.7414i 0.472879 + 0.472879i
\(727\) 13.9499 13.9499i 0.517372 0.517372i −0.399403 0.916775i \(-0.630783\pi\)
0.916775 + 0.399403i \(0.130783\pi\)
\(728\) 9.00000 + 6.00000i 0.333562 + 0.222375i
\(729\) 29.2164i 1.08209i
\(730\) 6.00000 6.63325i 0.222070 0.245508i
\(731\) −15.6332 −0.578217
\(732\) −2.31662 + 2.31662i −0.0856249 + 0.0856249i
\(733\) 36.7995i 1.35922i −0.733573 0.679610i \(-0.762149\pi\)
0.733573 0.679610i \(-0.237851\pi\)
\(734\) −1.94987 1.94987i −0.0719712 0.0719712i
\(735\) −0.366750 7.31662i −0.0135278 0.269878i
\(736\) −3.31662 3.31662i −0.122252 0.122252i
\(737\) −16.4169 16.4169i −0.604723 0.604723i
\(738\) 2.00000 + 2.00000i 0.0736210 + 0.0736210i
\(739\) 35.8997 35.8997i 1.32059 1.32059i 0.407299 0.913295i \(-0.366471\pi\)
0.913295 0.407299i \(-0.133529\pi\)
\(740\) 4.97494 + 4.50000i 0.182882 + 0.165423i
\(741\) −9.26650 + 13.8997i −0.340413 + 0.510620i
\(742\) −28.8997 28.8997i −1.06094 1.06094i
\(743\) 15.6332i 0.573528i 0.958001 + 0.286764i \(0.0925796\pi\)
−0.958001 + 0.286764i \(0.907420\pi\)
\(744\) 2.31662i 0.0849316i
\(745\) 48.3747 2.42481i 1.77231 0.0888382i
\(746\) 20.0000 20.0000i 0.732252 0.732252i
\(747\) 2.00000 0.0731762
\(748\) 20.9499 0.766003
\(749\) 28.8997 28.8997i 1.05597 1.05597i
\(750\) −18.1082 + 2.74144i −0.661217 + 0.100103i
\(751\) 13.8997i 0.507209i 0.967308 + 0.253605i \(0.0816162\pi\)
−0.967308 + 0.253605i \(0.918384\pi\)
\(752\) 9.31662i 0.339742i
\(753\) 22.3166 + 22.3166i 0.813263 + 0.813263i
\(754\) −18.9499 12.6332i −0.690114 0.460076i
\(755\) 14.1332 0.708438i 0.514362 0.0257827i
\(756\) 11.5251 11.5251i 0.419162 0.419162i
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) −13.0000 13.0000i −0.472181 0.472181i
\(759\) −25.4829 25.4829i −0.924970 0.924970i
\(760\) 6.31662 0.316625i 0.229128 0.0114852i
\(761\) −25.5831 25.5831i −0.927388 0.927388i 0.0701490 0.997537i \(-0.477653\pi\)
−0.997537 + 0.0701490i \(0.977653\pi\)
\(762\) 16.2164i 0.587457i
\(763\) −4.42481 + 4.42481i −0.160189 + 0.160189i
\(764\) 5.05013 0.182707
\(765\) 3.15831 0.158312i 0.114189 0.00572380i
\(766\) 14.3668i 0.519092i
\(767\) −0.316625 1.58312i −0.0114327 0.0571633i
\(768\) −1.15831 + 1.15831i −0.0417970 + 0.0417970i
\(769\) 4.94987 + 4.94987i 0.178497 + 0.178497i 0.790700 0.612203i \(-0.209717\pi\)
−0.612203 + 0.790700i \(0.709717\pi\)
\(770\) −1.57519 31.4248i −0.0567659 1.13247i
\(771\) 27.4327i 0.987966i
\(772\) −10.9499 −0.394095
\(773\) 22.5831i 0.812259i 0.913816 + 0.406129i \(0.133122\pi\)
−0.913816 + 0.406129i \(0.866878\pi\)
\(774\) −0.783626 + 0.783626i −0.0281669 + 0.0281669i
\(775\) −5.47494 4.47494i −0.196666 0.160744i
\(776\) −8.94987 −0.321282
\(777\) 10.4248 10.4248i 0.373988 0.373988i
\(778\) −13.8997 −0.498330
\(779\) 25.2665 0.905266
\(780\) −11.3417 6.76650i −0.406098 0.242280i
\(781\) −18.8496 −0.674493
\(782\) −20.9499 −0.749166
\(783\) −24.2665 + 24.2665i −0.867214 + 0.867214i
\(784\) −2.00000 −0.0714286
\(785\) 31.5831 1.58312i 1.12725 0.0565041i
\(786\) −3.47494 + 3.47494i −0.123947 + 0.123947i
\(787\) 25.8997i 0.923226i −0.887081 0.461613i \(-0.847271\pi\)
0.887081 0.461613i \(-0.152729\pi\)
\(788\) 3.94987 0.140708
\(789\) 28.5330i 1.01580i
\(790\) −21.4749 19.4248i −0.764044 0.691104i
\(791\) 8.05013 + 8.05013i 0.286230 + 0.286230i
\(792\) 1.05013 1.05013i 0.0373146 0.0373146i
\(793\) −4.00000 + 6.00000i −0.142044 + 0.213066i
\(794\) 18.0000i 0.638796i
\(795\) 37.0079 + 33.4749i 1.31254 + 1.18723i
\(796\) −16.9499 −0.600772
\(797\) −7.26650 + 7.26650i −0.257393 + 0.257393i −0.823993 0.566600i \(-0.808258\pi\)
0.566600 + 0.823993i \(0.308258\pi\)
\(798\) 13.8997i 0.492046i
\(799\) −29.4248 29.4248i −1.04098 1.04098i
\(800\) 0.500000 + 4.97494i 0.0176777 + 0.175891i
\(801\) −0.100251 0.100251i −0.00354220 0.00354220i
\(802\) 10.5831 + 10.5831i 0.373703 + 0.373703i
\(803\) −13.2665 13.2665i −0.468165 0.468165i
\(804\) 5.73350 5.73350i 0.202205 0.202205i
\(805\) 1.57519 + 31.4248i 0.0555181 + 1.10758i
\(806\) −1.00000 5.00000i −0.0352235 0.176117i
\(807\) 15.3668 + 15.3668i 0.540935 + 0.540935i
\(808\) 19.2665i 0.677793i
\(809\) 14.3668i 0.505108i −0.967583 0.252554i \(-0.918729\pi\)
0.967583 0.252554i \(-0.0812705\pi\)
\(810\) −11.9248 + 13.1834i −0.418995 + 0.463217i
\(811\) 22.9499 22.9499i 0.805879 0.805879i −0.178128 0.984007i \(-0.557004\pi\)
0.984007 + 0.178128i \(0.0570042\pi\)
\(812\) 18.9499 0.665010
\(813\) 24.3826 0.855136
\(814\) 9.94987 9.94987i 0.348743 0.348743i
\(815\) 4.42481 4.89181i 0.154994 0.171353i
\(816\) 7.31662i 0.256133i
\(817\) 9.89975i 0.346348i
\(818\) 23.9499 + 23.9499i 0.837388 + 0.837388i
\(819\) 1.89975 2.84962i 0.0663826 0.0995739i
\(820\) 1.00000 + 19.9499i 0.0349215 + 0.696680i
\(821\) −24.7916 + 24.7916i −0.865231 + 0.865231i −0.991940 0.126709i \(-0.959559\pi\)
0.126709 + 0.991940i \(0.459559\pi\)
\(822\) 6.58312 + 6.58312i 0.229613 + 0.229613i
\(823\) −27.8997 27.8997i −0.972524 0.972524i 0.0271084 0.999632i \(-0.491370\pi\)
−0.999632 + 0.0271084i \(0.991370\pi\)
\(824\) −7.94987 7.94987i −0.276947 0.276947i
\(825\) 3.84169 + 38.2243i 0.133750 + 1.33080i
\(826\) 0.949874 + 0.949874i 0.0330504 + 0.0330504i
\(827\) 31.2665i 1.08724i −0.839331 0.543621i \(-0.817053\pi\)
0.839331 0.543621i \(-0.182947\pi\)
\(828\) −1.05013 + 1.05013i −0.0364944 + 0.0364944i
\(829\) −30.8496 −1.07145 −0.535726 0.844392i \(-0.679962\pi\)
−0.535726 + 0.844392i \(0.679962\pi\)
\(830\) 10.4749 + 9.47494i 0.363590 + 0.328880i
\(831\) 50.7335i 1.75993i
\(832\) −2.00000 + 3.00000i −0.0693375 + 0.104006i
\(833\) −6.31662 + 6.31662i −0.218858 + 0.218858i
\(834\) −18.4749 18.4749i −0.639735 0.639735i
\(835\) 20.9499 + 18.9499i 0.725000 + 0.655787i
\(836\) 13.2665i 0.458831i
\(837\) −7.68338 −0.265576
\(838\) 8.68338i 0.299962i
\(839\) 21.6332 21.6332i 0.746863 0.746863i −0.227026 0.973889i \(-0.572900\pi\)
0.973889 + 0.227026i \(0.0729002\pi\)
\(840\) 10.9749 0.550126i 0.378671 0.0189811i
\(841\) −10.8997 −0.375853
\(842\) 2.47494 2.47494i 0.0852920 0.0852920i
\(843\) 27.0660 0.932202
\(844\) −19.9499 −0.686703
\(845\) −27.3997 9.70844i −0.942580 0.333980i
\(846\) −2.94987 −0.101419
\(847\) −33.0000 −1.13389
\(848\) 9.63325 9.63325i 0.330807 0.330807i
\(849\) −18.4169 −0.632066
\(850\) 17.2916 + 14.1332i 0.593096 + 0.484766i
\(851\) −9.94987 + 9.94987i −0.341077 + 0.341077i
\(852\) 6.58312i 0.225534i
\(853\) 4.05013 0.138674 0.0693368 0.997593i \(-0.477912\pi\)
0.0693368 + 0.997593i \(0.477912\pi\)
\(854\) 6.00000i 0.205316i
\(855\) −0.100251 2.00000i −0.00342852 0.0683986i
\(856\) 9.63325 + 9.63325i 0.329258 + 0.329258i
\(857\) −15.3166 + 15.3166i −0.523206 + 0.523206i −0.918538 0.395332i \(-0.870629\pi\)
0.395332 + 0.918538i \(0.370629\pi\)
\(858\) −15.3668 + 23.0501i −0.524612 + 0.786918i
\(859\) 19.8997i 0.678971i 0.940611 + 0.339485i \(0.110253\pi\)
−0.940611 + 0.339485i \(0.889747\pi\)
\(860\) −7.81662 + 0.391813i −0.266545 + 0.0133607i
\(861\) 43.8997 1.49610
\(862\) −12.1583 + 12.1583i −0.414114 + 0.414114i
\(863\) 22.5831i 0.768738i 0.923179 + 0.384369i \(0.125581\pi\)
−0.923179 + 0.384369i \(0.874419\pi\)
\(864\) 3.84169 + 3.84169i 0.130697 + 0.130697i
\(865\) 10.4749 0.525063i 0.356159 0.0178527i
\(866\) −12.5251 12.5251i −0.425619 0.425619i
\(867\) 3.41688 + 3.41688i 0.116043 + 0.116043i
\(868\) 3.00000 + 3.00000i 0.101827 + 0.101827i
\(869\) −42.9499 + 42.9499i −1.45697 + 1.45697i
\(870\) −23.1082 + 1.15831i −0.783441 + 0.0392705i
\(871\) 9.89975 14.8496i 0.335440 0.503160i
\(872\) −1.47494 1.47494i −0.0499477 0.0499477i
\(873\) 2.83375i 0.0959080i
\(874\) 13.2665i 0.448746i
\(875\) 19.8997 27.0000i 0.672734 0.912767i
\(876\) 4.63325 4.63325i 0.156543 0.156543i
\(877\) −6.05013 −0.204298 −0.102149 0.994769i \(-0.532572\pi\)
−0.102149 + 0.994769i \(0.532572\pi\)
\(878\) −33.8997 −1.14406
\(879\) 26.5251 26.5251i 0.894668 0.894668i
\(880\) 10.4749 0.525063i 0.353110 0.0176999i
\(881\) 16.5831i 0.558700i 0.960189 + 0.279350i \(0.0901189\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0.633250i 0.0213226i
\(883\) −24.4248 24.4248i −0.821960 0.821960i 0.164429 0.986389i \(-0.447422\pi\)
−0.986389 + 0.164429i \(0.947422\pi\)
\(884\) 3.15831 + 15.7916i 0.106226 + 0.531128i
\(885\) −1.21637 1.10025i −0.0408879 0.0369845i
\(886\) −20.0581 + 20.0581i −0.673864 + 0.673864i
\(887\) 5.36675 + 5.36675i 0.180198 + 0.180198i 0.791442 0.611244i \(-0.209331\pi\)
−0.611244 + 0.791442i \(0.709331\pi\)
\(888\) 3.47494 + 3.47494i 0.116611 + 0.116611i
\(889\) 21.0000 + 21.0000i 0.704317 + 0.704317i
\(890\) −0.0501256 1.00000i −0.00168021 0.0335201i
\(891\) 26.3668 + 26.3668i 0.883319 + 0.883319i
\(892\) 15.9499i 0.534041i
\(893\) −18.6332 + 18.6332i −0.623538 + 0.623538i
\(894\) 35.4829 1.18672
\(895\) −22.5000 + 24.8747i −0.752092 + 0.831469i
\(896\) 3.00000i 0.100223i
\(897\) 15.3668 23.0501i 0.513081 0.769621i
\(898\) −21.6332 + 21.6332i −0.721911 + 0.721911i
\(899\) −6.31662 6.31662i −0.210671 0.210671i
\(900\) 1.57519 0.158312i 0.0525063 0.00527708i
\(901\) 60.8496i 2.02719i
\(902\) 41.8997 1.39511
\(903\) 17.2005i 0.572397i
\(904\) −2.68338 + 2.68338i −0.0892477 + 0.0892477i
\(905\) −11.5251 10.4248i −0.383106 0.346532i
\(906\) 10.3668 0.344412
\(907\) −32.3246 + 32.3246i −1.07332 + 1.07332i −0.0762291 + 0.997090i \(0.524288\pi\)
−0.997090 + 0.0762291i \(0.975712\pi\)
\(908\) −18.0000 −0.597351
\(909\) 6.10025 0.202333
\(910\) 23.4499 5.92481i 0.777356 0.196406i
\(911\) −11.0501 −0.366107 −0.183053 0.983103i \(-0.558598\pi\)
−0.183053 + 0.983103i \(0.558598\pi\)
\(912\) 4.63325 0.153422
\(913\) 20.9499 20.9499i 0.693340 0.693340i
\(914\) −2.00000 −0.0661541
\(915\) 0.366750 + 7.31662i 0.0121244 + 0.241880i
\(916\) 3.52506 3.52506i 0.116471 0.116471i
\(917\) 9.00000i 0.297206i
\(918\) 24.2665 0.800914
\(919\) 10.1003i 0.333177i −0.986027 0.166588i \(-0.946725\pi\)
0.986027 0.166588i \(-0.0532751\pi\)
\(920\) −10.4749 + 0.525063i −0.345348 + 0.0173108i
\(921\) 30.0000 + 30.0000i 0.988534 + 0.988534i
\(922\) −4.10819 + 4.10819i −0.135296 + 0.135296i
\(923\) −2.84169 14.2084i −0.0935353 0.467676i
\(924\) 23.0501i 0.758293i
\(925\) 14.9248 1.50000i 0.490725 0.0493197i
\(926\) −9.89975 −0.325326
\(927\) −2.51713 + 2.51713i −0.0826733 + 0.0826733i
\(928\) 6.31662i 0.207353i
\(929\) −13.5831 13.5831i −0.445648 0.445648i 0.448257 0.893905i \(-0.352045\pi\)
−0.893905 + 0.448257i \(0.852045\pi\)
\(930\) −3.84169 3.47494i −0.125974 0.113948i
\(931\) 4.00000 + 4.00000i 0.131095 + 0.131095i
\(932\) 6.79156 + 6.79156i 0.222465 + 0.222465i
\(933\) 22.3166 + 22.3166i 0.730613 + 0.730613i
\(934\) 8.36675 8.36675i 0.273768 0.273768i
\(935\) 31.4248 34.7414i 1.02770 1.13617i
\(936\) 0.949874 + 0.633250i 0.0310476 + 0.0206984i
\(937\) 1.94987 + 1.94987i 0.0636996 + 0.0636996i 0.738239 0.674539i \(-0.235658\pi\)
−0.674539 + 0.738239i \(0.735658\pi\)
\(938\) 14.8496i 0.484857i
\(939\) 35.7335i 1.16612i
\(940\) −15.4499 13.9749i −0.503919 0.455812i
\(941\) −1.74144 + 1.74144i −0.0567692 + 0.0567692i −0.734921 0.678152i \(-0.762781\pi\)
0.678152 + 0.734921i \(0.262781\pi\)
\(942\) 23.1662 0.754797
\(943\) −41.8997 −1.36444
\(944\) −0.316625 + 0.316625i −0.0103053 + 0.0103053i
\(945\) −1.82456 36.3997i −0.0593530 1.18408i
\(946\) 16.4169i 0.533759i
\(947\) 5.68338i 0.184685i 0.995727 + 0.0923424i \(0.0294354\pi\)
−0.995727 + 0.0923424i \(0.970565\pi\)
\(948\) −15.0000 15.0000i −0.487177 0.487177i
\(949\) 8.00000 12.0000i 0.259691 0.389536i
\(950\) 8.94987 10.9499i 0.290372 0.355261i
\(951\) −13.8997 + 13.8997i −0.450730 + 0.450730i
\(952\) −9.47494 9.47494i −0.307084 0.307084i
\(953\) −21.0079 21.0079i −0.680514 0.680514i 0.279602 0.960116i \(-0.409797\pi\)
−0.960116 + 0.279602i \(0.909797\pi\)
\(954\) −3.05013 3.05013i −0.0987515 0.0987515i
\(955\) 7.57519 8.37469i 0.245127 0.270998i
\(956\) 11.8417 + 11.8417i 0.382988 + 0.382988i
\(957\) 48.5330i 1.56885i
\(958\) −3.15831 + 3.15831i −0.102040 + 0.102040i
\(959\) −17.0501 −0.550577
\(960\) 0.183375 + 3.65831i 0.00591841 + 0.118072i
\(961\) 29.0000i 0.935484i
\(962\) 9.00000 + 6.00000i 0.290172 + 0.193448i
\(963\) 3.05013 3.05013i 0.0982889 0.0982889i
\(964\) 16.0000 + 16.0000i 0.515325 + 0.515325i
\(965\) −16.4248 + 18.1583i −0.528733 + 0.584537i
\(966\) 23.0501i 0.741626i
\(967\) −36.0501 −1.15929 −0.579647 0.814868i \(-0.696810\pi\)
−0.579647 + 0.814868i \(0.696810\pi\)
\(968\) 11.0000i 0.353553i
\(969\) 14.6332 14.6332i 0.470088 0.470088i
\(970\) −13.4248 + 14.8417i −0.431045 + 0.476538i
\(971\) 20.0501 0.643439 0.321720 0.946835i \(-0.395739\pi\)
0.321720 + 0.946835i \(0.395739\pi\)
\(972\) 2.31662 2.31662i 0.0743058 0.0743058i
\(973\) 47.8496 1.53399
\(974\) −2.00000 −0.0640841
\(975\) −28.2335 + 8.65831i −0.904196 + 0.277288i
\(976\) 2.00000 0.0640184
\(977\) 35.0501 1.12135 0.560676 0.828035i \(-0.310541\pi\)
0.560676 + 0.828035i \(0.310541\pi\)
\(978\) 3.41688 3.41688i 0.109260 0.109260i
\(979\) −2.10025 −0.0671243
\(980\) −3.00000 + 3.31662i −0.0958315 + 0.105946i
\(981\) −0.467002 + 0.467002i −0.0149102 + 0.0149102i
\(982\) 32.6834i 1.04297i
\(983\) −2.05013 −0.0653889 −0.0326944 0.999465i \(-0.510409\pi\)
−0.0326944 + 0.999465i \(0.510409\pi\)
\(984\) 14.6332i 0.466491i
\(985\) 5.92481 6.55013i 0.188780 0.208704i
\(986\) 19.9499 + 19.9499i 0.635333 + 0.635333i
\(987\) −32.3747 + 32.3747i −1.03050 + 1.03050i
\(988\) 10.0000 2.00000i 0.318142 0.0636285i
\(989\) 16.4169i 0.522026i
\(990\) −0.166248 3.31662i −0.00528371 0.105409i
\(991\) 59.7995 1.89959 0.949797 0.312867i \(-0.101290\pi\)
0.949797 + 0.312867i \(0.101290\pi\)
\(992\) −1.00000 + 1.00000i −0.0317500 + 0.0317500i
\(993\) 2.31662i 0.0735159i
\(994\) 8.52506 + 8.52506i 0.270399 + 0.270399i
\(995\) −25.4248 + 28.1082i −0.806021 + 0.891089i
\(996\) 7.31662 + 7.31662i 0.231836 + 0.231836i
\(997\) 8.89975 + 8.89975i 0.281858 + 0.281858i 0.833850 0.551992i \(-0.186132\pi\)
−0.551992 + 0.833850i \(0.686132\pi\)
\(998\) 8.94987 + 8.94987i 0.283303 + 0.283303i
\(999\) 11.5251 11.5251i 0.364637 0.364637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.g.d.57.1 4
3.2 odd 2 1170.2.m.e.577.2 4
4.3 odd 2 1040.2.bg.k.577.2 4
5.2 odd 4 650.2.j.f.343.2 4
5.3 odd 4 130.2.j.d.83.1 yes 4
5.4 even 2 650.2.g.g.57.2 4
13.8 odd 4 130.2.j.d.47.1 yes 4
15.8 even 4 1170.2.w.e.343.1 4
20.3 even 4 1040.2.cd.i.993.2 4
39.8 even 4 1170.2.w.e.307.1 4
52.47 even 4 1040.2.cd.i.177.2 4
65.8 even 4 inner 130.2.g.d.73.1 yes 4
65.34 odd 4 650.2.j.f.307.2 4
65.47 even 4 650.2.g.g.593.2 4
195.8 odd 4 1170.2.m.e.73.1 4
260.203 odd 4 1040.2.bg.k.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.d.57.1 4 1.1 even 1 trivial
130.2.g.d.73.1 yes 4 65.8 even 4 inner
130.2.j.d.47.1 yes 4 13.8 odd 4
130.2.j.d.83.1 yes 4 5.3 odd 4
650.2.g.g.57.2 4 5.4 even 2
650.2.g.g.593.2 4 65.47 even 4
650.2.j.f.307.2 4 65.34 odd 4
650.2.j.f.343.2 4 5.2 odd 4
1040.2.bg.k.577.2 4 4.3 odd 2
1040.2.bg.k.593.2 4 260.203 odd 4
1040.2.cd.i.177.2 4 52.47 even 4
1040.2.cd.i.993.2 4 20.3 even 4
1170.2.m.e.73.1 4 195.8 odd 4
1170.2.m.e.577.2 4 3.2 odd 2
1170.2.w.e.307.1 4 39.8 even 4
1170.2.w.e.343.1 4 15.8 even 4