gp: [N,k,chi] = [650,2,Mod(307,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.307");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-2,-4,0,-2,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 5 x 2 + 9 x^{4} - 5x^{2} + 9 x 4 − 5 x 2 + 9
x^4 - 5*x^2 + 9
:
β 1 \beta_{1} β 1 = = =
( ν 3 − 2 ν ) / 3 ( \nu^{3} - 2\nu ) / 3 ( ν 3 − 2 ν ) / 3
(v^3 - 2*v) / 3
β 2 \beta_{2} β 2 = = =
ν 2 + ν − 3 \nu^{2} + \nu - 3 ν 2 + ν − 3
v^2 + v - 3
β 3 \beta_{3} β 3 = = =
− ν 2 + ν + 3 -\nu^{2} + \nu + 3 − ν 2 + ν + 3
-v^2 + v + 3
ν \nu ν = = =
( β 3 + β 2 ) / 2 ( \beta_{3} + \beta_{2} ) / 2 ( β 3 + β 2 ) / 2
(b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
( − β 3 + β 2 + 6 ) / 2 ( -\beta_{3} + \beta_{2} + 6 ) / 2 ( − β 3 + β 2 + 6 ) / 2
(-b3 + b2 + 6) / 2
ν 3 \nu^{3} ν 3 = = =
β 3 + β 2 + 3 β 1 \beta_{3} + \beta_{2} + 3\beta_1 β 3 + β 2 + 3 β 1
b3 + b2 + 3*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− β 1 -\beta_{1} − β 1
− β 1 -\beta_{1} − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 2 T 3 3 + 2 T 3 2 − 10 T 3 + 25 T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} - 10T_{3} + 25 T 3 4 + 2 T 3 3 + 2 T 3 2 − 1 0 T 3 + 2 5
T3^4 + 2*T3^3 + 2*T3^2 - 10*T3 + 25
T 7 + 3 T_{7} + 3 T 7 + 3
T7 + 3
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
3 3 3
T 4 + 2 T 3 + ⋯ + 25 T^{4} + 2 T^{3} + \cdots + 25 T 4 + 2 T 3 + ⋯ + 2 5
T^4 + 2*T^3 + 2*T^2 - 10*T + 25
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T + 3 ) 4 (T + 3)^{4} ( T + 3 ) 4
(T + 3)^4
11 11 1 1
T 4 + 484 T^{4} + 484 T 4 + 4 8 4
T^4 + 484
13 13 1 3
( T 2 − 6 T + 13 ) 2 (T^{2} - 6 T + 13)^{2} ( T 2 − 6 T + 1 3 ) 2
(T^2 - 6*T + 13)^2
17 17 1 7
T 4 − 6 T 3 + ⋯ + 1 T^{4} - 6 T^{3} + \cdots + 1 T 4 − 6 T 3 + ⋯ + 1
T^4 - 6*T^3 + 18*T^2 + 6*T + 1
19 19 1 9
( T 2 − 4 T + 8 ) 2 (T^{2} - 4 T + 8)^{2} ( T 2 − 4 T + 8 ) 2
(T^2 - 4*T + 8)^2
23 23 2 3
T 4 + 484 T^{4} + 484 T 4 + 4 8 4
T^4 + 484
29 29 2 9
T 4 + 40 T 2 + 4 T^{4} + 40T^{2} + 4 T 4 + 4 0 T 2 + 4
T^4 + 40*T^2 + 4
31 31 3 1
( T 2 − 2 T + 2 ) 2 (T^{2} - 2 T + 2)^{2} ( T 2 − 2 T + 2 ) 2
(T^2 - 2*T + 2)^2
37 37 3 7
( T + 3 ) 4 (T + 3)^{4} ( T + 3 ) 4
(T + 3)^4
41 41 4 1
T 4 + 12 T 3 + ⋯ + 16 T^{4} + 12 T^{3} + \cdots + 16 T 4 + 1 2 T 3 + ⋯ + 1 6
T^4 + 12*T^3 + 72*T^2 - 48*T + 16
43 43 4 3
T 4 − 10 T 3 + ⋯ + 1369 T^{4} - 10 T^{3} + \cdots + 1369 T 4 − 1 0 T 3 + ⋯ + 1 3 6 9
T^4 - 10*T^3 + 50*T^2 + 370*T + 1369
47 47 4 7
( T 2 − 12 T + 25 ) 2 (T^{2} - 12 T + 25)^{2} ( T 2 − 1 2 T + 2 5 ) 2
(T^2 - 12*T + 25)^2
53 53 5 3
T 4 + 12 T 3 + ⋯ + 4900 T^{4} + 12 T^{3} + \cdots + 4900 T 4 + 1 2 T 3 + ⋯ + 4 9 0 0
T^4 + 12*T^3 + 72*T^2 - 840*T + 4900
59 59 5 9
T 4 + 12 T 3 + ⋯ + 16 T^{4} + 12 T^{3} + \cdots + 16 T 4 + 1 2 T 3 + ⋯ + 1 6
T^4 + 12*T^3 + 72*T^2 - 48*T + 16
61 61 6 1
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
67 67 6 7
T 4 + 248 T 2 + 5476 T^{4} + 248T^{2} + 5476 T 4 + 2 4 8 T 2 + 5 4 7 6
T^4 + 248*T^2 + 5476
71 71 7 1
T 4 + 18 T 3 + ⋯ + 1225 T^{4} + 18 T^{3} + \cdots + 1225 T 4 + 1 8 T 3 + ⋯ + 1 2 2 5
T^4 + 18*T^3 + 162*T^2 + 630*T + 1225
73 73 7 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
79 79 7 9
T 4 + 216 T 2 + 8100 T^{4} + 216T^{2} + 8100 T 4 + 2 1 6 T 2 + 8 1 0 0
T^4 + 216*T^2 + 8100
83 83 8 3
( T 2 + 6 T − 2 ) 2 (T^{2} + 6 T - 2)^{2} ( T 2 + 6 T − 2 ) 2
(T^2 + 6*T - 2)^2
89 89 8 9
T 4 + 12 T 3 + ⋯ + 16 T^{4} + 12 T^{3} + \cdots + 16 T 4 + 1 2 T 3 + ⋯ + 1 6
T^4 + 12*T^3 + 72*T^2 - 48*T + 16
97 97 9 7
T 4 + 200 T 2 + 9604 T^{4} + 200T^{2} + 9604 T 4 + 2 0 0 T 2 + 9 6 0 4
T^4 + 200*T^2 + 9604
show more
show less