Properties

Label 650.2.j.f
Level 650650
Weight 22
Character orbit 650.j
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(307,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.j (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,-4,0,-2,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,11)\Q(i, \sqrt{11})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+9 x^{4} - 5x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2β1)q3q4+(β31)q63q7+β1q8+(β3β2+3β11)q9+(2β2β1+1)q11+(β2+β1)q12++(6β38β1+14)q99+O(q100) q - \beta_1 q^{2} + (\beta_{2} - \beta_1) q^{3} - q^{4} + (\beta_{3} - 1) q^{6} - 3 q^{7} + \beta_1 q^{8} + (\beta_{3} - \beta_{2} + 3 \beta_1 - 1) q^{9} + (2 \beta_{2} - \beta_1 + 1) q^{11} + ( - \beta_{2} + \beta_1) q^{12}+ \cdots + ( - 6 \beta_{3} - 8 \beta_1 + 14) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q34q42q612q7+2q12+12q13+4q16+6q17+12q18+8q19+6q21+2q24+8q26+22q27+12q28+4q31+6q3412q37++44q99+O(q100) 4 q - 2 q^{3} - 4 q^{4} - 2 q^{6} - 12 q^{7} + 2 q^{12} + 12 q^{13} + 4 q^{16} + 6 q^{17} + 12 q^{18} + 8 q^{19} + 6 q^{21} + 2 q^{24} + 8 q^{26} + 22 q^{27} + 12 q^{28} + 4 q^{31} + 6 q^{34} - 12 q^{37}+ \cdots + 44 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x45x2+9 x^{4} - 5x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== (ν32ν)/3 ( \nu^{3} - 2\nu ) / 3 Copy content Toggle raw display
β2\beta_{2}== ν2+ν3 \nu^{2} + \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν2+ν+3 -\nu^{2} + \nu + 3 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+β2+6)/2 ( -\beta_{3} + \beta_{2} + 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+3β1 \beta_{3} + \beta_{2} + 3\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) β1-\beta_{1} β1-\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
−1.65831 0.500000i
1.65831 0.500000i
−1.65831 + 0.500000i
1.65831 + 0.500000i
1.00000i −2.15831 + 2.15831i −1.00000 0 −2.15831 2.15831i −3.00000 1.00000i 6.31662i 0
307.2 1.00000i 1.15831 1.15831i −1.00000 0 1.15831 + 1.15831i −3.00000 1.00000i 0.316625i 0
343.1 1.00000i −2.15831 2.15831i −1.00000 0 −2.15831 + 2.15831i −3.00000 1.00000i 6.31662i 0
343.2 1.00000i 1.15831 + 1.15831i −1.00000 0 1.15831 1.15831i −3.00000 1.00000i 0.316625i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.j.f 4
5.b even 2 1 130.2.j.d yes 4
5.c odd 4 1 130.2.g.d 4
5.c odd 4 1 650.2.g.g 4
13.d odd 4 1 650.2.g.g 4
15.d odd 2 1 1170.2.w.e 4
15.e even 4 1 1170.2.m.e 4
20.d odd 2 1 1040.2.cd.i 4
20.e even 4 1 1040.2.bg.k 4
65.f even 4 1 inner 650.2.j.f 4
65.g odd 4 1 130.2.g.d 4
65.k even 4 1 130.2.j.d yes 4
195.j odd 4 1 1170.2.w.e 4
195.n even 4 1 1170.2.m.e 4
260.s odd 4 1 1040.2.cd.i 4
260.u even 4 1 1040.2.bg.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.g.d 4 5.c odd 4 1
130.2.g.d 4 65.g odd 4 1
130.2.j.d yes 4 5.b even 2 1
130.2.j.d yes 4 65.k even 4 1
650.2.g.g 4 5.c odd 4 1
650.2.g.g 4 13.d odd 4 1
650.2.j.f 4 1.a even 1 1 trivial
650.2.j.f 4 65.f even 4 1 inner
1040.2.bg.k 4 20.e even 4 1
1040.2.bg.k 4 260.u even 4 1
1040.2.cd.i 4 20.d odd 2 1
1040.2.cd.i 4 260.s odd 4 1
1170.2.m.e 4 15.e even 4 1
1170.2.m.e 4 195.n even 4 1
1170.2.w.e 4 15.d odd 2 1
1170.2.w.e 4 195.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T34+2T33+2T3210T3+25 T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} - 10T_{3} + 25 Copy content Toggle raw display
T7+3 T_{7} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4+2T3++25 T^{4} + 2 T^{3} + \cdots + 25 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
1111 T4+484 T^{4} + 484 Copy content Toggle raw display
1313 (T26T+13)2 (T^{2} - 6 T + 13)^{2} Copy content Toggle raw display
1717 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 (T24T+8)2 (T^{2} - 4 T + 8)^{2} Copy content Toggle raw display
2323 T4+484 T^{4} + 484 Copy content Toggle raw display
2929 T4+40T2+4 T^{4} + 40T^{2} + 4 Copy content Toggle raw display
3131 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
3737 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
4141 T4+12T3++16 T^{4} + 12 T^{3} + \cdots + 16 Copy content Toggle raw display
4343 T410T3++1369 T^{4} - 10 T^{3} + \cdots + 1369 Copy content Toggle raw display
4747 (T212T+25)2 (T^{2} - 12 T + 25)^{2} Copy content Toggle raw display
5353 T4+12T3++4900 T^{4} + 12 T^{3} + \cdots + 4900 Copy content Toggle raw display
5959 T4+12T3++16 T^{4} + 12 T^{3} + \cdots + 16 Copy content Toggle raw display
6161 (T2)4 (T - 2)^{4} Copy content Toggle raw display
6767 T4+248T2+5476 T^{4} + 248T^{2} + 5476 Copy content Toggle raw display
7171 T4+18T3++1225 T^{4} + 18 T^{3} + \cdots + 1225 Copy content Toggle raw display
7373 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
7979 T4+216T2+8100 T^{4} + 216T^{2} + 8100 Copy content Toggle raw display
8383 (T2+6T2)2 (T^{2} + 6 T - 2)^{2} Copy content Toggle raw display
8989 T4+12T3++16 T^{4} + 12 T^{3} + \cdots + 16 Copy content Toggle raw display
9797 T4+200T2+9604 T^{4} + 200T^{2} + 9604 Copy content Toggle raw display
show more
show less