L(s) = 1 | − i·2-s + (−2.15 − 2.15i)3-s − 4-s + (−2.15 + 2.15i)6-s − 3·7-s + i·8-s + 6.31i·9-s + (−3.31 − 3.31i)11-s + (2.15 + 2.15i)12-s + (3 + 2i)13-s + 3i·14-s + 16-s + (−0.158 − 0.158i)17-s + 6.31·18-s + (2 + 2i)19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−1.24 − 1.24i)3-s − 0.5·4-s + (−0.881 + 0.881i)6-s − 1.13·7-s + 0.353i·8-s + 2.10i·9-s + (−1.00 − 1.00i)11-s + (0.623 + 0.623i)12-s + (0.832 + 0.554i)13-s + 0.801i·14-s + 0.250·16-s + (−0.0383 − 0.0383i)17-s + 1.48·18-s + (0.458 + 0.458i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.258984 + 0.0338026i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.258984 + 0.0338026i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3 - 2i)T \) |
good | 3 | \( 1 + (2.15 + 2.15i)T + 3iT^{2} \) |
| 7 | \( 1 + 3T + 7T^{2} \) |
| 11 | \( 1 + (3.31 + 3.31i)T + 11iT^{2} \) |
| 17 | \( 1 + (0.158 + 0.158i)T + 17iT^{2} \) |
| 19 | \( 1 + (-2 - 2i)T + 19iT^{2} \) |
| 23 | \( 1 + (3.31 - 3.31i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.316iT - 29T^{2} \) |
| 31 | \( 1 + (-1 + i)T - 31iT^{2} \) |
| 37 | \( 1 + 3T + 37T^{2} \) |
| 41 | \( 1 + (-0.316 + 0.316i)T - 41iT^{2} \) |
| 43 | \( 1 + (-7.47 + 7.47i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.68T + 47T^{2} \) |
| 53 | \( 1 + (-3.63 - 3.63i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.31 - 6.31i)T - 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 14.9iT - 67T^{2} \) |
| 71 | \( 1 + (6.15 - 6.15i)T - 71iT^{2} \) |
| 73 | \( 1 - 4iT - 73T^{2} \) |
| 79 | \( 1 - 6.94iT - 79T^{2} \) |
| 83 | \( 1 - 0.316T + 83T^{2} \) |
| 89 | \( 1 + (6.31 - 6.31i)T - 89iT^{2} \) |
| 97 | \( 1 + 10.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78608884095923555286312630360, −10.08228078010265413158317353150, −8.872797717130488290677626748784, −7.85114919670891280299127499543, −6.92433097535293963292104063782, −5.89813783862023931985044430609, −5.54506486243061686423966593083, −3.86462063301999775614997396571, −2.57639274777543183794242572321, −1.12158650166937016435379320013,
0.19368768241543574856012226815, 3.18004060235087151523835304498, 4.30082328009033471300480176205, 5.11266964402123890919698020234, 5.97085090607775516639289266528, 6.60781118541089183983714097767, 7.76483805899297988098998180419, 9.044609489427900747140167875845, 9.814275537442040830643126475904, 10.35232917002456124354936705563