Properties

Label 650.2.j
Level $650$
Weight $2$
Character orbit 650.j
Rep. character $\chi_{650}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $42$
Newform subspaces $9$
Sturm bound $210$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(210\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(650, [\chi])\).

Total New Old
Modular forms 234 42 192
Cusp forms 186 42 144
Eisenstein series 48 0 48

Trace form

\( 42 q - 42 q^{4} + 24 q^{11} + 14 q^{13} + 42 q^{16} + 2 q^{17} + 26 q^{18} + 16 q^{19} - 8 q^{21} - 24 q^{23} + 12 q^{27} + 8 q^{31} + 26 q^{34} - 32 q^{37} + 14 q^{41} + 12 q^{42} + 24 q^{43} - 24 q^{44}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(650, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
650.2.j.a 650.j 65.f $2$ $5.190$ \(\Q(\sqrt{-1}) \) None 130.2.g.b \(0\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+(i-1)q^{3}-q^{4}+(-i-1)q^{6}+\cdots\)
650.2.j.b 650.j 65.f $2$ $5.190$ \(\Q(\sqrt{-1}) \) None 650.2.g.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}-q^{4}-2 q^{7}+i q^{8}+3 i q^{9}+\cdots\)
650.2.j.c 650.j 65.f $2$ $5.190$ \(\Q(\sqrt{-1}) \) None 650.2.g.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+2 q^{7}-i q^{8}+3 i q^{9}+\cdots\)
650.2.j.d 650.j 65.f $2$ $5.190$ \(\Q(\sqrt{-1}) \) None 130.2.g.c \(0\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+(-i+1)q^{3}-q^{4}+(-i-1)q^{6}+\cdots\)
650.2.j.e 650.j 65.f $2$ $5.190$ \(\Q(\sqrt{-1}) \) None 130.2.g.a \(0\) \(4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+(-2 i+2)q^{3}-q^{4}+(2 i+2)q^{6}+\cdots\)
650.2.j.f 650.j 65.f $4$ $5.190$ \(\Q(i, \sqrt{11})\) None 130.2.g.d \(0\) \(-2\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+(-\beta _{1}+\beta _{2})q^{3}-q^{4}+(-1+\cdots)q^{6}+\cdots\)
650.2.j.g 650.j 65.f $4$ $5.190$ \(\Q(\zeta_{12})\) None 130.2.g.e \(0\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_{2} q^{2}-\beta_1 q^{3}-q^{4}+(\beta_{3}-\beta_{2}+1)q^{6}+\cdots\)
650.2.j.h 650.j 65.f $12$ $5.190$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 650.2.g.h \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}-\beta _{1}q^{3}-q^{4}+\beta _{5}q^{6}-\beta _{10}q^{7}+\cdots\)
650.2.j.i 650.j 65.f $12$ $5.190$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 650.2.g.h \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}-\beta _{5}q^{3}-q^{4}-\beta _{1}q^{6}+\beta _{10}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)