Defining parameters
Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 648.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(648, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 24 | 240 |
Cusp forms | 168 | 24 | 144 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(648, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(648, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(648, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)