Properties

Label 648.2.i
Level 648648
Weight 22
Character orbit 648.i
Rep. character χ648(217,)\chi_{648}(217,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 2424
Newform subspaces 1010
Sturm bound 216216
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 648=2334 648 = 2^{3} \cdot 3^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 648.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 10 10
Sturm bound: 216216
Trace bound: 77
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(648,[χ])M_{2}(648, [\chi]).

Total New Old
Modular forms 264 24 240
Cusp forms 168 24 144
Eisenstein series 96 0 96

Trace form

24q12q1912q25+30q31+36q43+60q55+12q61+6q67+36q7330q796q8560q9124q97+O(q100) 24 q - 12 q^{19} - 12 q^{25} + 30 q^{31} + 36 q^{43} + 60 q^{55} + 12 q^{61} + 6 q^{67} + 36 q^{73} - 30 q^{79} - 6 q^{85} - 60 q^{91} - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(648,[χ])S_{2}^{\mathrm{new}}(648, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
648.2.i.a 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 216.2.a.a 00 00 4-4 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q4ζ6q5+(33ζ6)q7+(4+4ζ6)q11+q-4\zeta_{6}q^{5}+(3-3\zeta_{6})q^{7}+(-4+4\zeta_{6})q^{11}+\cdots
648.2.i.b 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 24.2.a.a 00 00 2-2 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q2ζ6q5+(44ζ6)q11+2ζ6q13+q-2\zeta_{6}q^{5}+(4-4\zeta_{6})q^{11}+2\zeta_{6}q^{13}+\cdots
648.2.i.c 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 216.2.a.b 00 00 1-1 3-3 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qζ6q5+(3+3ζ6)q7+(55ζ6)q11+q-\zeta_{6}q^{5}+(-3+3\zeta_{6})q^{7}+(5-5\zeta_{6})q^{11}+\cdots
648.2.i.d 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 648.2.a.b 00 00 1-1 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qζ6q5+(4+4ζ6)q11+5ζ6q13+q-\zeta_{6}q^{5}+(-4+4\zeta_{6})q^{11}+5\zeta_{6}q^{13}+\cdots
648.2.i.e 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 216.2.a.b 00 00 11 3-3 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q5+(3+3ζ6)q7+(5+5ζ6)q11+q+\zeta_{6}q^{5}+(-3+3\zeta_{6})q^{7}+(-5+5\zeta_{6})q^{11}+\cdots
648.2.i.f 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 648.2.a.b 00 00 11 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q5+(44ζ6)q11+5ζ6q13+q+\zeta_{6}q^{5}+(4-4\zeta_{6})q^{11}+5\zeta_{6}q^{13}+\cdots
648.2.i.g 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 24.2.a.a 00 00 22 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+2ζ6q5+(4+4ζ6)q11+2ζ6q13+q+2\zeta_{6}q^{5}+(-4+4\zeta_{6})q^{11}+2\zeta_{6}q^{13}+\cdots
648.2.i.h 648.i 9.c 22 5.1745.174 Q(3)\Q(\sqrt{-3}) None 216.2.a.a 00 00 44 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+4ζ6q5+(33ζ6)q7+(44ζ6)q11+q+4\zeta_{6}q^{5}+(3-3\zeta_{6})q^{7}+(4-4\zeta_{6})q^{11}+\cdots
648.2.i.i 648.i 9.c 44 5.1745.174 Q(ζ12)\Q(\zeta_{12}) None 648.2.a.e 00 00 4-4 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β22β1)q5+(2β32β2)q7+q+(\beta_{2}-2\beta_1)q^{5}+(2\beta_{3}-2\beta_{2})q^{7}+\cdots
648.2.i.j 648.i 9.c 44 5.1745.174 Q(ζ12)\Q(\zeta_{12}) None 648.2.a.e 00 00 44 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β3β22β1+2)q52β2q7+q+(\beta_{3}-\beta_{2}-2\beta_1+2)q^{5}-2\beta_{2} q^{7}+\cdots

Decomposition of S2old(648,[χ])S_{2}^{\mathrm{old}}(648, [\chi]) into lower level spaces