Properties

Label 72.2.i
Level $72$
Weight $2$
Character orbit 72.i
Rep. character $\chi_{72}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $6$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(72, [\chi])\).

Total New Old
Modular forms 32 6 26
Cusp forms 16 6 10
Eisenstein series 16 0 16

Trace form

\( 6 q + q^{3} + 2 q^{5} - q^{9} - 7 q^{11} - 14 q^{15} - 14 q^{17} + 6 q^{19} - 12 q^{21} - 4 q^{23} - 3 q^{25} + 16 q^{27} + 12 q^{29} - 6 q^{31} + 13 q^{33} + 36 q^{35} + 34 q^{39} + 9 q^{41} - 9 q^{43}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.2.i.a 72.i 9.c $2$ $0.575$ \(\Q(\sqrt{-3}) \) None 72.2.i.a \(0\) \(0\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{5}+3\zeta_{6}q^{7}+\cdots\)
72.2.i.b 72.i 9.c $4$ $0.575$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 72.2.i.b \(0\) \(1\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+(1-2\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)