Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(72, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 6 | 26 |
Cusp forms | 16 | 6 | 10 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
72.2.i.a | $2$ | $0.575$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1\) | \(3\) | \(q+(-1+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{5}+3\zeta_{6}q^{7}+\cdots\) |
72.2.i.b | $4$ | $0.575$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(1\) | \(1\) | \(-3\) | \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+(1-2\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)