Properties

Label 18.2.c
Level $18$
Weight $2$
Character orbit 18.c
Rep. character $\chi_{18}(7,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $2$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 18.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(18, [\chi])\).

Total New Old
Modular forms 10 2 8
Cusp forms 2 2 0
Eisenstein series 8 0 8

Trace form

\( 2 q - q^{2} - 3 q^{3} - q^{4} + 3 q^{6} - 2 q^{7} + 2 q^{8} + 3 q^{9} + 3 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} - 6 q^{17} - 6 q^{18} - 2 q^{19} + 6 q^{21} + 3 q^{22} + 6 q^{23} - 3 q^{24} + 5 q^{25}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(18, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
18.2.c.a 18.c 9.c $2$ $0.144$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(-1\) \(-3\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)