# Properties

 Label 648.2.i.c Level $648$ Weight $2$ Character orbit 648.i Analytic conductor $5.174$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$648 = 2^{3} \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 648.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.17430605098$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 216) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{5} + ( -3 + 3 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q -\zeta_{6} q^{5} + ( -3 + 3 \zeta_{6} ) q^{7} + ( 5 - 5 \zeta_{6} ) q^{11} -4 \zeta_{6} q^{13} + 8 q^{17} + 2 q^{19} + 2 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} + ( 6 - 6 \zeta_{6} ) q^{29} + 7 \zeta_{6} q^{31} + 3 q^{35} -6 q^{37} -6 \zeta_{6} q^{41} + ( 2 - 2 \zeta_{6} ) q^{43} + ( 6 - 6 \zeta_{6} ) q^{47} -2 \zeta_{6} q^{49} -5 q^{53} -5 q^{55} -4 \zeta_{6} q^{59} + ( 8 - 8 \zeta_{6} ) q^{61} + ( -4 + 4 \zeta_{6} ) q^{65} + 10 \zeta_{6} q^{67} + 8 q^{71} + q^{73} + 15 \zeta_{6} q^{77} + ( -16 + 16 \zeta_{6} ) q^{79} + ( -11 + 11 \zeta_{6} ) q^{83} -8 \zeta_{6} q^{85} -6 q^{89} + 12 q^{91} -2 \zeta_{6} q^{95} + ( 1 - \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{5} - 3q^{7} + O(q^{10})$$ $$2q - q^{5} - 3q^{7} + 5q^{11} - 4q^{13} + 16q^{17} + 4q^{19} + 2q^{23} + 4q^{25} + 6q^{29} + 7q^{31} + 6q^{35} - 12q^{37} - 6q^{41} + 2q^{43} + 6q^{47} - 2q^{49} - 10q^{53} - 10q^{55} - 4q^{59} + 8q^{61} - 4q^{65} + 10q^{67} + 16q^{71} + 2q^{73} + 15q^{77} - 16q^{79} - 11q^{83} - 8q^{85} - 12q^{89} + 24q^{91} - 2q^{95} + q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/648\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$487$$ $$569$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
217.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −0.500000 0.866025i 0 −1.50000 + 2.59808i 0 0 0
433.1 0 0 0 −0.500000 + 0.866025i 0 −1.50000 2.59808i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.2.i.c 2
3.b odd 2 1 648.2.i.e 2
4.b odd 2 1 1296.2.i.g 2
9.c even 3 1 216.2.a.c yes 1
9.c even 3 1 inner 648.2.i.c 2
9.d odd 6 1 216.2.a.b 1
9.d odd 6 1 648.2.i.e 2
12.b even 2 1 1296.2.i.l 2
36.f odd 6 1 432.2.a.f 1
36.f odd 6 1 1296.2.i.g 2
36.h even 6 1 432.2.a.c 1
36.h even 6 1 1296.2.i.l 2
45.h odd 6 1 5400.2.a.h 1
45.j even 6 1 5400.2.a.e 1
45.k odd 12 2 5400.2.f.b 2
45.l even 12 2 5400.2.f.z 2
72.j odd 6 1 1728.2.a.s 1
72.l even 6 1 1728.2.a.r 1
72.n even 6 1 1728.2.a.l 1
72.p odd 6 1 1728.2.a.i 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
216.2.a.b 1 9.d odd 6 1
216.2.a.c yes 1 9.c even 3 1
432.2.a.c 1 36.h even 6 1
432.2.a.f 1 36.f odd 6 1
648.2.i.c 2 1.a even 1 1 trivial
648.2.i.c 2 9.c even 3 1 inner
648.2.i.e 2 3.b odd 2 1
648.2.i.e 2 9.d odd 6 1
1296.2.i.g 2 4.b odd 2 1
1296.2.i.g 2 36.f odd 6 1
1296.2.i.l 2 12.b even 2 1
1296.2.i.l 2 36.h even 6 1
1728.2.a.i 1 72.p odd 6 1
1728.2.a.l 1 72.n even 6 1
1728.2.a.r 1 72.l even 6 1
1728.2.a.s 1 72.j odd 6 1
5400.2.a.e 1 45.j even 6 1
5400.2.a.h 1 45.h odd 6 1
5400.2.f.b 2 45.k odd 12 2
5400.2.f.z 2 45.l even 12 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(648, [\chi])$$:

 $$T_{5}^{2} + T_{5} + 1$$ $$T_{7}^{2} + 3 T_{7} + 9$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$9 + 3 T + T^{2}$$
$11$ $$25 - 5 T + T^{2}$$
$13$ $$16 + 4 T + T^{2}$$
$17$ $$( -8 + T )^{2}$$
$19$ $$( -2 + T )^{2}$$
$23$ $$4 - 2 T + T^{2}$$
$29$ $$36 - 6 T + T^{2}$$
$31$ $$49 - 7 T + T^{2}$$
$37$ $$( 6 + T )^{2}$$
$41$ $$36 + 6 T + T^{2}$$
$43$ $$4 - 2 T + T^{2}$$
$47$ $$36 - 6 T + T^{2}$$
$53$ $$( 5 + T )^{2}$$
$59$ $$16 + 4 T + T^{2}$$
$61$ $$64 - 8 T + T^{2}$$
$67$ $$100 - 10 T + T^{2}$$
$71$ $$( -8 + T )^{2}$$
$73$ $$( -1 + T )^{2}$$
$79$ $$256 + 16 T + T^{2}$$
$83$ $$121 + 11 T + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$1 - T + T^{2}$$