Properties

Label 216.2.a.b
Level 216
Weight 2
Character orbit 216.a
Self dual yes
Analytic conductor 1.725
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 216.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.72476868366\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5} + 3q^{7} + O(q^{10}) \) \( q - q^{5} + 3q^{7} + 5q^{11} + 4q^{13} - 8q^{17} + 2q^{19} + 2q^{23} - 4q^{25} + 6q^{29} - 7q^{31} - 3q^{35} - 6q^{37} - 6q^{41} - 2q^{43} + 6q^{47} + 2q^{49} + 5q^{53} - 5q^{55} - 4q^{59} - 8q^{61} - 4q^{65} - 10q^{67} - 8q^{71} + q^{73} + 15q^{77} + 16q^{79} - 11q^{83} + 8q^{85} + 6q^{89} + 12q^{91} - 2q^{95} - q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 3.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 216.2.a.b 1
3.b odd 2 1 216.2.a.c yes 1
4.b odd 2 1 432.2.a.c 1
5.b even 2 1 5400.2.a.h 1
5.c odd 4 2 5400.2.f.z 2
8.b even 2 1 1728.2.a.s 1
8.d odd 2 1 1728.2.a.r 1
9.c even 3 2 648.2.i.e 2
9.d odd 6 2 648.2.i.c 2
12.b even 2 1 432.2.a.f 1
15.d odd 2 1 5400.2.a.e 1
15.e even 4 2 5400.2.f.b 2
24.f even 2 1 1728.2.a.i 1
24.h odd 2 1 1728.2.a.l 1
36.f odd 6 2 1296.2.i.l 2
36.h even 6 2 1296.2.i.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
216.2.a.b 1 1.a even 1 1 trivial
216.2.a.c yes 1 3.b odd 2 1
432.2.a.c 1 4.b odd 2 1
432.2.a.f 1 12.b even 2 1
648.2.i.c 2 9.d odd 6 2
648.2.i.e 2 9.c even 3 2
1296.2.i.g 2 36.h even 6 2
1296.2.i.l 2 36.f odd 6 2
1728.2.a.i 1 24.f even 2 1
1728.2.a.l 1 24.h odd 2 1
1728.2.a.r 1 8.d odd 2 1
1728.2.a.s 1 8.b even 2 1
5400.2.a.e 1 15.d odd 2 1
5400.2.a.h 1 5.b even 2 1
5400.2.f.b 2 15.e even 4 2
5400.2.f.z 2 5.c odd 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(216))\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + T + 5 T^{2} \)
$7$ \( 1 - 3 T + 7 T^{2} \)
$11$ \( 1 - 5 T + 11 T^{2} \)
$13$ \( 1 - 4 T + 13 T^{2} \)
$17$ \( 1 + 8 T + 17 T^{2} \)
$19$ \( 1 - 2 T + 19 T^{2} \)
$23$ \( 1 - 2 T + 23 T^{2} \)
$29$ \( 1 - 6 T + 29 T^{2} \)
$31$ \( 1 + 7 T + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 + 2 T + 43 T^{2} \)
$47$ \( 1 - 6 T + 47 T^{2} \)
$53$ \( 1 - 5 T + 53 T^{2} \)
$59$ \( 1 + 4 T + 59 T^{2} \)
$61$ \( 1 + 8 T + 61 T^{2} \)
$67$ \( 1 + 10 T + 67 T^{2} \)
$71$ \( 1 + 8 T + 71 T^{2} \)
$73$ \( 1 - T + 73 T^{2} \)
$79$ \( 1 - 16 T + 79 T^{2} \)
$83$ \( 1 + 11 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + T + 97 T^{2} \)
show more
show less