Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 8 | 70 |
Cusp forms | 30 | 8 | 22 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
162.2.c.a | $2$ | $1.294$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(-3\) | \(4\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+\cdots\) |
162.2.c.b | $2$ | $1.294$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(3\) | \(1\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+\cdots\) |
162.2.c.c | $2$ | $1.294$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(-3\) | \(1\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\) |
162.2.c.d | $2$ | $1.294$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(3\) | \(4\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+(4+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)