Properties

Label 600.3.p.b.499.8
Level $600$
Weight $3$
Character 600.499
Analytic conductor $16.349$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(499,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.499"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 499.8
Character \(\chi\) \(=\) 600.499
Dual form 600.3.p.b.499.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24999 + 1.56126i) q^{2} -1.73205i q^{3} +(-0.875058 - 3.90311i) q^{4} +(2.70418 + 2.16504i) q^{6} +7.58970 q^{7} +(7.18758 + 3.51265i) q^{8} -3.00000 q^{9} +16.7055 q^{11} +(-6.76039 + 1.51564i) q^{12} +10.7512 q^{13} +(-9.48703 + 11.8495i) q^{14} +(-14.4685 + 6.83090i) q^{16} -8.61276i q^{17} +(3.74997 - 4.68378i) q^{18} -35.6616 q^{19} -13.1457i q^{21} +(-20.8817 + 26.0816i) q^{22} +11.2913 q^{23} +(6.08409 - 12.4493i) q^{24} +(-13.4388 + 16.7854i) q^{26} +5.19615i q^{27} +(-6.64142 - 29.6234i) q^{28} -0.589229i q^{29} +45.0411i q^{31} +(7.42072 - 31.1277i) q^{32} -28.9347i q^{33} +(13.4467 + 10.7658i) q^{34} +(2.62517 + 11.7093i) q^{36} +36.6203 q^{37} +(44.5766 - 55.6770i) q^{38} -18.6216i q^{39} -2.44967 q^{41} +(20.5239 + 16.4320i) q^{42} -7.91524i q^{43} +(-14.6183 - 65.2033i) q^{44} +(-14.1140 + 17.6286i) q^{46} +44.3755 q^{47} +(11.8315 + 25.0603i) q^{48} +8.60348 q^{49} -14.9177 q^{51} +(-9.40790 - 41.9630i) q^{52} +73.3176 q^{53} +(-8.11254 - 6.49513i) q^{54} +(54.5515 + 26.6600i) q^{56} +61.7677i q^{57} +(0.919939 + 0.736530i) q^{58} +89.7651 q^{59} -98.7987i q^{61} +(-70.3209 - 56.3009i) q^{62} -22.7691 q^{63} +(39.3226 + 50.4949i) q^{64} +(45.1746 + 36.1681i) q^{66} -89.5013i q^{67} +(-33.6165 + 7.53666i) q^{68} -19.5571i q^{69} -90.0121i q^{71} +(-21.5627 - 10.5380i) q^{72} +68.0795i q^{73} +(-45.7750 + 57.1738i) q^{74} +(31.2060 + 139.191i) q^{76} +126.790 q^{77} +(29.0731 + 23.2768i) q^{78} -36.2647i q^{79} +9.00000 q^{81} +(3.06206 - 3.82457i) q^{82} -95.5904i q^{83} +(-51.3093 + 11.5033i) q^{84} +(12.3577 + 9.89396i) q^{86} -1.02058 q^{87} +(120.072 + 58.6805i) q^{88} +7.89970 q^{89} +81.5982 q^{91} +(-9.88052 - 44.0711i) q^{92} +78.0135 q^{93} +(-55.4689 + 69.2817i) q^{94} +(-53.9147 - 12.8531i) q^{96} +137.133i q^{97} +(-10.7543 + 13.4323i) q^{98} -50.1164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 28 q^{4} + 12 q^{6} - 96 q^{9} + 128 q^{11} + 40 q^{14} - 28 q^{16} + 64 q^{19} + 108 q^{24} + 72 q^{26} + 144 q^{34} + 84 q^{36} + 200 q^{44} + 424 q^{46} + 160 q^{49} + 192 q^{51} - 36 q^{54} - 232 q^{56}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24999 + 1.56126i −0.624994 + 0.780629i
\(3\) 1.73205i 0.577350i
\(4\) −0.875058 3.90311i −0.218764 0.975778i
\(5\) 0 0
\(6\) 2.70418 + 2.16504i 0.450697 + 0.360841i
\(7\) 7.58970 1.08424 0.542121 0.840300i \(-0.317621\pi\)
0.542121 + 0.840300i \(0.317621\pi\)
\(8\) 7.18758 + 3.51265i 0.898447 + 0.439081i
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 16.7055 1.51868 0.759340 0.650694i \(-0.225522\pi\)
0.759340 + 0.650694i \(0.225522\pi\)
\(12\) −6.76039 + 1.51564i −0.563366 + 0.126304i
\(13\) 10.7512 0.827014 0.413507 0.910501i \(-0.364304\pi\)
0.413507 + 0.910501i \(0.364304\pi\)
\(14\) −9.48703 + 11.8495i −0.677645 + 0.846391i
\(15\) 0 0
\(16\) −14.4685 + 6.83090i −0.904284 + 0.426931i
\(17\) 8.61276i 0.506633i −0.967383 0.253316i \(-0.918479\pi\)
0.967383 0.253316i \(-0.0815214\pi\)
\(18\) 3.74997 4.68378i 0.208331 0.260210i
\(19\) −35.6616 −1.87693 −0.938464 0.345378i \(-0.887751\pi\)
−0.938464 + 0.345378i \(0.887751\pi\)
\(20\) 0 0
\(21\) 13.1457i 0.625988i
\(22\) −20.8817 + 26.0816i −0.949166 + 1.18553i
\(23\) 11.2913 0.490925 0.245462 0.969406i \(-0.421060\pi\)
0.245462 + 0.969406i \(0.421060\pi\)
\(24\) 6.08409 12.4493i 0.253504 0.518719i
\(25\) 0 0
\(26\) −13.4388 + 16.7854i −0.516879 + 0.645591i
\(27\) 5.19615i 0.192450i
\(28\) −6.64142 29.6234i −0.237194 1.05798i
\(29\) 0.589229i 0.0203183i −0.999948 0.0101591i \(-0.996766\pi\)
0.999948 0.0101591i \(-0.00323381\pi\)
\(30\) 0 0
\(31\) 45.0411i 1.45294i 0.687198 + 0.726470i \(0.258840\pi\)
−0.687198 + 0.726470i \(0.741160\pi\)
\(32\) 7.42072 31.1277i 0.231898 0.972740i
\(33\) 28.9347i 0.876810i
\(34\) 13.4467 + 10.7658i 0.395492 + 0.316643i
\(35\) 0 0
\(36\) 2.62517 + 11.7093i 0.0729215 + 0.325259i
\(37\) 36.6203 0.989738 0.494869 0.868968i \(-0.335216\pi\)
0.494869 + 0.868968i \(0.335216\pi\)
\(38\) 44.5766 55.6770i 1.17307 1.46518i
\(39\) 18.6216i 0.477477i
\(40\) 0 0
\(41\) −2.44967 −0.0597481 −0.0298740 0.999554i \(-0.509511\pi\)
−0.0298740 + 0.999554i \(0.509511\pi\)
\(42\) 20.5239 + 16.4320i 0.488664 + 0.391239i
\(43\) 7.91524i 0.184075i −0.995756 0.0920377i \(-0.970662\pi\)
0.995756 0.0920377i \(-0.0293380\pi\)
\(44\) −14.6183 65.2033i −0.332233 1.48189i
\(45\) 0 0
\(46\) −14.1140 + 17.6286i −0.306825 + 0.383230i
\(47\) 44.3755 0.944160 0.472080 0.881556i \(-0.343503\pi\)
0.472080 + 0.881556i \(0.343503\pi\)
\(48\) 11.8315 + 25.0603i 0.246489 + 0.522089i
\(49\) 8.60348 0.175581
\(50\) 0 0
\(51\) −14.9177 −0.292505
\(52\) −9.40790 41.9630i −0.180921 0.806982i
\(53\) 73.3176 1.38335 0.691675 0.722209i \(-0.256873\pi\)
0.691675 + 0.722209i \(0.256873\pi\)
\(54\) −8.11254 6.49513i −0.150232 0.120280i
\(55\) 0 0
\(56\) 54.5515 + 26.6600i 0.974134 + 0.476071i
\(57\) 61.7677i 1.08364i
\(58\) 0.919939 + 0.736530i 0.0158610 + 0.0126988i
\(59\) 89.7651 1.52144 0.760721 0.649079i \(-0.224845\pi\)
0.760721 + 0.649079i \(0.224845\pi\)
\(60\) 0 0
\(61\) 98.7987i 1.61965i −0.586671 0.809826i \(-0.699562\pi\)
0.586671 0.809826i \(-0.300438\pi\)
\(62\) −70.3209 56.3009i −1.13421 0.908079i
\(63\) −22.7691 −0.361414
\(64\) 39.3226 + 50.4949i 0.614415 + 0.788983i
\(65\) 0 0
\(66\) 45.1746 + 36.1681i 0.684464 + 0.548001i
\(67\) 89.5013i 1.33584i −0.744233 0.667920i \(-0.767185\pi\)
0.744233 0.667920i \(-0.232815\pi\)
\(68\) −33.6165 + 7.53666i −0.494361 + 0.110833i
\(69\) 19.5571i 0.283436i
\(70\) 0 0
\(71\) 90.0121i 1.26778i −0.773425 0.633888i \(-0.781458\pi\)
0.773425 0.633888i \(-0.218542\pi\)
\(72\) −21.5627 10.5380i −0.299482 0.146360i
\(73\) 68.0795i 0.932596i 0.884628 + 0.466298i \(0.154412\pi\)
−0.884628 + 0.466298i \(0.845588\pi\)
\(74\) −45.7750 + 57.1738i −0.618580 + 0.772618i
\(75\) 0 0
\(76\) 31.2060 + 139.191i 0.410605 + 1.83146i
\(77\) 126.790 1.64662
\(78\) 29.0731 + 23.2768i 0.372732 + 0.298420i
\(79\) 36.2647i 0.459046i −0.973303 0.229523i \(-0.926283\pi\)
0.973303 0.229523i \(-0.0737167\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 3.06206 3.82457i 0.0373422 0.0466411i
\(83\) 95.5904i 1.15169i −0.817558 0.575846i \(-0.804673\pi\)
0.817558 0.575846i \(-0.195327\pi\)
\(84\) −51.3093 + 11.5033i −0.610825 + 0.136944i
\(85\) 0 0
\(86\) 12.3577 + 9.89396i 0.143695 + 0.115046i
\(87\) −1.02058 −0.0117307
\(88\) 120.072 + 58.6805i 1.36445 + 0.666824i
\(89\) 7.89970 0.0887607 0.0443803 0.999015i \(-0.485869\pi\)
0.0443803 + 0.999015i \(0.485869\pi\)
\(90\) 0 0
\(91\) 81.5982 0.896683
\(92\) −9.88052 44.0711i −0.107397 0.479034i
\(93\) 78.0135 0.838855
\(94\) −55.4689 + 69.2817i −0.590095 + 0.737039i
\(95\) 0 0
\(96\) −53.9147 12.8531i −0.561612 0.133886i
\(97\) 137.133i 1.41375i 0.707341 + 0.706873i \(0.249895\pi\)
−0.707341 + 0.706873i \(0.750105\pi\)
\(98\) −10.7543 + 13.4323i −0.109737 + 0.137064i
\(99\) −50.1164 −0.506227
\(100\) 0 0
\(101\) 92.4295i 0.915144i 0.889173 + 0.457572i \(0.151281\pi\)
−0.889173 + 0.457572i \(0.848719\pi\)
\(102\) 18.6470 23.2904i 0.182814 0.228338i
\(103\) −123.314 −1.19722 −0.598610 0.801040i \(-0.704280\pi\)
−0.598610 + 0.801040i \(0.704280\pi\)
\(104\) 77.2749 + 37.7651i 0.743028 + 0.363126i
\(105\) 0 0
\(106\) −91.6461 + 114.468i −0.864586 + 1.07988i
\(107\) 0.240104i 0.00224396i 0.999999 + 0.00112198i \(0.000357137\pi\)
−0.999999 + 0.00112198i \(0.999643\pi\)
\(108\) 20.2812 4.54693i 0.187789 0.0421012i
\(109\) 117.597i 1.07887i 0.842028 + 0.539435i \(0.181362\pi\)
−0.842028 + 0.539435i \(0.818638\pi\)
\(110\) 0 0
\(111\) 63.4282i 0.571425i
\(112\) −109.812 + 51.8444i −0.980463 + 0.462897i
\(113\) 41.1728i 0.364361i 0.983265 + 0.182180i \(0.0583155\pi\)
−0.983265 + 0.182180i \(0.941685\pi\)
\(114\) −96.4354 77.2090i −0.845925 0.677272i
\(115\) 0 0
\(116\) −2.29983 + 0.515610i −0.0198261 + 0.00444491i
\(117\) −32.2535 −0.275671
\(118\) −112.205 + 140.147i −0.950893 + 1.18768i
\(119\) 65.3682i 0.549313i
\(120\) 0 0
\(121\) 158.073 1.30639
\(122\) 154.250 + 123.497i 1.26435 + 1.01227i
\(123\) 4.24295i 0.0344956i
\(124\) 175.800 39.4136i 1.41775 0.317852i
\(125\) 0 0
\(126\) 28.4611 35.5484i 0.225882 0.282130i
\(127\) 1.15264 0.00907591 0.00453795 0.999990i \(-0.498556\pi\)
0.00453795 + 0.999990i \(0.498556\pi\)
\(128\) −127.988 1.72536i −0.999909 0.0134794i
\(129\) −13.7096 −0.106276
\(130\) 0 0
\(131\) −191.878 −1.46472 −0.732359 0.680919i \(-0.761581\pi\)
−0.732359 + 0.680919i \(0.761581\pi\)
\(132\) −112.935 + 25.3196i −0.855572 + 0.191815i
\(133\) −270.661 −2.03504
\(134\) 139.735 + 111.876i 1.04280 + 0.834892i
\(135\) 0 0
\(136\) 30.2536 61.9049i 0.222453 0.455183i
\(137\) 17.0127i 0.124180i −0.998071 0.0620901i \(-0.980223\pi\)
0.998071 0.0620901i \(-0.0197766\pi\)
\(138\) 30.5336 + 24.4461i 0.221258 + 0.177146i
\(139\) 176.378 1.26890 0.634452 0.772963i \(-0.281226\pi\)
0.634452 + 0.772963i \(0.281226\pi\)
\(140\) 0 0
\(141\) 76.8607i 0.545111i
\(142\) 140.532 + 112.514i 0.989663 + 0.792353i
\(143\) 179.604 1.25597
\(144\) 43.4056 20.4927i 0.301428 0.142310i
\(145\) 0 0
\(146\) −106.290 85.0986i −0.728011 0.582867i
\(147\) 14.9017i 0.101372i
\(148\) −32.0449 142.933i −0.216519 0.965764i
\(149\) 212.046i 1.42313i −0.702620 0.711565i \(-0.747987\pi\)
0.702620 0.711565i \(-0.252013\pi\)
\(150\) 0 0
\(151\) 143.361i 0.949408i −0.880146 0.474704i \(-0.842555\pi\)
0.880146 0.474704i \(-0.157445\pi\)
\(152\) −256.321 125.267i −1.68632 0.824124i
\(153\) 25.8383i 0.168878i
\(154\) −158.485 + 197.951i −1.02913 + 1.28540i
\(155\) 0 0
\(156\) −72.6821 + 16.2950i −0.465911 + 0.104455i
\(157\) 82.2710 0.524019 0.262009 0.965065i \(-0.415615\pi\)
0.262009 + 0.965065i \(0.415615\pi\)
\(158\) 56.6185 + 45.3304i 0.358345 + 0.286901i
\(159\) 126.990i 0.798678i
\(160\) 0 0
\(161\) 85.6973 0.532282
\(162\) −11.2499 + 14.0513i −0.0694438 + 0.0867366i
\(163\) 27.8115i 0.170623i 0.996354 + 0.0853113i \(0.0271885\pi\)
−0.996354 + 0.0853113i \(0.972812\pi\)
\(164\) 2.14360 + 9.56134i 0.0130708 + 0.0583008i
\(165\) 0 0
\(166\) 149.241 + 119.487i 0.899044 + 0.719800i
\(167\) −207.819 −1.24443 −0.622214 0.782848i \(-0.713766\pi\)
−0.622214 + 0.782848i \(0.713766\pi\)
\(168\) 46.1764 94.4860i 0.274860 0.562417i
\(169\) −53.4122 −0.316048
\(170\) 0 0
\(171\) 106.985 0.625642
\(172\) −30.8941 + 6.92629i −0.179617 + 0.0402692i
\(173\) 45.7625 0.264523 0.132262 0.991215i \(-0.457776\pi\)
0.132262 + 0.991215i \(0.457776\pi\)
\(174\) 1.27571 1.59338i 0.00733165 0.00915737i
\(175\) 0 0
\(176\) −241.704 + 114.113i −1.37332 + 0.648372i
\(177\) 155.478i 0.878405i
\(178\) −9.87453 + 12.3335i −0.0554749 + 0.0692892i
\(179\) 33.0983 0.184907 0.0924533 0.995717i \(-0.470529\pi\)
0.0924533 + 0.995717i \(0.470529\pi\)
\(180\) 0 0
\(181\) 177.147i 0.978711i −0.872084 0.489356i \(-0.837232\pi\)
0.872084 0.489356i \(-0.162768\pi\)
\(182\) −101.997 + 127.396i −0.560422 + 0.699977i
\(183\) −171.124 −0.935106
\(184\) 81.1569 + 39.6623i 0.441070 + 0.215556i
\(185\) 0 0
\(186\) −97.5160 + 121.799i −0.524280 + 0.654835i
\(187\) 143.880i 0.769413i
\(188\) −38.8312 173.203i −0.206549 0.921291i
\(189\) 39.4372i 0.208663i
\(190\) 0 0
\(191\) 28.8000i 0.150785i −0.997154 0.0753927i \(-0.975979\pi\)
0.997154 0.0753927i \(-0.0240210\pi\)
\(192\) 87.4598 68.1087i 0.455520 0.354733i
\(193\) 87.7961i 0.454902i 0.973789 + 0.227451i \(0.0730392\pi\)
−0.973789 + 0.227451i \(0.926961\pi\)
\(194\) −214.101 171.415i −1.10361 0.883583i
\(195\) 0 0
\(196\) −7.52855 33.5803i −0.0384109 0.171328i
\(197\) 347.625 1.76459 0.882296 0.470696i \(-0.155997\pi\)
0.882296 + 0.470696i \(0.155997\pi\)
\(198\) 62.6450 78.2447i 0.316389 0.395175i
\(199\) 129.347i 0.649985i 0.945717 + 0.324992i \(0.105362\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(200\) 0 0
\(201\) −155.021 −0.771247
\(202\) −144.306 115.536i −0.714388 0.571960i
\(203\) 4.47207i 0.0220299i
\(204\) 13.0539 + 58.2256i 0.0639896 + 0.285419i
\(205\) 0 0
\(206\) 154.141 192.525i 0.748256 0.934586i
\(207\) −33.8738 −0.163642
\(208\) −155.554 + 73.4402i −0.747855 + 0.353078i
\(209\) −595.744 −2.85045
\(210\) 0 0
\(211\) −190.507 −0.902877 −0.451439 0.892302i \(-0.649089\pi\)
−0.451439 + 0.892302i \(0.649089\pi\)
\(212\) −64.1571 286.167i −0.302628 1.34984i
\(213\) −155.905 −0.731951
\(214\) −0.374864 0.300127i −0.00175170 0.00140246i
\(215\) 0 0
\(216\) −18.2523 + 37.3478i −0.0845013 + 0.172906i
\(217\) 341.848i 1.57534i
\(218\) −183.599 146.995i −0.842197 0.674287i
\(219\) 117.917 0.538434
\(220\) 0 0
\(221\) 92.5973i 0.418992i
\(222\) 99.0279 + 79.2845i 0.446071 + 0.357138i
\(223\) −211.437 −0.948149 −0.474075 0.880485i \(-0.657217\pi\)
−0.474075 + 0.880485i \(0.657217\pi\)
\(224\) 56.3210 236.250i 0.251433 1.05469i
\(225\) 0 0
\(226\) −64.2813 51.4655i −0.284431 0.227723i
\(227\) 88.8880i 0.391577i −0.980646 0.195788i \(-0.937273\pi\)
0.980646 0.195788i \(-0.0627266\pi\)
\(228\) 241.086 54.0503i 1.05740 0.237063i
\(229\) 152.872i 0.667565i 0.942650 + 0.333782i \(0.108325\pi\)
−0.942650 + 0.333782i \(0.891675\pi\)
\(230\) 0 0
\(231\) 219.606i 0.950675i
\(232\) 2.06976 4.23513i 0.00892137 0.0182549i
\(233\) 188.417i 0.808656i 0.914614 + 0.404328i \(0.132495\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(234\) 40.3165 50.3561i 0.172293 0.215197i
\(235\) 0 0
\(236\) −78.5497 350.363i −0.332838 1.48459i
\(237\) −62.8122 −0.265030
\(238\) 102.057 + 81.7095i 0.428810 + 0.343317i
\(239\) 227.979i 0.953888i −0.878934 0.476944i \(-0.841745\pi\)
0.878934 0.476944i \(-0.158255\pi\)
\(240\) 0 0
\(241\) −265.794 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(242\) −197.590 + 246.793i −0.816486 + 1.01981i
\(243\) 15.5885i 0.0641500i
\(244\) −385.622 + 86.4546i −1.58042 + 0.354322i
\(245\) 0 0
\(246\) −6.62435 5.30364i −0.0269283 0.0215595i
\(247\) −383.404 −1.55224
\(248\) −158.214 + 323.737i −0.637959 + 1.30539i
\(249\) −165.567 −0.664929
\(250\) 0 0
\(251\) 154.894 0.617106 0.308553 0.951207i \(-0.400155\pi\)
0.308553 + 0.951207i \(0.400155\pi\)
\(252\) 19.9243 + 88.8703i 0.0790646 + 0.352660i
\(253\) 188.626 0.745558
\(254\) −1.44079 + 1.79957i −0.00567239 + 0.00708492i
\(255\) 0 0
\(256\) 162.678 197.666i 0.635460 0.772134i
\(257\) 422.025i 1.64212i 0.570842 + 0.821060i \(0.306617\pi\)
−0.570842 + 0.821060i \(0.693383\pi\)
\(258\) 17.1368 21.4042i 0.0664219 0.0829621i
\(259\) 277.937 1.07312
\(260\) 0 0
\(261\) 1.76769i 0.00677275i
\(262\) 239.845 299.571i 0.915440 1.14340i
\(263\) 118.083 0.448983 0.224492 0.974476i \(-0.427928\pi\)
0.224492 + 0.974476i \(0.427928\pi\)
\(264\) 101.638 207.971i 0.384991 0.787768i
\(265\) 0 0
\(266\) 338.323 422.572i 1.27189 1.58862i
\(267\) 13.6827i 0.0512460i
\(268\) −349.333 + 78.3188i −1.30348 + 0.292234i
\(269\) 493.643i 1.83510i 0.397617 + 0.917551i \(0.369837\pi\)
−0.397617 + 0.917551i \(0.630163\pi\)
\(270\) 0 0
\(271\) 362.955i 1.33932i 0.742669 + 0.669659i \(0.233560\pi\)
−0.742669 + 0.669659i \(0.766440\pi\)
\(272\) 58.8329 + 124.614i 0.216297 + 0.458140i
\(273\) 141.332i 0.517700i
\(274\) 26.5612 + 21.2657i 0.0969387 + 0.0776119i
\(275\) 0 0
\(276\) −76.3334 + 17.1136i −0.276570 + 0.0620056i
\(277\) 321.011 1.15888 0.579442 0.815013i \(-0.303270\pi\)
0.579442 + 0.815013i \(0.303270\pi\)
\(278\) −220.470 + 275.371i −0.793057 + 0.990543i
\(279\) 135.123i 0.484313i
\(280\) 0 0
\(281\) −185.799 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(282\) 119.999 + 96.0750i 0.425530 + 0.340691i
\(283\) 208.628i 0.737202i −0.929588 0.368601i \(-0.879837\pi\)
0.929588 0.368601i \(-0.120163\pi\)
\(284\) −351.327 + 78.7658i −1.23707 + 0.277344i
\(285\) 0 0
\(286\) −224.502 + 280.408i −0.784974 + 0.980447i
\(287\) −18.5923 −0.0647814
\(288\) −22.2622 + 93.3831i −0.0772992 + 0.324247i
\(289\) 214.820 0.743323
\(290\) 0 0
\(291\) 237.522 0.816226
\(292\) 265.722 59.5735i 0.910006 0.204019i
\(293\) 306.925 1.04752 0.523762 0.851864i \(-0.324528\pi\)
0.523762 + 0.851864i \(0.324528\pi\)
\(294\) 23.2654 + 18.6269i 0.0791339 + 0.0633568i
\(295\) 0 0
\(296\) 263.211 + 128.634i 0.889227 + 0.434576i
\(297\) 86.8042i 0.292270i
\(298\) 331.059 + 265.055i 1.11094 + 0.889448i
\(299\) 121.394 0.406002
\(300\) 0 0
\(301\) 60.0743i 0.199582i
\(302\) 223.823 + 179.199i 0.741136 + 0.593374i
\(303\) 160.093 0.528358
\(304\) 515.972 243.601i 1.69728 0.801318i
\(305\) 0 0
\(306\) −40.3402 32.2975i −0.131831 0.105548i
\(307\) 283.517i 0.923510i −0.887008 0.461755i \(-0.847220\pi\)
0.887008 0.461755i \(-0.152780\pi\)
\(308\) −110.948 494.874i −0.360221 1.60673i
\(309\) 213.586i 0.691216i
\(310\) 0 0
\(311\) 614.016i 1.97433i 0.159709 + 0.987164i \(0.448944\pi\)
−0.159709 + 0.987164i \(0.551056\pi\)
\(312\) 65.4111 133.844i 0.209651 0.428988i
\(313\) 511.920i 1.63553i −0.575555 0.817763i \(-0.695214\pi\)
0.575555 0.817763i \(-0.304786\pi\)
\(314\) −102.838 + 128.446i −0.327509 + 0.409065i
\(315\) 0 0
\(316\) −141.545 + 31.7337i −0.447927 + 0.100423i
\(317\) −429.605 −1.35522 −0.677611 0.735421i \(-0.736985\pi\)
−0.677611 + 0.735421i \(0.736985\pi\)
\(318\) 198.264 + 158.736i 0.623471 + 0.499169i
\(319\) 9.84336i 0.0308569i
\(320\) 0 0
\(321\) 0.415872 0.00129555
\(322\) −107.121 + 133.796i −0.332673 + 0.415515i
\(323\) 307.145i 0.950913i
\(324\) −7.87552 35.1280i −0.0243072 0.108420i
\(325\) 0 0
\(326\) −43.4209 34.7640i −0.133193 0.106638i
\(327\) 203.684 0.622885
\(328\) −17.6072 8.60484i −0.0536805 0.0262343i
\(329\) 336.797 1.02370
\(330\) 0 0
\(331\) −537.298 −1.62326 −0.811628 0.584175i \(-0.801418\pi\)
−0.811628 + 0.584175i \(0.801418\pi\)
\(332\) −373.100 + 83.6471i −1.12379 + 0.251949i
\(333\) −109.861 −0.329913
\(334\) 259.772 324.460i 0.777760 0.971436i
\(335\) 0 0
\(336\) 89.7972 + 190.200i 0.267253 + 0.566071i
\(337\) 158.578i 0.470559i −0.971928 0.235279i \(-0.924400\pi\)
0.971928 0.235279i \(-0.0756005\pi\)
\(338\) 66.7646 83.3902i 0.197528 0.246717i
\(339\) 71.3133 0.210364
\(340\) 0 0
\(341\) 752.434i 2.20655i
\(342\) −133.730 + 167.031i −0.391023 + 0.488395i
\(343\) −306.597 −0.893870
\(344\) 27.8035 56.8914i 0.0808241 0.165382i
\(345\) 0 0
\(346\) −57.2026 + 71.4472i −0.165326 + 0.206495i
\(347\) 169.697i 0.489041i −0.969644 0.244520i \(-0.921370\pi\)
0.969644 0.244520i \(-0.0786305\pi\)
\(348\) 0.893062 + 3.98342i 0.00256627 + 0.0114466i
\(349\) 296.370i 0.849196i 0.905382 + 0.424598i \(0.139585\pi\)
−0.905382 + 0.424598i \(0.860415\pi\)
\(350\) 0 0
\(351\) 55.8648i 0.159159i
\(352\) 123.967 520.003i 0.352178 1.47728i
\(353\) 133.075i 0.376982i 0.982075 + 0.188491i \(0.0603596\pi\)
−0.982075 + 0.188491i \(0.939640\pi\)
\(354\) 242.741 + 194.345i 0.685709 + 0.548998i
\(355\) 0 0
\(356\) −6.91269 30.8334i −0.0194177 0.0866107i
\(357\) −113.221 −0.317146
\(358\) −41.3725 + 51.6750i −0.115566 + 0.144344i
\(359\) 238.095i 0.663218i −0.943417 0.331609i \(-0.892409\pi\)
0.943417 0.331609i \(-0.107591\pi\)
\(360\) 0 0
\(361\) 910.751 2.52286
\(362\) 276.572 + 221.431i 0.764011 + 0.611689i
\(363\) 273.791i 0.754244i
\(364\) −71.4031 318.487i −0.196162 0.874964i
\(365\) 0 0
\(366\) 213.904 267.169i 0.584436 0.729971i
\(367\) −381.665 −1.03996 −0.519979 0.854179i \(-0.674060\pi\)
−0.519979 + 0.854179i \(0.674060\pi\)
\(368\) −163.368 + 77.1295i −0.443936 + 0.209591i
\(369\) 7.34901 0.0199160
\(370\) 0 0
\(371\) 556.458 1.49989
\(372\) −68.2663 304.495i −0.183512 0.818536i
\(373\) −42.2729 −0.113332 −0.0566661 0.998393i \(-0.518047\pi\)
−0.0566661 + 0.998393i \(0.518047\pi\)
\(374\) 224.634 + 179.849i 0.600626 + 0.480879i
\(375\) 0 0
\(376\) 318.953 + 155.876i 0.848278 + 0.414563i
\(377\) 6.33491i 0.0168035i
\(378\) −61.5717 49.2961i −0.162888 0.130413i
\(379\) −412.302 −1.08787 −0.543934 0.839128i \(-0.683066\pi\)
−0.543934 + 0.839128i \(0.683066\pi\)
\(380\) 0 0
\(381\) 1.99643i 0.00523998i
\(382\) 44.9643 + 35.9997i 0.117708 + 0.0942400i
\(383\) 403.711 1.05408 0.527038 0.849842i \(-0.323303\pi\)
0.527038 + 0.849842i \(0.323303\pi\)
\(384\) −2.98842 + 221.682i −0.00778234 + 0.577298i
\(385\) 0 0
\(386\) −137.072 109.744i −0.355110 0.284311i
\(387\) 23.7457i 0.0613585i
\(388\) 535.246 120.000i 1.37950 0.309277i
\(389\) 78.5053i 0.201813i −0.994896 0.100907i \(-0.967826\pi\)
0.994896 0.100907i \(-0.0321743\pi\)
\(390\) 0 0
\(391\) 97.2490i 0.248719i
\(392\) 61.8382 + 30.2210i 0.157751 + 0.0770945i
\(393\) 332.342i 0.845655i
\(394\) −434.527 + 542.732i −1.10286 + 1.37749i
\(395\) 0 0
\(396\) 43.8548 + 195.610i 0.110744 + 0.493965i
\(397\) −323.080 −0.813803 −0.406902 0.913472i \(-0.633391\pi\)
−0.406902 + 0.913472i \(0.633391\pi\)
\(398\) −201.944 161.682i −0.507397 0.406237i
\(399\) 468.798i 1.17493i
\(400\) 0 0
\(401\) −621.389 −1.54960 −0.774799 0.632207i \(-0.782149\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(402\) 193.774 242.027i 0.482025 0.602058i
\(403\) 484.245i 1.20160i
\(404\) 360.763 80.8812i 0.892977 0.200201i
\(405\) 0 0
\(406\) 6.98206 + 5.59004i 0.0171972 + 0.0137686i
\(407\) 611.760 1.50310
\(408\) −107.222 52.4008i −0.262800 0.128433i
\(409\) −322.888 −0.789458 −0.394729 0.918798i \(-0.629161\pi\)
−0.394729 + 0.918798i \(0.629161\pi\)
\(410\) 0 0
\(411\) −29.4668 −0.0716954
\(412\) 107.907 + 481.307i 0.261909 + 1.16822i
\(413\) 681.290 1.64961
\(414\) 42.3419 52.8858i 0.102275 0.127743i
\(415\) 0 0
\(416\) 79.7815 334.659i 0.191782 0.804470i
\(417\) 305.495i 0.732602i
\(418\) 744.674 930.111i 1.78152 2.22515i
\(419\) −19.2316 −0.0458988 −0.0229494 0.999737i \(-0.507306\pi\)
−0.0229494 + 0.999737i \(0.507306\pi\)
\(420\) 0 0
\(421\) 312.791i 0.742970i 0.928439 + 0.371485i \(0.121151\pi\)
−0.928439 + 0.371485i \(0.878849\pi\)
\(422\) 238.132 297.431i 0.564293 0.704813i
\(423\) −133.127 −0.314720
\(424\) 526.976 + 257.539i 1.24287 + 0.607404i
\(425\) 0 0
\(426\) 194.880 243.409i 0.457465 0.571382i
\(427\) 749.852i 1.75609i
\(428\) 0.937151 0.210105i 0.00218961 0.000490899i
\(429\) 311.083i 0.725134i
\(430\) 0 0
\(431\) 417.415i 0.968479i 0.874935 + 0.484240i \(0.160904\pi\)
−0.874935 + 0.484240i \(0.839096\pi\)
\(432\) −35.4944 75.1808i −0.0821629 0.174030i
\(433\) 279.474i 0.645436i 0.946495 + 0.322718i \(0.104596\pi\)
−0.946495 + 0.322718i \(0.895404\pi\)
\(434\) −533.714 427.307i −1.22976 0.984577i
\(435\) 0 0
\(436\) 458.993 102.904i 1.05274 0.236018i
\(437\) −402.665 −0.921430
\(438\) −147.395 + 184.099i −0.336518 + 0.420318i
\(439\) 30.1336i 0.0686415i 0.999411 + 0.0343207i \(0.0109268\pi\)
−0.999411 + 0.0343207i \(0.989073\pi\)
\(440\) 0 0
\(441\) −25.8104 −0.0585271
\(442\) 144.568 + 115.746i 0.327078 + 0.261868i
\(443\) 56.2858i 0.127056i −0.997980 0.0635279i \(-0.979765\pi\)
0.997980 0.0635279i \(-0.0202352\pi\)
\(444\) −247.567 + 55.5034i −0.557584 + 0.125008i
\(445\) 0 0
\(446\) 264.294 330.108i 0.592588 0.740153i
\(447\) −367.275 −0.821644
\(448\) 298.446 + 383.241i 0.666175 + 0.855449i
\(449\) 283.497 0.631396 0.315698 0.948860i \(-0.397761\pi\)
0.315698 + 0.948860i \(0.397761\pi\)
\(450\) 0 0
\(451\) −40.9229 −0.0907382
\(452\) 160.702 36.0285i 0.355535 0.0797092i
\(453\) −248.308 −0.548141
\(454\) 138.777 + 111.109i 0.305676 + 0.244733i
\(455\) 0 0
\(456\) −216.969 + 443.960i −0.475808 + 0.973597i
\(457\) 265.204i 0.580315i 0.956979 + 0.290158i \(0.0937078\pi\)
−0.956979 + 0.290158i \(0.906292\pi\)
\(458\) −238.673 191.089i −0.521120 0.417224i
\(459\) 44.7532 0.0975015
\(460\) 0 0
\(461\) 709.643i 1.53936i 0.638432 + 0.769678i \(0.279583\pi\)
−0.638432 + 0.769678i \(0.720417\pi\)
\(462\) 342.862 + 274.505i 0.742125 + 0.594166i
\(463\) 417.392 0.901495 0.450747 0.892652i \(-0.351157\pi\)
0.450747 + 0.892652i \(0.351157\pi\)
\(464\) 4.02496 + 8.52529i 0.00867449 + 0.0183735i
\(465\) 0 0
\(466\) −294.167 235.519i −0.631260 0.505405i
\(467\) 679.287i 1.45458i 0.686332 + 0.727288i \(0.259220\pi\)
−0.686332 + 0.727288i \(0.740780\pi\)
\(468\) 28.2237 + 125.889i 0.0603071 + 0.268994i
\(469\) 679.287i 1.44837i
\(470\) 0 0
\(471\) 142.498i 0.302543i
\(472\) 645.194 + 315.313i 1.36694 + 0.668037i
\(473\) 132.228i 0.279552i
\(474\) 78.5146 98.0661i 0.165643 0.206891i
\(475\) 0 0
\(476\) −255.139 + 57.2010i −0.536007 + 0.120170i
\(477\) −219.953 −0.461117
\(478\) 355.934 + 284.971i 0.744633 + 0.596174i
\(479\) 157.578i 0.328974i 0.986379 + 0.164487i \(0.0525968\pi\)
−0.986379 + 0.164487i \(0.947403\pi\)
\(480\) 0 0
\(481\) 393.711 0.818527
\(482\) 332.239 414.973i 0.689292 0.860939i
\(483\) 148.432i 0.307313i
\(484\) −138.323 616.977i −0.285792 1.27475i
\(485\) 0 0
\(486\) 24.3376 + 19.4854i 0.0500774 + 0.0400934i
\(487\) −736.646 −1.51262 −0.756311 0.654213i \(-0.773000\pi\)
−0.756311 + 0.654213i \(0.773000\pi\)
\(488\) 347.045 710.123i 0.711159 1.45517i
\(489\) 48.1709 0.0985090
\(490\) 0 0
\(491\) −362.408 −0.738101 −0.369050 0.929409i \(-0.620317\pi\)
−0.369050 + 0.929409i \(0.620317\pi\)
\(492\) 16.5607 3.71283i 0.0336600 0.00754640i
\(493\) −5.07489 −0.0102939
\(494\) 479.251 598.594i 0.970144 1.21173i
\(495\) 0 0
\(496\) −307.671 651.680i −0.620305 1.31387i
\(497\) 683.164i 1.37458i
\(498\) 206.957 258.494i 0.415577 0.519063i
\(499\) −648.812 −1.30022 −0.650112 0.759838i \(-0.725278\pi\)
−0.650112 + 0.759838i \(0.725278\pi\)
\(500\) 0 0
\(501\) 359.954i 0.718470i
\(502\) −193.615 + 241.829i −0.385687 + 0.481731i
\(503\) −402.612 −0.800421 −0.400210 0.916423i \(-0.631063\pi\)
−0.400210 + 0.916423i \(0.631063\pi\)
\(504\) −163.655 79.9799i −0.324711 0.158690i
\(505\) 0 0
\(506\) −235.780 + 294.494i −0.465969 + 0.582004i
\(507\) 92.5126i 0.182471i
\(508\) −1.00863 4.49888i −0.00198549 0.00885607i
\(509\) 470.175i 0.923724i 0.886952 + 0.461862i \(0.152818\pi\)
−0.886952 + 0.461862i \(0.847182\pi\)
\(510\) 0 0
\(511\) 516.702i 1.01116i
\(512\) 105.263 + 501.063i 0.205592 + 0.978638i
\(513\) 185.303i 0.361215i
\(514\) −658.890 527.526i −1.28189 1.02632i
\(515\) 0 0
\(516\) 11.9967 + 53.5101i 0.0232494 + 0.103702i
\(517\) 741.315 1.43388
\(518\) −347.418 + 433.931i −0.670691 + 0.837706i
\(519\) 79.2630i 0.152723i
\(520\) 0 0
\(521\) −155.978 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(522\) −2.75982 2.20959i −0.00528701 0.00423293i
\(523\) 313.578i 0.599576i −0.954006 0.299788i \(-0.903084\pi\)
0.954006 0.299788i \(-0.0969159\pi\)
\(524\) 167.904 + 748.921i 0.320428 + 1.42924i
\(525\) 0 0
\(526\) −147.602 + 184.357i −0.280612 + 0.350489i
\(527\) 387.928 0.736107
\(528\) 197.650 + 418.644i 0.374338 + 0.792886i
\(529\) −401.507 −0.758993
\(530\) 0 0
\(531\) −269.295 −0.507147
\(532\) 236.844 + 1056.42i 0.445195 + 1.98575i
\(533\) −26.3369 −0.0494125
\(534\) 21.3622 + 17.1032i 0.0400041 + 0.0320284i
\(535\) 0 0
\(536\) 314.387 643.297i 0.586542 1.20018i
\(537\) 57.3279i 0.106756i
\(538\) −770.704 617.048i −1.43254 1.14693i
\(539\) 143.725 0.266652
\(540\) 0 0
\(541\) 892.335i 1.64942i −0.565557 0.824709i \(-0.691339\pi\)
0.565557 0.824709i \(-0.308661\pi\)
\(542\) −566.667 453.690i −1.04551 0.837066i
\(543\) −306.827 −0.565059
\(544\) −268.095 63.9129i −0.492822 0.117487i
\(545\) 0 0
\(546\) 220.656 + 176.664i 0.404132 + 0.323560i
\(547\) 671.435i 1.22749i 0.789506 + 0.613743i \(0.210337\pi\)
−0.789506 + 0.613743i \(0.789663\pi\)
\(548\) −66.4024 + 14.8871i −0.121172 + 0.0271662i
\(549\) 296.396i 0.539884i
\(550\) 0 0
\(551\) 21.0129i 0.0381359i
\(552\) 68.6971 140.568i 0.124451 0.254652i
\(553\) 275.238i 0.497717i
\(554\) −401.260 + 501.181i −0.724296 + 0.904659i
\(555\) 0 0
\(556\) −154.341 688.421i −0.277591 1.23817i
\(557\) −296.095 −0.531590 −0.265795 0.964030i \(-0.585634\pi\)
−0.265795 + 0.964030i \(0.585634\pi\)
\(558\) 210.963 + 168.903i 0.378069 + 0.302693i
\(559\) 85.0982i 0.152233i
\(560\) 0 0
\(561\) −249.208 −0.444221
\(562\) 232.247 290.080i 0.413250 0.516157i
\(563\) 707.222i 1.25617i −0.778146 0.628084i \(-0.783839\pi\)
0.778146 0.628084i \(-0.216161\pi\)
\(564\) −299.996 + 67.2576i −0.531907 + 0.119251i
\(565\) 0 0
\(566\) 325.722 + 260.783i 0.575481 + 0.460747i
\(567\) 68.3073 0.120471
\(568\) 316.181 646.969i 0.556657 1.13903i
\(569\) −230.263 −0.404680 −0.202340 0.979315i \(-0.564855\pi\)
−0.202340 + 0.979315i \(0.564855\pi\)
\(570\) 0 0
\(571\) −439.428 −0.769575 −0.384788 0.923005i \(-0.625725\pi\)
−0.384788 + 0.923005i \(0.625725\pi\)
\(572\) −157.164 701.013i −0.274761 1.22555i
\(573\) −49.8831 −0.0870560
\(574\) 23.2401 29.0273i 0.0404880 0.0505703i
\(575\) 0 0
\(576\) −117.968 151.485i −0.204805 0.262994i
\(577\) 184.670i 0.320053i 0.987113 + 0.160026i \(0.0511579\pi\)
−0.987113 + 0.160026i \(0.948842\pi\)
\(578\) −268.523 + 335.390i −0.464573 + 0.580260i
\(579\) 152.067 0.262638
\(580\) 0 0
\(581\) 725.502i 1.24871i
\(582\) −296.900 + 370.833i −0.510137 + 0.637170i
\(583\) 1224.81 2.10087
\(584\) −239.139 + 489.327i −0.409485 + 0.837888i
\(585\) 0 0
\(586\) −383.652 + 479.189i −0.654697 + 0.817729i
\(587\) 297.341i 0.506543i −0.967395 0.253271i \(-0.918493\pi\)
0.967395 0.253271i \(-0.0815066\pi\)
\(588\) −58.1629 + 13.0398i −0.0989164 + 0.0221766i
\(589\) 1606.24i 2.72706i
\(590\) 0 0
\(591\) 602.103i 1.01879i
\(592\) −529.843 + 250.149i −0.895004 + 0.422550i
\(593\) 607.065i 1.02372i −0.859070 0.511859i \(-0.828957\pi\)
0.859070 0.511859i \(-0.171043\pi\)
\(594\) −135.524 108.504i −0.228155 0.182667i
\(595\) 0 0
\(596\) −827.640 + 185.553i −1.38866 + 0.311330i
\(597\) 224.036 0.375269
\(598\) −151.742 + 189.528i −0.253749 + 0.316937i
\(599\) 448.633i 0.748970i 0.927233 + 0.374485i \(0.122180\pi\)
−0.927233 + 0.374485i \(0.877820\pi\)
\(600\) 0 0
\(601\) 580.584 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(602\) 93.7915 + 75.0921i 0.155800 + 0.124738i
\(603\) 268.504i 0.445280i
\(604\) −559.552 + 125.449i −0.926411 + 0.207697i
\(605\) 0 0
\(606\) −200.114 + 249.946i −0.330221 + 0.412452i
\(607\) 132.576 0.218413 0.109206 0.994019i \(-0.465169\pi\)
0.109206 + 0.994019i \(0.465169\pi\)
\(608\) −264.635 + 1110.06i −0.435255 + 1.82576i
\(609\) −7.74585 −0.0127190
\(610\) 0 0
\(611\) 477.089 0.780834
\(612\) 100.850 22.6100i 0.164787 0.0369444i
\(613\) −175.738 −0.286685 −0.143343 0.989673i \(-0.545785\pi\)
−0.143343 + 0.989673i \(0.545785\pi\)
\(614\) 442.644 + 354.393i 0.720919 + 0.577188i
\(615\) 0 0
\(616\) 911.310 + 445.367i 1.47940 + 0.722999i
\(617\) 283.254i 0.459082i −0.973299 0.229541i \(-0.926277\pi\)
0.973299 0.229541i \(-0.0737226\pi\)
\(618\) −333.463 266.980i −0.539583 0.432006i
\(619\) 80.2105 0.129581 0.0647904 0.997899i \(-0.479362\pi\)
0.0647904 + 0.997899i \(0.479362\pi\)
\(620\) 0 0
\(621\) 58.6712i 0.0944785i
\(622\) −958.638 767.513i −1.54122 1.23394i
\(623\) 59.9563 0.0962381
\(624\) 127.202 + 269.427i 0.203850 + 0.431775i
\(625\) 0 0
\(626\) 799.239 + 639.893i 1.27674 + 1.02219i
\(627\) 1031.86i 1.64571i
\(628\) −71.9919 321.113i −0.114637 0.511326i
\(629\) 315.402i 0.501434i
\(630\) 0 0
\(631\) 178.580i 0.283011i 0.989937 + 0.141505i \(0.0451942\pi\)
−0.989937 + 0.141505i \(0.954806\pi\)
\(632\) 127.385 260.655i 0.201559 0.412429i
\(633\) 329.968i 0.521277i
\(634\) 537.002 670.725i 0.847006 1.05793i
\(635\) 0 0
\(636\) −495.655 + 111.123i −0.779332 + 0.174722i
\(637\) 92.4976 0.145208
\(638\) 15.3680 + 12.3041i 0.0240878 + 0.0192854i
\(639\) 270.036i 0.422592i
\(640\) 0 0
\(641\) −379.689 −0.592339 −0.296169 0.955135i \(-0.595709\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(642\) −0.519835 + 0.649283i −0.000809712 + 0.00101134i
\(643\) 847.921i 1.31869i −0.751839 0.659347i \(-0.770833\pi\)
0.751839 0.659347i \(-0.229167\pi\)
\(644\) −74.9901 334.486i −0.116444 0.519388i
\(645\) 0 0
\(646\) −479.533 383.928i −0.742311 0.594315i
\(647\) −372.369 −0.575532 −0.287766 0.957701i \(-0.592913\pi\)
−0.287766 + 0.957701i \(0.592913\pi\)
\(648\) 64.6882 + 31.6139i 0.0998275 + 0.0487868i
\(649\) 1499.57 2.31058
\(650\) 0 0
\(651\) 592.099 0.909522
\(652\) 108.551 24.3367i 0.166490 0.0373262i
\(653\) −650.726 −0.996517 −0.498259 0.867028i \(-0.666027\pi\)
−0.498259 + 0.867028i \(0.666027\pi\)
\(654\) −254.602 + 318.003i −0.389300 + 0.486243i
\(655\) 0 0
\(656\) 35.4432 16.7334i 0.0540292 0.0255083i
\(657\) 204.238i 0.310865i
\(658\) −420.992 + 525.827i −0.639806 + 0.799129i
\(659\) −589.211 −0.894099 −0.447049 0.894509i \(-0.647525\pi\)
−0.447049 + 0.894509i \(0.647525\pi\)
\(660\) 0 0
\(661\) 402.340i 0.608684i −0.952563 0.304342i \(-0.901563\pi\)
0.952563 0.304342i \(-0.0984366\pi\)
\(662\) 671.616 838.861i 1.01453 1.26716i
\(663\) −160.383 −0.241905
\(664\) 335.776 687.063i 0.505686 1.03473i
\(665\) 0 0
\(666\) 137.325 171.521i 0.206193 0.257539i
\(667\) 6.65315i 0.00997473i
\(668\) 181.854 + 811.142i 0.272236 + 1.21428i
\(669\) 366.220i 0.547414i
\(670\) 0 0
\(671\) 1650.48i 2.45973i
\(672\) −409.196 97.5509i −0.608923 0.145165i
\(673\) 1237.67i 1.83903i 0.393056 + 0.919515i \(0.371418\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(674\) 247.582 + 198.221i 0.367332 + 0.294096i
\(675\) 0 0
\(676\) 46.7387 + 208.474i 0.0691401 + 0.308393i
\(677\) 163.462 0.241451 0.120725 0.992686i \(-0.461478\pi\)
0.120725 + 0.992686i \(0.461478\pi\)
\(678\) −89.1408 + 111.339i −0.131476 + 0.164216i
\(679\) 1040.80i 1.53284i
\(680\) 0 0
\(681\) −153.958 −0.226077
\(682\) −1174.74 940.533i −1.72250 1.37908i
\(683\) 992.033i 1.45246i 0.687449 + 0.726232i \(0.258730\pi\)
−0.687449 + 0.726232i \(0.741270\pi\)
\(684\) −93.6179 417.574i −0.136868 0.610488i
\(685\) 0 0
\(686\) 383.243 478.678i 0.558663 0.697781i
\(687\) 264.783 0.385419
\(688\) 54.0682 + 114.522i 0.0785875 + 0.166456i
\(689\) 788.250 1.14405
\(690\) 0 0
\(691\) −465.365 −0.673466 −0.336733 0.941600i \(-0.609322\pi\)
−0.336733 + 0.941600i \(0.609322\pi\)
\(692\) −40.0449 178.616i −0.0578683 0.258116i
\(693\) −380.369 −0.548872
\(694\) 264.941 + 212.119i 0.381759 + 0.305648i
\(695\) 0 0
\(696\) −7.33546 3.58492i −0.0105395 0.00515075i
\(697\) 21.0984i 0.0302703i
\(698\) −462.710 370.459i −0.662908 0.530743i
\(699\) 326.347 0.466878
\(700\) 0 0
\(701\) 261.352i 0.372827i 0.982471 + 0.186414i \(0.0596864\pi\)
−0.982471 + 0.186414i \(0.940314\pi\)
\(702\) −87.2194 69.8303i −0.124244 0.0994734i
\(703\) −1305.94 −1.85767
\(704\) 656.902 + 843.542i 0.933100 + 1.19821i
\(705\) 0 0
\(706\) −207.764 166.342i −0.294283 0.235611i
\(707\) 701.512i 0.992238i
\(708\) −606.847 + 136.052i −0.857128 + 0.192164i
\(709\) 186.604i 0.263194i 0.991303 + 0.131597i \(0.0420104\pi\)
−0.991303 + 0.131597i \(0.957990\pi\)
\(710\) 0 0
\(711\) 108.794i 0.153015i
\(712\) 56.7797 + 27.7489i 0.0797468 + 0.0389732i
\(713\) 508.572i 0.713284i
\(714\) 141.525 176.767i 0.198214 0.247573i
\(715\) 0 0
\(716\) −28.9629 129.186i −0.0404510 0.180428i
\(717\) −394.871 −0.550727
\(718\) 371.728 + 297.616i 0.517727 + 0.414507i
\(719\) 448.275i 0.623470i 0.950169 + 0.311735i \(0.100910\pi\)
−0.950169 + 0.311735i \(0.899090\pi\)
\(720\) 0 0
\(721\) −935.914 −1.29808
\(722\) −1138.43 + 1421.92i −1.57677 + 1.96942i
\(723\) 460.368i 0.636747i
\(724\) −691.423 + 155.014i −0.955005 + 0.214107i
\(725\) 0 0
\(726\) 427.458 + 342.235i 0.588785 + 0.471398i
\(727\) 956.205 1.31527 0.657637 0.753335i \(-0.271556\pi\)
0.657637 + 0.753335i \(0.271556\pi\)
\(728\) 586.493 + 286.626i 0.805623 + 0.393717i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −68.1721 −0.0932586
\(732\) 149.744 + 667.917i 0.204568 + 0.912456i
\(733\) −398.986 −0.544320 −0.272160 0.962252i \(-0.587738\pi\)
−0.272160 + 0.962252i \(0.587738\pi\)
\(734\) 477.076 595.877i 0.649968 0.811822i
\(735\) 0 0
\(736\) 83.7894 351.471i 0.113844 0.477542i
\(737\) 1495.16i 2.02871i
\(738\) −9.18618 + 11.4737i −0.0124474 + 0.0155470i
\(739\) −1011.87 −1.36924 −0.684622 0.728899i \(-0.740033\pi\)
−0.684622 + 0.728899i \(0.740033\pi\)
\(740\) 0 0
\(741\) 664.076i 0.896189i
\(742\) −695.566 + 868.775i −0.937421 + 1.17086i
\(743\) −346.145 −0.465875 −0.232938 0.972492i \(-0.574834\pi\)
−0.232938 + 0.972492i \(0.574834\pi\)
\(744\) 560.728 + 274.034i 0.753667 + 0.368326i
\(745\) 0 0
\(746\) 52.8406 65.9989i 0.0708319 0.0884704i
\(747\) 286.771i 0.383897i
\(748\) −561.581 + 125.904i −0.750776 + 0.168320i
\(749\) 1.82231i 0.00243300i
\(750\) 0 0
\(751\) 71.2058i 0.0948146i −0.998876 0.0474073i \(-0.984904\pi\)
0.998876 0.0474073i \(-0.0150959\pi\)
\(752\) −642.050 + 303.125i −0.853789 + 0.403091i
\(753\) 268.283i 0.356286i
\(754\) 9.89043 + 7.91856i 0.0131173 + 0.0105021i
\(755\) 0 0
\(756\) 153.928 34.5098i 0.203608 0.0456479i
\(757\) −1452.44 −1.91867 −0.959337 0.282264i \(-0.908915\pi\)
−0.959337 + 0.282264i \(0.908915\pi\)
\(758\) 515.373 643.710i 0.679912 0.849222i
\(759\) 326.710i 0.430448i
\(760\) 0 0
\(761\) 414.416 0.544567 0.272284 0.962217i \(-0.412221\pi\)
0.272284 + 0.962217i \(0.412221\pi\)
\(762\) 3.11695 + 2.49552i 0.00409048 + 0.00327496i
\(763\) 892.523i 1.16976i
\(764\) −112.410 + 25.2017i −0.147133 + 0.0329865i
\(765\) 0 0
\(766\) −504.634 + 630.297i −0.658791 + 0.822842i
\(767\) 965.081 1.25825
\(768\) −342.368 281.766i −0.445792 0.366883i
\(769\) 132.780 0.172665 0.0863326 0.996266i \(-0.472485\pi\)
0.0863326 + 0.996266i \(0.472485\pi\)
\(770\) 0 0
\(771\) 730.968 0.948078
\(772\) 342.678 76.8267i 0.443884 0.0995165i
\(773\) 135.449 0.175225 0.0876126 0.996155i \(-0.472076\pi\)
0.0876126 + 0.996155i \(0.472076\pi\)
\(774\) −37.0732 29.6819i −0.0478982 0.0383487i
\(775\) 0 0
\(776\) −481.702 + 985.656i −0.620749 + 1.27018i
\(777\) 481.401i 0.619564i
\(778\) 122.567 + 98.1307i 0.157541 + 0.126132i
\(779\) 87.3592 0.112143
\(780\) 0 0
\(781\) 1503.70i 1.92535i
\(782\) 151.831 + 121.560i 0.194157 + 0.155448i
\(783\) 3.06173 0.00391025
\(784\) −124.480 + 58.7695i −0.158775 + 0.0749611i
\(785\) 0 0
\(786\) −518.873 415.424i −0.660143 0.528530i
\(787\) 370.900i 0.471283i 0.971840 + 0.235642i \(0.0757192\pi\)
−0.971840 + 0.235642i \(0.924281\pi\)
\(788\) −304.192 1356.82i −0.386030 1.72185i
\(789\) 204.525i 0.259220i
\(790\) 0 0
\(791\) 312.489i 0.395055i
\(792\) −360.216 176.042i −0.454818 0.222275i
\(793\) 1062.20i 1.33947i
\(794\) 403.846 504.411i 0.508622 0.635279i
\(795\) 0 0
\(796\) 504.856 113.186i 0.634241 0.142194i
\(797\) 980.881 1.23072 0.615358 0.788247i \(-0.289011\pi\)
0.615358 + 0.788247i \(0.289011\pi\)
\(798\) −731.916 585.992i −0.917187 0.734326i
\(799\) 382.196i 0.478343i
\(800\) 0 0
\(801\) −23.6991 −0.0295869
\(802\) 776.729 970.149i 0.968490 1.20966i
\(803\) 1137.30i 1.41631i
\(804\) 135.652 + 605.063i 0.168722 + 0.752566i
\(805\) 0 0
\(806\) −756.032 605.301i −0.938005 0.750994i
\(807\) 855.014 1.05950
\(808\) −324.673 + 664.344i −0.401823 + 0.822208i
\(809\) 464.769 0.574498 0.287249 0.957856i \(-0.407259\pi\)
0.287249 + 0.957856i \(0.407259\pi\)
\(810\) 0 0
\(811\) −49.1816 −0.0606431 −0.0303216 0.999540i \(-0.509653\pi\)
−0.0303216 + 0.999540i \(0.509653\pi\)
\(812\) −17.4550 + 3.91332i −0.0214963 + 0.00481936i
\(813\) 628.657 0.773255
\(814\) −764.693 + 955.115i −0.939426 + 1.17336i
\(815\) 0 0
\(816\) 215.838 101.901i 0.264507 0.124879i
\(817\) 282.270i 0.345496i
\(818\) 403.607 504.112i 0.493407 0.616274i
\(819\) −244.795 −0.298894
\(820\) 0 0
\(821\) 911.027i 1.10965i −0.831965 0.554827i \(-0.812784\pi\)
0.831965 0.554827i \(-0.187216\pi\)
\(822\) 36.8332 46.0053i 0.0448092 0.0559676i
\(823\) 1278.02 1.55287 0.776437 0.630195i \(-0.217025\pi\)
0.776437 + 0.630195i \(0.217025\pi\)
\(824\) −886.327 433.158i −1.07564 0.525678i
\(825\) 0 0
\(826\) −851.604 + 1063.67i −1.03100 + 1.28774i
\(827\) 671.016i 0.811386i 0.914009 + 0.405693i \(0.132970\pi\)
−0.914009 + 0.405693i \(0.867030\pi\)
\(828\) 29.6416 + 132.213i 0.0357990 + 0.159678i
\(829\) 31.8486i 0.0384181i −0.999815 0.0192091i \(-0.993885\pi\)
0.999815 0.0192091i \(-0.00611481\pi\)
\(830\) 0 0
\(831\) 556.007i 0.669082i
\(832\) 422.764 + 542.880i 0.508130 + 0.652500i
\(833\) 74.0997i 0.0889552i
\(834\) 476.957 + 381.865i 0.571890 + 0.457872i
\(835\) 0 0
\(836\) 521.311 + 2325.26i 0.623578 + 2.78141i
\(837\) −234.041 −0.279618
\(838\) 24.0393 30.0255i 0.0286865 0.0358299i
\(839\) 112.707i 0.134335i −0.997742 0.0671674i \(-0.978604\pi\)
0.997742 0.0671674i \(-0.0213961\pi\)
\(840\) 0 0
\(841\) 840.653 0.999587
\(842\) −488.347 390.985i −0.579985 0.464352i
\(843\) 321.813i 0.381748i
\(844\) 166.705 + 743.570i 0.197518 + 0.881008i
\(845\) 0 0
\(846\) 166.407 207.845i 0.196698 0.245680i
\(847\) 1199.73 1.41644
\(848\) −1060.80 + 500.825i −1.25094 + 0.590595i
\(849\) −361.354 −0.425623
\(850\) 0 0
\(851\) 413.490 0.485887
\(852\) 136.426 + 608.516i 0.160125 + 0.714221i
\(853\) −512.714 −0.601072 −0.300536 0.953770i \(-0.597166\pi\)
−0.300536 + 0.953770i \(0.597166\pi\)
\(854\) 1170.71 + 937.307i 1.37086 + 1.09755i
\(855\) 0 0
\(856\) −0.843401 + 1.72576i −0.000985281 + 0.00201608i
\(857\) 1620.81i 1.89126i 0.325243 + 0.945631i \(0.394554\pi\)
−0.325243 + 0.945631i \(0.605446\pi\)
\(858\) 485.680 + 388.850i 0.566061 + 0.453205i
\(859\) −225.172 −0.262132 −0.131066 0.991374i \(-0.541840\pi\)
−0.131066 + 0.991374i \(0.541840\pi\)
\(860\) 0 0
\(861\) 32.2027i 0.0374016i
\(862\) −651.692 521.763i −0.756023 0.605294i
\(863\) −1029.21 −1.19260 −0.596299 0.802763i \(-0.703363\pi\)
−0.596299 + 0.802763i \(0.703363\pi\)
\(864\) 161.744 + 38.5592i 0.187204 + 0.0446287i
\(865\) 0 0
\(866\) −436.331 349.339i −0.503846 0.403394i
\(867\) 372.080i 0.429158i
\(868\) 1334.27 299.137i 1.53718 0.344628i
\(869\) 605.818i 0.697144i
\(870\) 0 0
\(871\) 962.244i 1.10476i
\(872\) −413.076 + 845.236i −0.473711 + 0.969307i
\(873\) 411.400i 0.471248i
\(874\) 503.327 628.664i 0.575889 0.719296i
\(875\) 0 0
\(876\) −103.184 460.244i −0.117790 0.525392i
\(877\) 570.056 0.650007 0.325003 0.945713i \(-0.394635\pi\)
0.325003 + 0.945713i \(0.394635\pi\)
\(878\) −47.0464 37.6667i −0.0535836 0.0429005i
\(879\) 531.609i 0.604789i
\(880\) 0 0
\(881\) 596.788 0.677398 0.338699 0.940895i \(-0.390013\pi\)
0.338699 + 0.940895i \(0.390013\pi\)
\(882\) 32.2628 40.2968i 0.0365791 0.0456880i
\(883\) 856.738i 0.970258i 0.874442 + 0.485129i \(0.161227\pi\)
−0.874442 + 0.485129i \(0.838773\pi\)
\(884\) −361.418 + 81.0280i −0.408843 + 0.0916606i
\(885\) 0 0
\(886\) 87.8766 + 70.3565i 0.0991835 + 0.0794092i
\(887\) 1648.76 1.85880 0.929402 0.369068i \(-0.120323\pi\)
0.929402 + 0.369068i \(0.120323\pi\)
\(888\) 222.801 455.895i 0.250902 0.513396i
\(889\) 8.74819 0.00984048
\(890\) 0 0
\(891\) 150.349 0.168742
\(892\) 185.020 + 825.263i 0.207421 + 0.925183i
\(893\) −1582.50 −1.77212
\(894\) 459.089 573.411i 0.513523 0.641400i
\(895\) 0 0
\(896\) −971.393 13.0950i −1.08414 0.0146149i
\(897\) 210.261i 0.234405i
\(898\) −354.367 + 442.612i −0.394619 + 0.492886i
\(899\) 26.5395 0.0295212
\(900\) 0 0
\(901\) 631.467i 0.700851i
\(902\) 51.1532 63.8913i 0.0567109 0.0708329i
\(903\) −104.052 −0.115229
\(904\) −144.626 + 295.932i −0.159984 + 0.327359i
\(905\) 0 0
\(906\) 310.382 387.673i 0.342585 0.427895i
\(907\) 844.509i 0.931101i −0.885021 0.465551i \(-0.845856\pi\)
0.885021 0.465551i \(-0.154144\pi\)
\(908\) −346.940 + 77.7821i −0.382092 + 0.0856631i
\(909\) 277.289i 0.305048i
\(910\) 0 0
\(911\) 1074.78i 1.17978i −0.807483 0.589891i \(-0.799171\pi\)
0.807483 0.589891i \(-0.200829\pi\)
\(912\) −421.929 893.689i −0.462641 0.979923i
\(913\) 1596.88i 1.74905i
\(914\) −414.052 331.502i −0.453011 0.362694i
\(915\) 0 0
\(916\) 596.677 133.772i 0.651395 0.146039i
\(917\) −1456.30 −1.58811
\(918\) −55.9410 + 69.8713i −0.0609379 + 0.0761126i
\(919\) 1142.19i 1.24286i −0.783471 0.621428i \(-0.786553\pi\)
0.783471 0.621428i \(-0.213447\pi\)
\(920\) 0 0
\(921\) −491.067 −0.533188
\(922\) −1107.94 887.046i −1.20167 0.962089i
\(923\) 967.736i 1.04847i
\(924\) −857.146 + 192.168i −0.927647 + 0.207974i
\(925\) 0 0
\(926\) −521.735 + 651.657i −0.563429 + 0.703733i
\(927\) 369.941 0.399074
\(928\) −18.3413 4.37251i −0.0197644 0.00471175i
\(929\) −415.953 −0.447742 −0.223871 0.974619i \(-0.571869\pi\)
−0.223871 + 0.974619i \(0.571869\pi\)
\(930\) 0 0
\(931\) −306.814 −0.329553
\(932\) 735.412 164.876i 0.789068 0.176905i
\(933\) 1063.51 1.13988
\(934\) −1060.54 849.101i −1.13549 0.909102i
\(935\) 0 0
\(936\) −231.825 113.295i −0.247676 0.121042i
\(937\) 846.979i 0.903927i 0.892037 + 0.451963i \(0.149276\pi\)
−0.892037 + 0.451963i \(0.850724\pi\)
\(938\) 1060.54 + 849.101i 1.13064 + 0.905225i
\(939\) −886.671 −0.944271
\(940\) 0 0
\(941\) 149.279i 0.158638i 0.996849 + 0.0793192i \(0.0252746\pi\)
−0.996849 + 0.0793192i \(0.974725\pi\)
\(942\) 222.476 + 178.120i 0.236174 + 0.189087i
\(943\) −27.6599 −0.0293318
\(944\) −1298.77 + 613.176i −1.37582 + 0.649551i
\(945\) 0 0
\(946\) 206.442 + 165.283i 0.218226 + 0.174718i
\(947\) 543.005i 0.573395i −0.958021 0.286697i \(-0.907443\pi\)
0.958021 0.286697i \(-0.0925574\pi\)
\(948\) 54.9643 + 245.163i 0.0579793 + 0.258611i
\(949\) 731.935i 0.771269i
\(950\) 0 0
\(951\) 744.098i 0.782438i
\(952\) 229.616 469.839i 0.241193 0.493529i
\(953\) 344.292i 0.361272i −0.983550 0.180636i \(-0.942184\pi\)
0.983550 0.180636i \(-0.0578156\pi\)
\(954\) 274.938 343.403i 0.288195 0.359961i
\(955\) 0 0
\(956\) −889.828 + 199.495i −0.930782 + 0.208677i
\(957\) −17.0492 −0.0178153
\(958\) −246.021 196.971i −0.256807 0.205607i
\(959\) 129.121i 0.134641i
\(960\) 0 0
\(961\) −1067.70 −1.11103
\(962\) −492.135 + 614.685i −0.511575 + 0.638966i
\(963\) 0.720311i 0.000747987i
\(964\) 232.585 + 1037.42i 0.241271 + 1.07616i
\(965\) 0 0
\(966\) 231.741 + 185.538i 0.239897 + 0.192069i
\(967\) −1044.78 −1.08044 −0.540219 0.841524i \(-0.681659\pi\)
−0.540219 + 0.841524i \(0.681659\pi\)
\(968\) 1136.16 + 555.256i 1.17372 + 0.573611i
\(969\) 531.991 0.549010
\(970\) 0 0
\(971\) 306.656 0.315814 0.157907 0.987454i \(-0.449525\pi\)
0.157907 + 0.987454i \(0.449525\pi\)
\(972\) −60.8435 + 13.6408i −0.0625962 + 0.0140337i
\(973\) 1338.65 1.37580
\(974\) 920.800 1150.10i 0.945379 1.18080i
\(975\) 0 0
\(976\) 674.884 + 1429.47i 0.691479 + 1.46462i
\(977\) 1753.81i 1.79509i −0.440919 0.897547i \(-0.645347\pi\)
0.440919 0.897547i \(-0.354653\pi\)
\(978\) −60.2131 + 75.2073i −0.0615676 + 0.0768990i
\(979\) 131.968 0.134799
\(980\) 0 0
\(981\) 352.790i 0.359623i
\(982\) 453.005 565.812i 0.461309 0.576183i
\(983\) 951.541 0.967997 0.483999 0.875069i \(-0.339184\pi\)
0.483999 + 0.875069i \(0.339184\pi\)
\(984\) −14.9040 + 30.4966i −0.0151464 + 0.0309924i
\(985\) 0 0
\(986\) 6.34355 7.92321i 0.00643362 0.00803571i
\(987\) 583.349i 0.591033i
\(988\) 335.501 + 1496.47i 0.339576 + 1.51465i
\(989\) 89.3731i 0.0903672i
\(990\) 0 0
\(991\) 1786.06i 1.80229i 0.433523 + 0.901143i \(0.357270\pi\)
−0.433523 + 0.901143i \(0.642730\pi\)
\(992\) 1402.03 + 334.238i 1.41333 + 0.336933i
\(993\) 930.627i 0.937187i
\(994\) 1066.60 + 853.947i 1.07303 + 0.859102i
\(995\) 0 0
\(996\) 144.881 + 646.228i 0.145463 + 0.648823i
\(997\) 1375.80 1.37994 0.689969 0.723839i \(-0.257624\pi\)
0.689969 + 0.723839i \(0.257624\pi\)
\(998\) 811.008 1012.96i 0.812633 1.01499i
\(999\) 190.285i 0.190475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.p.b.499.8 32
4.3 odd 2 2400.3.p.b.1999.14 32
5.2 odd 4 120.3.g.a.91.5 16
5.3 odd 4 600.3.g.d.451.12 16
5.4 even 2 inner 600.3.p.b.499.25 32
8.3 odd 2 inner 600.3.p.b.499.26 32
8.5 even 2 2400.3.p.b.1999.32 32
15.2 even 4 360.3.g.c.91.12 16
20.3 even 4 2400.3.g.b.751.7 16
20.7 even 4 480.3.g.a.271.9 16
20.19 odd 2 2400.3.p.b.1999.31 32
40.3 even 4 600.3.g.d.451.11 16
40.13 odd 4 2400.3.g.b.751.2 16
40.19 odd 2 inner 600.3.p.b.499.7 32
40.27 even 4 120.3.g.a.91.6 yes 16
40.29 even 2 2400.3.p.b.1999.13 32
40.37 odd 4 480.3.g.a.271.16 16
60.47 odd 4 1440.3.g.c.271.10 16
120.77 even 4 1440.3.g.c.271.7 16
120.107 odd 4 360.3.g.c.91.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.5 16 5.2 odd 4
120.3.g.a.91.6 yes 16 40.27 even 4
360.3.g.c.91.11 16 120.107 odd 4
360.3.g.c.91.12 16 15.2 even 4
480.3.g.a.271.9 16 20.7 even 4
480.3.g.a.271.16 16 40.37 odd 4
600.3.g.d.451.11 16 40.3 even 4
600.3.g.d.451.12 16 5.3 odd 4
600.3.p.b.499.7 32 40.19 odd 2 inner
600.3.p.b.499.8 32 1.1 even 1 trivial
600.3.p.b.499.25 32 5.4 even 2 inner
600.3.p.b.499.26 32 8.3 odd 2 inner
1440.3.g.c.271.7 16 120.77 even 4
1440.3.g.c.271.10 16 60.47 odd 4
2400.3.g.b.751.2 16 40.13 odd 4
2400.3.g.b.751.7 16 20.3 even 4
2400.3.p.b.1999.13 32 40.29 even 2
2400.3.p.b.1999.14 32 4.3 odd 2
2400.3.p.b.1999.31 32 20.19 odd 2
2400.3.p.b.1999.32 32 8.5 even 2