Properties

Label 2400.3.g.b.751.7
Level $2400$
Weight $3$
Character 2400.751
Analytic conductor $65.395$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(751,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.751"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,48,0,-64,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{34}\cdot 3 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.7
Root \(1.56126 + 1.24999i\) of defining polynomial
Character \(\chi\) \(=\) 2400.751
Dual form 2400.3.g.b.751.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +7.58970i q^{7} +3.00000 q^{9} -16.7055 q^{11} +10.7512i q^{13} -8.61276 q^{17} -35.6616 q^{19} -13.1457i q^{21} -11.2913i q^{23} -5.19615 q^{27} +0.589229i q^{29} -45.0411i q^{31} +28.9347 q^{33} -36.6203i q^{37} -18.6216i q^{39} -2.44967 q^{41} -7.91524 q^{43} +44.3755i q^{47} -8.60348 q^{49} +14.9177 q^{51} +73.3176i q^{53} +61.7677 q^{57} +89.7651 q^{59} -98.7987i q^{61} +22.7691i q^{63} +89.5013 q^{67} +19.5571i q^{69} +90.0121i q^{71} -68.0795 q^{73} -126.790i q^{77} -36.2647i q^{79} +9.00000 q^{81} -95.5904 q^{83} -1.02058i q^{87} -7.89970 q^{89} -81.5982 q^{91} +78.0135i q^{93} +137.133 q^{97} -50.1164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} - 64 q^{11} + 32 q^{19} - 192 q^{43} - 80 q^{49} - 96 q^{51} - 96 q^{57} - 128 q^{59} - 64 q^{67} + 160 q^{73} + 144 q^{81} + 192 q^{91} + 224 q^{97} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.58970i 1.08424i 0.840300 + 0.542121i \(0.182379\pi\)
−0.840300 + 0.542121i \(0.817621\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −16.7055 −1.51868 −0.759340 0.650694i \(-0.774478\pi\)
−0.759340 + 0.650694i \(0.774478\pi\)
\(12\) 0 0
\(13\) 10.7512i 0.827014i 0.910501 + 0.413507i \(0.135696\pi\)
−0.910501 + 0.413507i \(0.864304\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −8.61276 −0.506633 −0.253316 0.967383i \(-0.581521\pi\)
−0.253316 + 0.967383i \(0.581521\pi\)
\(18\) 0 0
\(19\) −35.6616 −1.87693 −0.938464 0.345378i \(-0.887751\pi\)
−0.938464 + 0.345378i \(0.887751\pi\)
\(20\) 0 0
\(21\) − 13.1457i − 0.625988i
\(22\) 0 0
\(23\) − 11.2913i − 0.490925i −0.969406 0.245462i \(-0.921060\pi\)
0.969406 0.245462i \(-0.0789398\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) 0.589229i 0.0203183i 0.999948 + 0.0101591i \(0.00323381\pi\)
−0.999948 + 0.0101591i \(0.996766\pi\)
\(30\) 0 0
\(31\) − 45.0411i − 1.45294i −0.687198 0.726470i \(-0.741160\pi\)
0.687198 0.726470i \(-0.258840\pi\)
\(32\) 0 0
\(33\) 28.9347 0.876810
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 36.6203i − 0.989738i −0.868968 0.494869i \(-0.835216\pi\)
0.868968 0.494869i \(-0.164784\pi\)
\(38\) 0 0
\(39\) − 18.6216i − 0.477477i
\(40\) 0 0
\(41\) −2.44967 −0.0597481 −0.0298740 0.999554i \(-0.509511\pi\)
−0.0298740 + 0.999554i \(0.509511\pi\)
\(42\) 0 0
\(43\) −7.91524 −0.184075 −0.0920377 0.995756i \(-0.529338\pi\)
−0.0920377 + 0.995756i \(0.529338\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 44.3755i 0.944160i 0.881556 + 0.472080i \(0.156497\pi\)
−0.881556 + 0.472080i \(0.843503\pi\)
\(48\) 0 0
\(49\) −8.60348 −0.175581
\(50\) 0 0
\(51\) 14.9177 0.292505
\(52\) 0 0
\(53\) 73.3176i 1.38335i 0.722209 + 0.691675i \(0.243127\pi\)
−0.722209 + 0.691675i \(0.756873\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 61.7677 1.08364
\(58\) 0 0
\(59\) 89.7651 1.52144 0.760721 0.649079i \(-0.224845\pi\)
0.760721 + 0.649079i \(0.224845\pi\)
\(60\) 0 0
\(61\) − 98.7987i − 1.61965i −0.586671 0.809826i \(-0.699562\pi\)
0.586671 0.809826i \(-0.300438\pi\)
\(62\) 0 0
\(63\) 22.7691i 0.361414i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 89.5013 1.33584 0.667920 0.744233i \(-0.267185\pi\)
0.667920 + 0.744233i \(0.267185\pi\)
\(68\) 0 0
\(69\) 19.5571i 0.283436i
\(70\) 0 0
\(71\) 90.0121i 1.26778i 0.773425 + 0.633888i \(0.218542\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(72\) 0 0
\(73\) −68.0795 −0.932596 −0.466298 0.884628i \(-0.654412\pi\)
−0.466298 + 0.884628i \(0.654412\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 126.790i − 1.64662i
\(78\) 0 0
\(79\) − 36.2647i − 0.459046i −0.973303 0.229523i \(-0.926283\pi\)
0.973303 0.229523i \(-0.0737167\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −95.5904 −1.15169 −0.575846 0.817558i \(-0.695327\pi\)
−0.575846 + 0.817558i \(0.695327\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1.02058i − 0.0117307i
\(88\) 0 0
\(89\) −7.89970 −0.0887607 −0.0443803 0.999015i \(-0.514131\pi\)
−0.0443803 + 0.999015i \(0.514131\pi\)
\(90\) 0 0
\(91\) −81.5982 −0.896683
\(92\) 0 0
\(93\) 78.0135i 0.838855i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 137.133 1.41375 0.706873 0.707341i \(-0.250105\pi\)
0.706873 + 0.707341i \(0.250105\pi\)
\(98\) 0 0
\(99\) −50.1164 −0.506227
\(100\) 0 0
\(101\) 92.4295i 0.915144i 0.889173 + 0.457572i \(0.151281\pi\)
−0.889173 + 0.457572i \(0.848719\pi\)
\(102\) 0 0
\(103\) 123.314i 1.19722i 0.801040 + 0.598610i \(0.204280\pi\)
−0.801040 + 0.598610i \(0.795720\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.240104 −0.00224396 −0.00112198 0.999999i \(-0.500357\pi\)
−0.00112198 + 0.999999i \(0.500357\pi\)
\(108\) 0 0
\(109\) − 117.597i − 1.07887i −0.842028 0.539435i \(-0.818638\pi\)
0.842028 0.539435i \(-0.181362\pi\)
\(110\) 0 0
\(111\) 63.4282i 0.571425i
\(112\) 0 0
\(113\) −41.1728 −0.364361 −0.182180 0.983265i \(-0.558315\pi\)
−0.182180 + 0.983265i \(0.558315\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 32.2535i 0.275671i
\(118\) 0 0
\(119\) − 65.3682i − 0.549313i
\(120\) 0 0
\(121\) 158.073 1.30639
\(122\) 0 0
\(123\) 4.24295 0.0344956
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.15264i 0.00907591i 0.999990 + 0.00453795i \(0.00144448\pi\)
−0.999990 + 0.00453795i \(0.998556\pi\)
\(128\) 0 0
\(129\) 13.7096 0.106276
\(130\) 0 0
\(131\) 191.878 1.46472 0.732359 0.680919i \(-0.238419\pi\)
0.732359 + 0.680919i \(0.238419\pi\)
\(132\) 0 0
\(133\) − 270.661i − 2.03504i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.0127 −0.124180 −0.0620901 0.998071i \(-0.519777\pi\)
−0.0620901 + 0.998071i \(0.519777\pi\)
\(138\) 0 0
\(139\) 176.378 1.26890 0.634452 0.772963i \(-0.281226\pi\)
0.634452 + 0.772963i \(0.281226\pi\)
\(140\) 0 0
\(141\) − 76.8607i − 0.545111i
\(142\) 0 0
\(143\) − 179.604i − 1.25597i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.9017 0.101372
\(148\) 0 0
\(149\) 212.046i 1.42313i 0.702620 + 0.711565i \(0.252013\pi\)
−0.702620 + 0.711565i \(0.747987\pi\)
\(150\) 0 0
\(151\) 143.361i 0.949408i 0.880146 + 0.474704i \(0.157445\pi\)
−0.880146 + 0.474704i \(0.842555\pi\)
\(152\) 0 0
\(153\) −25.8383 −0.168878
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 82.2710i − 0.524019i −0.965065 0.262009i \(-0.915615\pi\)
0.965065 0.262009i \(-0.0843852\pi\)
\(158\) 0 0
\(159\) − 126.990i − 0.798678i
\(160\) 0 0
\(161\) 85.6973 0.532282
\(162\) 0 0
\(163\) 27.8115 0.170623 0.0853113 0.996354i \(-0.472812\pi\)
0.0853113 + 0.996354i \(0.472812\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 207.819i − 1.24443i −0.782848 0.622214i \(-0.786234\pi\)
0.782848 0.622214i \(-0.213766\pi\)
\(168\) 0 0
\(169\) 53.4122 0.316048
\(170\) 0 0
\(171\) −106.985 −0.625642
\(172\) 0 0
\(173\) 45.7625i 0.264523i 0.991215 + 0.132262i \(0.0422239\pi\)
−0.991215 + 0.132262i \(0.957776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −155.478 −0.878405
\(178\) 0 0
\(179\) 33.0983 0.184907 0.0924533 0.995717i \(-0.470529\pi\)
0.0924533 + 0.995717i \(0.470529\pi\)
\(180\) 0 0
\(181\) − 177.147i − 0.978711i −0.872084 0.489356i \(-0.837232\pi\)
0.872084 0.489356i \(-0.162768\pi\)
\(182\) 0 0
\(183\) 171.124i 0.935106i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 143.880 0.769413
\(188\) 0 0
\(189\) − 39.4372i − 0.208663i
\(190\) 0 0
\(191\) 28.8000i 0.150785i 0.997154 + 0.0753927i \(0.0240210\pi\)
−0.997154 + 0.0753927i \(0.975979\pi\)
\(192\) 0 0
\(193\) −87.7961 −0.454902 −0.227451 0.973789i \(-0.573039\pi\)
−0.227451 + 0.973789i \(0.573039\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 347.625i − 1.76459i −0.470696 0.882296i \(-0.655997\pi\)
0.470696 0.882296i \(-0.344003\pi\)
\(198\) 0 0
\(199\) 129.347i 0.649985i 0.945717 + 0.324992i \(0.105362\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(200\) 0 0
\(201\) −155.021 −0.771247
\(202\) 0 0
\(203\) −4.47207 −0.0220299
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 33.8738i − 0.163642i
\(208\) 0 0
\(209\) 595.744 2.85045
\(210\) 0 0
\(211\) 190.507 0.902877 0.451439 0.892302i \(-0.350911\pi\)
0.451439 + 0.892302i \(0.350911\pi\)
\(212\) 0 0
\(213\) − 155.905i − 0.731951i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 341.848 1.57534
\(218\) 0 0
\(219\) 117.917 0.538434
\(220\) 0 0
\(221\) − 92.5973i − 0.418992i
\(222\) 0 0
\(223\) 211.437i 0.948149i 0.880485 + 0.474075i \(0.157217\pi\)
−0.880485 + 0.474075i \(0.842783\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 88.8880 0.391577 0.195788 0.980646i \(-0.437273\pi\)
0.195788 + 0.980646i \(0.437273\pi\)
\(228\) 0 0
\(229\) − 152.872i − 0.667565i −0.942650 0.333782i \(-0.891675\pi\)
0.942650 0.333782i \(-0.108325\pi\)
\(230\) 0 0
\(231\) 219.606i 0.950675i
\(232\) 0 0
\(233\) −188.417 −0.808656 −0.404328 0.914614i \(-0.632495\pi\)
−0.404328 + 0.914614i \(0.632495\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 62.8122i 0.265030i
\(238\) 0 0
\(239\) − 227.979i − 0.953888i −0.878934 0.476944i \(-0.841745\pi\)
0.878934 0.476944i \(-0.158255\pi\)
\(240\) 0 0
\(241\) −265.794 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 383.404i − 1.55224i
\(248\) 0 0
\(249\) 165.567 0.664929
\(250\) 0 0
\(251\) −154.894 −0.617106 −0.308553 0.951207i \(-0.599845\pi\)
−0.308553 + 0.951207i \(0.599845\pi\)
\(252\) 0 0
\(253\) 188.626i 0.745558i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 422.025 1.64212 0.821060 0.570842i \(-0.193383\pi\)
0.821060 + 0.570842i \(0.193383\pi\)
\(258\) 0 0
\(259\) 277.937 1.07312
\(260\) 0 0
\(261\) 1.76769i 0.00677275i
\(262\) 0 0
\(263\) − 118.083i − 0.448983i −0.974476 0.224492i \(-0.927928\pi\)
0.974476 0.224492i \(-0.0720721\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 13.6827 0.0512460
\(268\) 0 0
\(269\) − 493.643i − 1.83510i −0.397617 0.917551i \(-0.630163\pi\)
0.397617 0.917551i \(-0.369837\pi\)
\(270\) 0 0
\(271\) − 362.955i − 1.33932i −0.742669 0.669659i \(-0.766440\pi\)
0.742669 0.669659i \(-0.233560\pi\)
\(272\) 0 0
\(273\) 141.332 0.517700
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 321.011i − 1.15888i −0.815013 0.579442i \(-0.803270\pi\)
0.815013 0.579442i \(-0.196730\pi\)
\(278\) 0 0
\(279\) − 135.123i − 0.484313i
\(280\) 0 0
\(281\) −185.799 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(282\) 0 0
\(283\) −208.628 −0.737202 −0.368601 0.929588i \(-0.620163\pi\)
−0.368601 + 0.929588i \(0.620163\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 18.5923i − 0.0647814i
\(288\) 0 0
\(289\) −214.820 −0.743323
\(290\) 0 0
\(291\) −237.522 −0.816226
\(292\) 0 0
\(293\) 306.925i 1.04752i 0.851864 + 0.523762i \(0.175472\pi\)
−0.851864 + 0.523762i \(0.824528\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 86.8042 0.292270
\(298\) 0 0
\(299\) 121.394 0.406002
\(300\) 0 0
\(301\) − 60.0743i − 0.199582i
\(302\) 0 0
\(303\) − 160.093i − 0.528358i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 283.517 0.923510 0.461755 0.887008i \(-0.347220\pi\)
0.461755 + 0.887008i \(0.347220\pi\)
\(308\) 0 0
\(309\) − 213.586i − 0.691216i
\(310\) 0 0
\(311\) − 614.016i − 1.97433i −0.159709 0.987164i \(-0.551056\pi\)
0.159709 0.987164i \(-0.448944\pi\)
\(312\) 0 0
\(313\) 511.920 1.63553 0.817763 0.575555i \(-0.195214\pi\)
0.817763 + 0.575555i \(0.195214\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 429.605i 1.35522i 0.735421 + 0.677611i \(0.236985\pi\)
−0.735421 + 0.677611i \(0.763015\pi\)
\(318\) 0 0
\(319\) − 9.84336i − 0.0308569i
\(320\) 0 0
\(321\) 0.415872 0.00129555
\(322\) 0 0
\(323\) 307.145 0.950913
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 203.684i 0.622885i
\(328\) 0 0
\(329\) −336.797 −1.02370
\(330\) 0 0
\(331\) 537.298 1.62326 0.811628 0.584175i \(-0.198582\pi\)
0.811628 + 0.584175i \(0.198582\pi\)
\(332\) 0 0
\(333\) − 109.861i − 0.329913i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −158.578 −0.470559 −0.235279 0.971928i \(-0.575600\pi\)
−0.235279 + 0.971928i \(0.575600\pi\)
\(338\) 0 0
\(339\) 71.3133 0.210364
\(340\) 0 0
\(341\) 752.434i 2.20655i
\(342\) 0 0
\(343\) 306.597i 0.893870i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 169.697 0.489041 0.244520 0.969644i \(-0.421370\pi\)
0.244520 + 0.969644i \(0.421370\pi\)
\(348\) 0 0
\(349\) − 296.370i − 0.849196i −0.905382 0.424598i \(-0.860415\pi\)
0.905382 0.424598i \(-0.139585\pi\)
\(350\) 0 0
\(351\) − 55.8648i − 0.159159i
\(352\) 0 0
\(353\) −133.075 −0.376982 −0.188491 0.982075i \(-0.560360\pi\)
−0.188491 + 0.982075i \(0.560360\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 113.221i 0.317146i
\(358\) 0 0
\(359\) − 238.095i − 0.663218i −0.943417 0.331609i \(-0.892409\pi\)
0.943417 0.331609i \(-0.107591\pi\)
\(360\) 0 0
\(361\) 910.751 2.52286
\(362\) 0 0
\(363\) −273.791 −0.754244
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 381.665i − 1.03996i −0.854179 0.519979i \(-0.825940\pi\)
0.854179 0.519979i \(-0.174060\pi\)
\(368\) 0 0
\(369\) −7.34901 −0.0199160
\(370\) 0 0
\(371\) −556.458 −1.49989
\(372\) 0 0
\(373\) − 42.2729i − 0.113332i −0.998393 0.0566661i \(-0.981953\pi\)
0.998393 0.0566661i \(-0.0180470\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.33491 −0.0168035
\(378\) 0 0
\(379\) −412.302 −1.08787 −0.543934 0.839128i \(-0.683066\pi\)
−0.543934 + 0.839128i \(0.683066\pi\)
\(380\) 0 0
\(381\) − 1.99643i − 0.00523998i
\(382\) 0 0
\(383\) − 403.711i − 1.05408i −0.849842 0.527038i \(-0.823303\pi\)
0.849842 0.527038i \(-0.176697\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −23.7457 −0.0613585
\(388\) 0 0
\(389\) 78.5053i 0.201813i 0.994896 + 0.100907i \(0.0321743\pi\)
−0.994896 + 0.100907i \(0.967826\pi\)
\(390\) 0 0
\(391\) 97.2490i 0.248719i
\(392\) 0 0
\(393\) −332.342 −0.845655
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 323.080i 0.813803i 0.913472 + 0.406902i \(0.133391\pi\)
−0.913472 + 0.406902i \(0.866609\pi\)
\(398\) 0 0
\(399\) 468.798i 1.17493i
\(400\) 0 0
\(401\) −621.389 −1.54960 −0.774799 0.632207i \(-0.782149\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(402\) 0 0
\(403\) 484.245 1.20160
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 611.760i 1.50310i
\(408\) 0 0
\(409\) 322.888 0.789458 0.394729 0.918798i \(-0.370839\pi\)
0.394729 + 0.918798i \(0.370839\pi\)
\(410\) 0 0
\(411\) 29.4668 0.0716954
\(412\) 0 0
\(413\) 681.290i 1.64961i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −305.495 −0.732602
\(418\) 0 0
\(419\) −19.2316 −0.0458988 −0.0229494 0.999737i \(-0.507306\pi\)
−0.0229494 + 0.999737i \(0.507306\pi\)
\(420\) 0 0
\(421\) 312.791i 0.742970i 0.928439 + 0.371485i \(0.121151\pi\)
−0.928439 + 0.371485i \(0.878849\pi\)
\(422\) 0 0
\(423\) 133.127i 0.314720i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 749.852 1.75609
\(428\) 0 0
\(429\) 311.083i 0.725134i
\(430\) 0 0
\(431\) − 417.415i − 0.968479i −0.874935 0.484240i \(-0.839096\pi\)
0.874935 0.484240i \(-0.160904\pi\)
\(432\) 0 0
\(433\) −279.474 −0.645436 −0.322718 0.946495i \(-0.604596\pi\)
−0.322718 + 0.946495i \(0.604596\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 402.665i 0.921430i
\(438\) 0 0
\(439\) 30.1336i 0.0686415i 0.999411 + 0.0343207i \(0.0109268\pi\)
−0.999411 + 0.0343207i \(0.989073\pi\)
\(440\) 0 0
\(441\) −25.8104 −0.0585271
\(442\) 0 0
\(443\) −56.2858 −0.127056 −0.0635279 0.997980i \(-0.520235\pi\)
−0.0635279 + 0.997980i \(0.520235\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 367.275i − 0.821644i
\(448\) 0 0
\(449\) −283.497 −0.631396 −0.315698 0.948860i \(-0.602239\pi\)
−0.315698 + 0.948860i \(0.602239\pi\)
\(450\) 0 0
\(451\) 40.9229 0.0907382
\(452\) 0 0
\(453\) − 248.308i − 0.548141i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 265.204 0.580315 0.290158 0.956979i \(-0.406292\pi\)
0.290158 + 0.956979i \(0.406292\pi\)
\(458\) 0 0
\(459\) 44.7532 0.0975015
\(460\) 0 0
\(461\) 709.643i 1.53936i 0.638432 + 0.769678i \(0.279583\pi\)
−0.638432 + 0.769678i \(0.720417\pi\)
\(462\) 0 0
\(463\) − 417.392i − 0.901495i −0.892652 0.450747i \(-0.851157\pi\)
0.892652 0.450747i \(-0.148843\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −679.287 −1.45458 −0.727288 0.686332i \(-0.759220\pi\)
−0.727288 + 0.686332i \(0.759220\pi\)
\(468\) 0 0
\(469\) 679.287i 1.44837i
\(470\) 0 0
\(471\) 142.498i 0.302543i
\(472\) 0 0
\(473\) 132.228 0.279552
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 219.953i 0.461117i
\(478\) 0 0
\(479\) 157.578i 0.328974i 0.986379 + 0.164487i \(0.0525968\pi\)
−0.986379 + 0.164487i \(0.947403\pi\)
\(480\) 0 0
\(481\) 393.711 0.818527
\(482\) 0 0
\(483\) −148.432 −0.307313
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 736.646i − 1.51262i −0.654213 0.756311i \(-0.727000\pi\)
0.654213 0.756311i \(-0.273000\pi\)
\(488\) 0 0
\(489\) −48.1709 −0.0985090
\(490\) 0 0
\(491\) 362.408 0.738101 0.369050 0.929409i \(-0.379683\pi\)
0.369050 + 0.929409i \(0.379683\pi\)
\(492\) 0 0
\(493\) − 5.07489i − 0.0102939i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −683.164 −1.37458
\(498\) 0 0
\(499\) −648.812 −1.30022 −0.650112 0.759838i \(-0.725278\pi\)
−0.650112 + 0.759838i \(0.725278\pi\)
\(500\) 0 0
\(501\) 359.954i 0.718470i
\(502\) 0 0
\(503\) 402.612i 0.800421i 0.916423 + 0.400210i \(0.131063\pi\)
−0.916423 + 0.400210i \(0.868937\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −92.5126 −0.182471
\(508\) 0 0
\(509\) − 470.175i − 0.923724i −0.886952 0.461862i \(-0.847182\pi\)
0.886952 0.461862i \(-0.152818\pi\)
\(510\) 0 0
\(511\) − 516.702i − 1.01116i
\(512\) 0 0
\(513\) 185.303 0.361215
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 741.315i − 1.43388i
\(518\) 0 0
\(519\) − 79.2630i − 0.152723i
\(520\) 0 0
\(521\) −155.978 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(522\) 0 0
\(523\) −313.578 −0.599576 −0.299788 0.954006i \(-0.596916\pi\)
−0.299788 + 0.954006i \(0.596916\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 387.928i 0.736107i
\(528\) 0 0
\(529\) 401.507 0.758993
\(530\) 0 0
\(531\) 269.295 0.507147
\(532\) 0 0
\(533\) − 26.3369i − 0.0494125i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −57.3279 −0.106756
\(538\) 0 0
\(539\) 143.725 0.266652
\(540\) 0 0
\(541\) − 892.335i − 1.64942i −0.565557 0.824709i \(-0.691339\pi\)
0.565557 0.824709i \(-0.308661\pi\)
\(542\) 0 0
\(543\) 306.827i 0.565059i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −671.435 −1.22749 −0.613743 0.789506i \(-0.710337\pi\)
−0.613743 + 0.789506i \(0.710337\pi\)
\(548\) 0 0
\(549\) − 296.396i − 0.539884i
\(550\) 0 0
\(551\) − 21.0129i − 0.0381359i
\(552\) 0 0
\(553\) 275.238 0.497717
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 296.095i 0.531590i 0.964030 + 0.265795i \(0.0856344\pi\)
−0.964030 + 0.265795i \(0.914366\pi\)
\(558\) 0 0
\(559\) − 85.0982i − 0.152233i
\(560\) 0 0
\(561\) −249.208 −0.444221
\(562\) 0 0
\(563\) −707.222 −1.25617 −0.628084 0.778146i \(-0.716161\pi\)
−0.628084 + 0.778146i \(0.716161\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 68.3073i 0.120471i
\(568\) 0 0
\(569\) 230.263 0.404680 0.202340 0.979315i \(-0.435145\pi\)
0.202340 + 0.979315i \(0.435145\pi\)
\(570\) 0 0
\(571\) 439.428 0.769575 0.384788 0.923005i \(-0.374275\pi\)
0.384788 + 0.923005i \(0.374275\pi\)
\(572\) 0 0
\(573\) − 49.8831i − 0.0870560i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 184.670 0.320053 0.160026 0.987113i \(-0.448842\pi\)
0.160026 + 0.987113i \(0.448842\pi\)
\(578\) 0 0
\(579\) 152.067 0.262638
\(580\) 0 0
\(581\) − 725.502i − 1.24871i
\(582\) 0 0
\(583\) − 1224.81i − 2.10087i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 297.341 0.506543 0.253271 0.967395i \(-0.418493\pi\)
0.253271 + 0.967395i \(0.418493\pi\)
\(588\) 0 0
\(589\) 1606.24i 2.72706i
\(590\) 0 0
\(591\) 602.103i 1.01879i
\(592\) 0 0
\(593\) 607.065 1.02372 0.511859 0.859070i \(-0.328957\pi\)
0.511859 + 0.859070i \(0.328957\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 224.036i − 0.375269i
\(598\) 0 0
\(599\) 448.633i 0.748970i 0.927233 + 0.374485i \(0.122180\pi\)
−0.927233 + 0.374485i \(0.877820\pi\)
\(600\) 0 0
\(601\) 580.584 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(602\) 0 0
\(603\) 268.504 0.445280
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 132.576i 0.218413i 0.994019 + 0.109206i \(0.0348309\pi\)
−0.994019 + 0.109206i \(0.965169\pi\)
\(608\) 0 0
\(609\) 7.74585 0.0127190
\(610\) 0 0
\(611\) −477.089 −0.780834
\(612\) 0 0
\(613\) − 175.738i − 0.286685i −0.989673 0.143343i \(-0.954215\pi\)
0.989673 0.143343i \(-0.0457851\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −283.254 −0.459082 −0.229541 0.973299i \(-0.573723\pi\)
−0.229541 + 0.973299i \(0.573723\pi\)
\(618\) 0 0
\(619\) 80.2105 0.129581 0.0647904 0.997899i \(-0.479362\pi\)
0.0647904 + 0.997899i \(0.479362\pi\)
\(620\) 0 0
\(621\) 58.6712i 0.0944785i
\(622\) 0 0
\(623\) − 59.9563i − 0.0962381i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1031.86 −1.64571
\(628\) 0 0
\(629\) 315.402i 0.501434i
\(630\) 0 0
\(631\) − 178.580i − 0.283011i −0.989937 0.141505i \(-0.954806\pi\)
0.989937 0.141505i \(-0.0451942\pi\)
\(632\) 0 0
\(633\) −329.968 −0.521277
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 92.4976i − 0.145208i
\(638\) 0 0
\(639\) 270.036i 0.422592i
\(640\) 0 0
\(641\) −379.689 −0.592339 −0.296169 0.955135i \(-0.595709\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(642\) 0 0
\(643\) −847.921 −1.31869 −0.659347 0.751839i \(-0.729167\pi\)
−0.659347 + 0.751839i \(0.729167\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 372.369i − 0.575532i −0.957701 0.287766i \(-0.907087\pi\)
0.957701 0.287766i \(-0.0929126\pi\)
\(648\) 0 0
\(649\) −1499.57 −2.31058
\(650\) 0 0
\(651\) −592.099 −0.909522
\(652\) 0 0
\(653\) − 650.726i − 0.996517i −0.867028 0.498259i \(-0.833973\pi\)
0.867028 0.498259i \(-0.166027\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −204.238 −0.310865
\(658\) 0 0
\(659\) −589.211 −0.894099 −0.447049 0.894509i \(-0.647525\pi\)
−0.447049 + 0.894509i \(0.647525\pi\)
\(660\) 0 0
\(661\) − 402.340i − 0.608684i −0.952563 0.304342i \(-0.901563\pi\)
0.952563 0.304342i \(-0.0984366\pi\)
\(662\) 0 0
\(663\) 160.383i 0.241905i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.65315 0.00997473
\(668\) 0 0
\(669\) − 366.220i − 0.547414i
\(670\) 0 0
\(671\) 1650.48i 2.45973i
\(672\) 0 0
\(673\) −1237.67 −1.83903 −0.919515 0.393056i \(-0.871418\pi\)
−0.919515 + 0.393056i \(0.871418\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 163.462i − 0.241451i −0.992686 0.120725i \(-0.961478\pi\)
0.992686 0.120725i \(-0.0385221\pi\)
\(678\) 0 0
\(679\) 1040.80i 1.53284i
\(680\) 0 0
\(681\) −153.958 −0.226077
\(682\) 0 0
\(683\) 992.033 1.45246 0.726232 0.687449i \(-0.241270\pi\)
0.726232 + 0.687449i \(0.241270\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 264.783i 0.385419i
\(688\) 0 0
\(689\) −788.250 −1.14405
\(690\) 0 0
\(691\) 465.365 0.673466 0.336733 0.941600i \(-0.390678\pi\)
0.336733 + 0.941600i \(0.390678\pi\)
\(692\) 0 0
\(693\) − 380.369i − 0.548872i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 21.0984 0.0302703
\(698\) 0 0
\(699\) 326.347 0.466878
\(700\) 0 0
\(701\) 261.352i 0.372827i 0.982471 + 0.186414i \(0.0596864\pi\)
−0.982471 + 0.186414i \(0.940314\pi\)
\(702\) 0 0
\(703\) 1305.94i 1.85767i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −701.512 −0.992238
\(708\) 0 0
\(709\) − 186.604i − 0.263194i −0.991303 0.131597i \(-0.957990\pi\)
0.991303 0.131597i \(-0.0420104\pi\)
\(710\) 0 0
\(711\) − 108.794i − 0.153015i
\(712\) 0 0
\(713\) −508.572 −0.713284
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 394.871i 0.550727i
\(718\) 0 0
\(719\) 448.275i 0.623470i 0.950169 + 0.311735i \(0.100910\pi\)
−0.950169 + 0.311735i \(0.899090\pi\)
\(720\) 0 0
\(721\) −935.914 −1.29808
\(722\) 0 0
\(723\) 460.368 0.636747
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 956.205i 1.31527i 0.753335 + 0.657637i \(0.228444\pi\)
−0.753335 + 0.657637i \(0.771556\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 68.1721 0.0932586
\(732\) 0 0
\(733\) − 398.986i − 0.544320i −0.962252 0.272160i \(-0.912262\pi\)
0.962252 0.272160i \(-0.0877379\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1495.16 −2.02871
\(738\) 0 0
\(739\) −1011.87 −1.36924 −0.684622 0.728899i \(-0.740033\pi\)
−0.684622 + 0.728899i \(0.740033\pi\)
\(740\) 0 0
\(741\) 664.076i 0.896189i
\(742\) 0 0
\(743\) 346.145i 0.465875i 0.972492 + 0.232938i \(0.0748338\pi\)
−0.972492 + 0.232938i \(0.925166\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −286.771 −0.383897
\(748\) 0 0
\(749\) − 1.82231i − 0.00243300i
\(750\) 0 0
\(751\) 71.2058i 0.0948146i 0.998876 + 0.0474073i \(0.0150959\pi\)
−0.998876 + 0.0474073i \(0.984904\pi\)
\(752\) 0 0
\(753\) 268.283 0.356286
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1452.44i 1.91867i 0.282264 + 0.959337i \(0.408915\pi\)
−0.282264 + 0.959337i \(0.591085\pi\)
\(758\) 0 0
\(759\) − 326.710i − 0.430448i
\(760\) 0 0
\(761\) 414.416 0.544567 0.272284 0.962217i \(-0.412221\pi\)
0.272284 + 0.962217i \(0.412221\pi\)
\(762\) 0 0
\(763\) 892.523 1.16976
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 965.081i 1.25825i
\(768\) 0 0
\(769\) −132.780 −0.172665 −0.0863326 0.996266i \(-0.527515\pi\)
−0.0863326 + 0.996266i \(0.527515\pi\)
\(770\) 0 0
\(771\) −730.968 −0.948078
\(772\) 0 0
\(773\) 135.449i 0.175225i 0.996155 + 0.0876126i \(0.0279238\pi\)
−0.996155 + 0.0876126i \(0.972076\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −481.401 −0.619564
\(778\) 0 0
\(779\) 87.3592 0.112143
\(780\) 0 0
\(781\) − 1503.70i − 1.92535i
\(782\) 0 0
\(783\) − 3.06173i − 0.00391025i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −370.900 −0.471283 −0.235642 0.971840i \(-0.575719\pi\)
−0.235642 + 0.971840i \(0.575719\pi\)
\(788\) 0 0
\(789\) 204.525i 0.259220i
\(790\) 0 0
\(791\) − 312.489i − 0.395055i
\(792\) 0 0
\(793\) 1062.20 1.33947
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 980.881i − 1.23072i −0.788247 0.615358i \(-0.789011\pi\)
0.788247 0.615358i \(-0.210989\pi\)
\(798\) 0 0
\(799\) − 382.196i − 0.478343i
\(800\) 0 0
\(801\) −23.6991 −0.0295869
\(802\) 0 0
\(803\) 1137.30 1.41631
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 855.014i 1.05950i
\(808\) 0 0
\(809\) −464.769 −0.574498 −0.287249 0.957856i \(-0.592741\pi\)
−0.287249 + 0.957856i \(0.592741\pi\)
\(810\) 0 0
\(811\) 49.1816 0.0606431 0.0303216 0.999540i \(-0.490347\pi\)
0.0303216 + 0.999540i \(0.490347\pi\)
\(812\) 0 0
\(813\) 628.657i 0.773255i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 282.270 0.345496
\(818\) 0 0
\(819\) −244.795 −0.298894
\(820\) 0 0
\(821\) − 911.027i − 1.10965i −0.831965 0.554827i \(-0.812784\pi\)
0.831965 0.554827i \(-0.187216\pi\)
\(822\) 0 0
\(823\) − 1278.02i − 1.55287i −0.630195 0.776437i \(-0.717025\pi\)
0.630195 0.776437i \(-0.282975\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −671.016 −0.811386 −0.405693 0.914009i \(-0.632970\pi\)
−0.405693 + 0.914009i \(0.632970\pi\)
\(828\) 0 0
\(829\) 31.8486i 0.0384181i 0.999815 + 0.0192091i \(0.00611481\pi\)
−0.999815 + 0.0192091i \(0.993885\pi\)
\(830\) 0 0
\(831\) 556.007i 0.669082i
\(832\) 0 0
\(833\) 74.0997 0.0889552
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 234.041i 0.279618i
\(838\) 0 0
\(839\) − 112.707i − 0.134335i −0.997742 0.0671674i \(-0.978604\pi\)
0.997742 0.0671674i \(-0.0213961\pi\)
\(840\) 0 0
\(841\) 840.653 0.999587
\(842\) 0 0
\(843\) 321.813 0.381748
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1199.73i 1.41644i
\(848\) 0 0
\(849\) 361.354 0.425623
\(850\) 0 0
\(851\) −413.490 −0.485887
\(852\) 0 0
\(853\) − 512.714i − 0.601072i −0.953770 0.300536i \(-0.902834\pi\)
0.953770 0.300536i \(-0.0971655\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1620.81 1.89126 0.945631 0.325243i \(-0.105446\pi\)
0.945631 + 0.325243i \(0.105446\pi\)
\(858\) 0 0
\(859\) −225.172 −0.262132 −0.131066 0.991374i \(-0.541840\pi\)
−0.131066 + 0.991374i \(0.541840\pi\)
\(860\) 0 0
\(861\) 32.2027i 0.0374016i
\(862\) 0 0
\(863\) 1029.21i 1.19260i 0.802763 + 0.596299i \(0.203363\pi\)
−0.802763 + 0.596299i \(0.796637\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 372.080 0.429158
\(868\) 0 0
\(869\) 605.818i 0.697144i
\(870\) 0 0
\(871\) 962.244i 1.10476i
\(872\) 0 0
\(873\) 411.400 0.471248
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 570.056i − 0.650007i −0.945713 0.325003i \(-0.894635\pi\)
0.945713 0.325003i \(-0.105365\pi\)
\(878\) 0 0
\(879\) − 531.609i − 0.604789i
\(880\) 0 0
\(881\) 596.788 0.677398 0.338699 0.940895i \(-0.390013\pi\)
0.338699 + 0.940895i \(0.390013\pi\)
\(882\) 0 0
\(883\) 856.738 0.970258 0.485129 0.874442i \(-0.338773\pi\)
0.485129 + 0.874442i \(0.338773\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1648.76i 1.85880i 0.369068 + 0.929402i \(0.379677\pi\)
−0.369068 + 0.929402i \(0.620323\pi\)
\(888\) 0 0
\(889\) −8.74819 −0.00984048
\(890\) 0 0
\(891\) −150.349 −0.168742
\(892\) 0 0
\(893\) − 1582.50i − 1.77212i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −210.261 −0.234405
\(898\) 0 0
\(899\) 26.5395 0.0295212
\(900\) 0 0
\(901\) − 631.467i − 0.700851i
\(902\) 0 0
\(903\) 104.052i 0.115229i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 844.509 0.931101 0.465551 0.885021i \(-0.345856\pi\)
0.465551 + 0.885021i \(0.345856\pi\)
\(908\) 0 0
\(909\) 277.289i 0.305048i
\(910\) 0 0
\(911\) 1074.78i 1.17978i 0.807483 + 0.589891i \(0.200829\pi\)
−0.807483 + 0.589891i \(0.799171\pi\)
\(912\) 0 0
\(913\) 1596.88 1.74905
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1456.30i 1.58811i
\(918\) 0 0
\(919\) − 1142.19i − 1.24286i −0.783471 0.621428i \(-0.786553\pi\)
0.783471 0.621428i \(-0.213447\pi\)
\(920\) 0 0
\(921\) −491.067 −0.533188
\(922\) 0 0
\(923\) −967.736 −1.04847
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 369.941i 0.399074i
\(928\) 0 0
\(929\) 415.953 0.447742 0.223871 0.974619i \(-0.428131\pi\)
0.223871 + 0.974619i \(0.428131\pi\)
\(930\) 0 0
\(931\) 306.814 0.329553
\(932\) 0 0
\(933\) 1063.51i 1.13988i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 846.979 0.903927 0.451963 0.892037i \(-0.350724\pi\)
0.451963 + 0.892037i \(0.350724\pi\)
\(938\) 0 0
\(939\) −886.671 −0.944271
\(940\) 0 0
\(941\) 149.279i 0.158638i 0.996849 + 0.0793192i \(0.0252746\pi\)
−0.996849 + 0.0793192i \(0.974725\pi\)
\(942\) 0 0
\(943\) 27.6599i 0.0293318i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 543.005 0.573395 0.286697 0.958021i \(-0.407443\pi\)
0.286697 + 0.958021i \(0.407443\pi\)
\(948\) 0 0
\(949\) − 731.935i − 0.771269i
\(950\) 0 0
\(951\) − 744.098i − 0.782438i
\(952\) 0 0
\(953\) 344.292 0.361272 0.180636 0.983550i \(-0.442184\pi\)
0.180636 + 0.983550i \(0.442184\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.0492i 0.0178153i
\(958\) 0 0
\(959\) − 129.121i − 0.134641i
\(960\) 0 0
\(961\) −1067.70 −1.11103
\(962\) 0 0
\(963\) −0.720311 −0.000747987 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1044.78i − 1.08044i −0.841524 0.540219i \(-0.818341\pi\)
0.841524 0.540219i \(-0.181659\pi\)
\(968\) 0 0
\(969\) −531.991 −0.549010
\(970\) 0 0
\(971\) −306.656 −0.315814 −0.157907 0.987454i \(-0.550475\pi\)
−0.157907 + 0.987454i \(0.550475\pi\)
\(972\) 0 0
\(973\) 1338.65i 1.37580i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1753.81 −1.79509 −0.897547 0.440919i \(-0.854653\pi\)
−0.897547 + 0.440919i \(0.854653\pi\)
\(978\) 0 0
\(979\) 131.968 0.134799
\(980\) 0 0
\(981\) − 352.790i − 0.359623i
\(982\) 0 0
\(983\) − 951.541i − 0.967997i −0.875069 0.483999i \(-0.839184\pi\)
0.875069 0.483999i \(-0.160816\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 583.349 0.591033
\(988\) 0 0
\(989\) 89.3731i 0.0903672i
\(990\) 0 0
\(991\) − 1786.06i − 1.80229i −0.433523 0.901143i \(-0.642730\pi\)
0.433523 0.901143i \(-0.357270\pi\)
\(992\) 0 0
\(993\) −930.627 −0.937187
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1375.80i − 1.37994i −0.723839 0.689969i \(-0.757624\pi\)
0.723839 0.689969i \(-0.242376\pi\)
\(998\) 0 0
\(999\) 190.285i 0.190475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.g.b.751.7 16
4.3 odd 2 600.3.g.d.451.12 16
5.2 odd 4 2400.3.p.b.1999.14 32
5.3 odd 4 2400.3.p.b.1999.31 32
5.4 even 2 480.3.g.a.271.9 16
8.3 odd 2 inner 2400.3.g.b.751.2 16
8.5 even 2 600.3.g.d.451.11 16
15.14 odd 2 1440.3.g.c.271.10 16
20.3 even 4 600.3.p.b.499.25 32
20.7 even 4 600.3.p.b.499.8 32
20.19 odd 2 120.3.g.a.91.5 16
40.3 even 4 2400.3.p.b.1999.13 32
40.13 odd 4 600.3.p.b.499.7 32
40.19 odd 2 480.3.g.a.271.16 16
40.27 even 4 2400.3.p.b.1999.32 32
40.29 even 2 120.3.g.a.91.6 yes 16
40.37 odd 4 600.3.p.b.499.26 32
60.59 even 2 360.3.g.c.91.12 16
120.29 odd 2 360.3.g.c.91.11 16
120.59 even 2 1440.3.g.c.271.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.5 16 20.19 odd 2
120.3.g.a.91.6 yes 16 40.29 even 2
360.3.g.c.91.11 16 120.29 odd 2
360.3.g.c.91.12 16 60.59 even 2
480.3.g.a.271.9 16 5.4 even 2
480.3.g.a.271.16 16 40.19 odd 2
600.3.g.d.451.11 16 8.5 even 2
600.3.g.d.451.12 16 4.3 odd 2
600.3.p.b.499.7 32 40.13 odd 4
600.3.p.b.499.8 32 20.7 even 4
600.3.p.b.499.25 32 20.3 even 4
600.3.p.b.499.26 32 40.37 odd 4
1440.3.g.c.271.7 16 120.59 even 2
1440.3.g.c.271.10 16 15.14 odd 2
2400.3.g.b.751.2 16 8.3 odd 2 inner
2400.3.g.b.751.7 16 1.1 even 1 trivial
2400.3.p.b.1999.13 32 40.3 even 4
2400.3.p.b.1999.14 32 5.2 odd 4
2400.3.p.b.1999.31 32 5.3 odd 4
2400.3.p.b.1999.32 32 40.27 even 4