Properties

Label 2400.3.p.b.1999.14
Level $2400$
Weight $3$
Character 2400.1999
Analytic conductor $65.395$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(1999,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1999"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-96,0,-128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.14
Character \(\chi\) \(=\) 2400.1999
Dual form 2400.3.p.b.1999.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -7.58970 q^{7} -3.00000 q^{9} -16.7055 q^{11} +10.7512 q^{13} -8.61276i q^{17} +35.6616 q^{19} -13.1457i q^{21} -11.2913 q^{23} -5.19615i q^{27} -0.589229i q^{29} -45.0411i q^{31} -28.9347i q^{33} +36.6203 q^{37} +18.6216i q^{39} -2.44967 q^{41} +7.91524i q^{43} -44.3755 q^{47} +8.60348 q^{49} +14.9177 q^{51} +73.3176 q^{53} +61.7677i q^{57} -89.7651 q^{59} -98.7987i q^{61} +22.7691 q^{63} +89.5013i q^{67} -19.5571i q^{69} +90.0121i q^{71} +68.0795i q^{73} +126.790 q^{77} +36.2647i q^{79} +9.00000 q^{81} +95.5904i q^{83} +1.02058 q^{87} +7.89970 q^{89} -81.5982 q^{91} +78.0135 q^{93} +137.133i q^{97} +50.1164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 96 q^{9} - 128 q^{11} - 64 q^{19} + 160 q^{49} - 192 q^{51} + 256 q^{59} + 288 q^{81} + 384 q^{91} + 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.58970 −1.08424 −0.542121 0.840300i \(-0.682379\pi\)
−0.542121 + 0.840300i \(0.682379\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −16.7055 −1.51868 −0.759340 0.650694i \(-0.774478\pi\)
−0.759340 + 0.650694i \(0.774478\pi\)
\(12\) 0 0
\(13\) 10.7512 0.827014 0.413507 0.910501i \(-0.364304\pi\)
0.413507 + 0.910501i \(0.364304\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 8.61276i − 0.506633i −0.967383 0.253316i \(-0.918479\pi\)
0.967383 0.253316i \(-0.0815214\pi\)
\(18\) 0 0
\(19\) 35.6616 1.87693 0.938464 0.345378i \(-0.112249\pi\)
0.938464 + 0.345378i \(0.112249\pi\)
\(20\) 0 0
\(21\) − 13.1457i − 0.625988i
\(22\) 0 0
\(23\) −11.2913 −0.490925 −0.245462 0.969406i \(-0.578940\pi\)
−0.245462 + 0.969406i \(0.578940\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) − 0.589229i − 0.0203183i −0.999948 0.0101591i \(-0.996766\pi\)
0.999948 0.0101591i \(-0.00323381\pi\)
\(30\) 0 0
\(31\) − 45.0411i − 1.45294i −0.687198 0.726470i \(-0.741160\pi\)
0.687198 0.726470i \(-0.258840\pi\)
\(32\) 0 0
\(33\) − 28.9347i − 0.876810i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 36.6203 0.989738 0.494869 0.868968i \(-0.335216\pi\)
0.494869 + 0.868968i \(0.335216\pi\)
\(38\) 0 0
\(39\) 18.6216i 0.477477i
\(40\) 0 0
\(41\) −2.44967 −0.0597481 −0.0298740 0.999554i \(-0.509511\pi\)
−0.0298740 + 0.999554i \(0.509511\pi\)
\(42\) 0 0
\(43\) 7.91524i 0.184075i 0.995756 + 0.0920377i \(0.0293380\pi\)
−0.995756 + 0.0920377i \(0.970662\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −44.3755 −0.944160 −0.472080 0.881556i \(-0.656497\pi\)
−0.472080 + 0.881556i \(0.656497\pi\)
\(48\) 0 0
\(49\) 8.60348 0.175581
\(50\) 0 0
\(51\) 14.9177 0.292505
\(52\) 0 0
\(53\) 73.3176 1.38335 0.691675 0.722209i \(-0.256873\pi\)
0.691675 + 0.722209i \(0.256873\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 61.7677i 1.08364i
\(58\) 0 0
\(59\) −89.7651 −1.52144 −0.760721 0.649079i \(-0.775155\pi\)
−0.760721 + 0.649079i \(0.775155\pi\)
\(60\) 0 0
\(61\) − 98.7987i − 1.61965i −0.586671 0.809826i \(-0.699562\pi\)
0.586671 0.809826i \(-0.300438\pi\)
\(62\) 0 0
\(63\) 22.7691 0.361414
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 89.5013i 1.33584i 0.744233 + 0.667920i \(0.232815\pi\)
−0.744233 + 0.667920i \(0.767185\pi\)
\(68\) 0 0
\(69\) − 19.5571i − 0.283436i
\(70\) 0 0
\(71\) 90.0121i 1.26778i 0.773425 + 0.633888i \(0.218542\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(72\) 0 0
\(73\) 68.0795i 0.932596i 0.884628 + 0.466298i \(0.154412\pi\)
−0.884628 + 0.466298i \(0.845588\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 126.790 1.64662
\(78\) 0 0
\(79\) 36.2647i 0.459046i 0.973303 + 0.229523i \(0.0737167\pi\)
−0.973303 + 0.229523i \(0.926283\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 95.5904i 1.15169i 0.817558 + 0.575846i \(0.195327\pi\)
−0.817558 + 0.575846i \(0.804673\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.02058 0.0117307
\(88\) 0 0
\(89\) 7.89970 0.0887607 0.0443803 0.999015i \(-0.485869\pi\)
0.0443803 + 0.999015i \(0.485869\pi\)
\(90\) 0 0
\(91\) −81.5982 −0.896683
\(92\) 0 0
\(93\) 78.0135 0.838855
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 137.133i 1.41375i 0.707341 + 0.706873i \(0.249895\pi\)
−0.707341 + 0.706873i \(0.750105\pi\)
\(98\) 0 0
\(99\) 50.1164 0.506227
\(100\) 0 0
\(101\) 92.4295i 0.915144i 0.889173 + 0.457572i \(0.151281\pi\)
−0.889173 + 0.457572i \(0.848719\pi\)
\(102\) 0 0
\(103\) 123.314 1.19722 0.598610 0.801040i \(-0.295720\pi\)
0.598610 + 0.801040i \(0.295720\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.240104i − 0.00224396i −0.999999 0.00112198i \(-0.999643\pi\)
0.999999 0.00112198i \(-0.000357137\pi\)
\(108\) 0 0
\(109\) 117.597i 1.07887i 0.842028 + 0.539435i \(0.181362\pi\)
−0.842028 + 0.539435i \(0.818638\pi\)
\(110\) 0 0
\(111\) 63.4282i 0.571425i
\(112\) 0 0
\(113\) 41.1728i 0.364361i 0.983265 + 0.182180i \(0.0583155\pi\)
−0.983265 + 0.182180i \(0.941685\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −32.2535 −0.275671
\(118\) 0 0
\(119\) 65.3682i 0.549313i
\(120\) 0 0
\(121\) 158.073 1.30639
\(122\) 0 0
\(123\) − 4.24295i − 0.0344956i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.15264 −0.00907591 −0.00453795 0.999990i \(-0.501444\pi\)
−0.00453795 + 0.999990i \(0.501444\pi\)
\(128\) 0 0
\(129\) −13.7096 −0.106276
\(130\) 0 0
\(131\) 191.878 1.46472 0.732359 0.680919i \(-0.238419\pi\)
0.732359 + 0.680919i \(0.238419\pi\)
\(132\) 0 0
\(133\) −270.661 −2.03504
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 17.0127i − 0.124180i −0.998071 0.0620901i \(-0.980223\pi\)
0.998071 0.0620901i \(-0.0197766\pi\)
\(138\) 0 0
\(139\) −176.378 −1.26890 −0.634452 0.772963i \(-0.718774\pi\)
−0.634452 + 0.772963i \(0.718774\pi\)
\(140\) 0 0
\(141\) − 76.8607i − 0.545111i
\(142\) 0 0
\(143\) −179.604 −1.25597
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.9017i 0.101372i
\(148\) 0 0
\(149\) − 212.046i − 1.42313i −0.702620 0.711565i \(-0.747987\pi\)
0.702620 0.711565i \(-0.252013\pi\)
\(150\) 0 0
\(151\) 143.361i 0.949408i 0.880146 + 0.474704i \(0.157445\pi\)
−0.880146 + 0.474704i \(0.842555\pi\)
\(152\) 0 0
\(153\) 25.8383i 0.168878i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 82.2710 0.524019 0.262009 0.965065i \(-0.415615\pi\)
0.262009 + 0.965065i \(0.415615\pi\)
\(158\) 0 0
\(159\) 126.990i 0.798678i
\(160\) 0 0
\(161\) 85.6973 0.532282
\(162\) 0 0
\(163\) − 27.8115i − 0.170623i −0.996354 0.0853113i \(-0.972812\pi\)
0.996354 0.0853113i \(-0.0271885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 207.819 1.24443 0.622214 0.782848i \(-0.286234\pi\)
0.622214 + 0.782848i \(0.286234\pi\)
\(168\) 0 0
\(169\) −53.4122 −0.316048
\(170\) 0 0
\(171\) −106.985 −0.625642
\(172\) 0 0
\(173\) 45.7625 0.264523 0.132262 0.991215i \(-0.457776\pi\)
0.132262 + 0.991215i \(0.457776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 155.478i − 0.878405i
\(178\) 0 0
\(179\) −33.0983 −0.184907 −0.0924533 0.995717i \(-0.529471\pi\)
−0.0924533 + 0.995717i \(0.529471\pi\)
\(180\) 0 0
\(181\) − 177.147i − 0.978711i −0.872084 0.489356i \(-0.837232\pi\)
0.872084 0.489356i \(-0.162768\pi\)
\(182\) 0 0
\(183\) 171.124 0.935106
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 143.880i 0.769413i
\(188\) 0 0
\(189\) 39.4372i 0.208663i
\(190\) 0 0
\(191\) 28.8000i 0.150785i 0.997154 + 0.0753927i \(0.0240210\pi\)
−0.997154 + 0.0753927i \(0.975979\pi\)
\(192\) 0 0
\(193\) 87.7961i 0.454902i 0.973789 + 0.227451i \(0.0730392\pi\)
−0.973789 + 0.227451i \(0.926961\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 347.625 1.76459 0.882296 0.470696i \(-0.155997\pi\)
0.882296 + 0.470696i \(0.155997\pi\)
\(198\) 0 0
\(199\) − 129.347i − 0.649985i −0.945717 0.324992i \(-0.894638\pi\)
0.945717 0.324992i \(-0.105362\pi\)
\(200\) 0 0
\(201\) −155.021 −0.771247
\(202\) 0 0
\(203\) 4.47207i 0.0220299i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 33.8738 0.163642
\(208\) 0 0
\(209\) −595.744 −2.85045
\(210\) 0 0
\(211\) 190.507 0.902877 0.451439 0.892302i \(-0.350911\pi\)
0.451439 + 0.892302i \(0.350911\pi\)
\(212\) 0 0
\(213\) −155.905 −0.731951
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 341.848i 1.57534i
\(218\) 0 0
\(219\) −117.917 −0.538434
\(220\) 0 0
\(221\) − 92.5973i − 0.418992i
\(222\) 0 0
\(223\) 211.437 0.948149 0.474075 0.880485i \(-0.342783\pi\)
0.474075 + 0.880485i \(0.342783\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 88.8880i 0.391577i 0.980646 + 0.195788i \(0.0627266\pi\)
−0.980646 + 0.195788i \(0.937273\pi\)
\(228\) 0 0
\(229\) 152.872i 0.667565i 0.942650 + 0.333782i \(0.108325\pi\)
−0.942650 + 0.333782i \(0.891675\pi\)
\(230\) 0 0
\(231\) 219.606i 0.950675i
\(232\) 0 0
\(233\) 188.417i 0.808656i 0.914614 + 0.404328i \(0.132495\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −62.8122 −0.265030
\(238\) 0 0
\(239\) 227.979i 0.953888i 0.878934 + 0.476944i \(0.158255\pi\)
−0.878934 + 0.476944i \(0.841745\pi\)
\(240\) 0 0
\(241\) −265.794 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 383.404 1.55224
\(248\) 0 0
\(249\) −165.567 −0.664929
\(250\) 0 0
\(251\) −154.894 −0.617106 −0.308553 0.951207i \(-0.599845\pi\)
−0.308553 + 0.951207i \(0.599845\pi\)
\(252\) 0 0
\(253\) 188.626 0.745558
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 422.025i 1.64212i 0.570842 + 0.821060i \(0.306617\pi\)
−0.570842 + 0.821060i \(0.693383\pi\)
\(258\) 0 0
\(259\) −277.937 −1.07312
\(260\) 0 0
\(261\) 1.76769i 0.00677275i
\(262\) 0 0
\(263\) −118.083 −0.448983 −0.224492 0.974476i \(-0.572072\pi\)
−0.224492 + 0.974476i \(0.572072\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 13.6827i 0.0512460i
\(268\) 0 0
\(269\) 493.643i 1.83510i 0.397617 + 0.917551i \(0.369837\pi\)
−0.397617 + 0.917551i \(0.630163\pi\)
\(270\) 0 0
\(271\) − 362.955i − 1.33932i −0.742669 0.669659i \(-0.766440\pi\)
0.742669 0.669659i \(-0.233560\pi\)
\(272\) 0 0
\(273\) − 141.332i − 0.517700i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 321.011 1.15888 0.579442 0.815013i \(-0.303270\pi\)
0.579442 + 0.815013i \(0.303270\pi\)
\(278\) 0 0
\(279\) 135.123i 0.484313i
\(280\) 0 0
\(281\) −185.799 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(282\) 0 0
\(283\) 208.628i 0.737202i 0.929588 + 0.368601i \(0.120163\pi\)
−0.929588 + 0.368601i \(0.879837\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.5923 0.0647814
\(288\) 0 0
\(289\) 214.820 0.743323
\(290\) 0 0
\(291\) −237.522 −0.816226
\(292\) 0 0
\(293\) 306.925 1.04752 0.523762 0.851864i \(-0.324528\pi\)
0.523762 + 0.851864i \(0.324528\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 86.8042i 0.292270i
\(298\) 0 0
\(299\) −121.394 −0.406002
\(300\) 0 0
\(301\) − 60.0743i − 0.199582i
\(302\) 0 0
\(303\) −160.093 −0.528358
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 283.517i 0.923510i 0.887008 + 0.461755i \(0.152780\pi\)
−0.887008 + 0.461755i \(0.847220\pi\)
\(308\) 0 0
\(309\) 213.586i 0.691216i
\(310\) 0 0
\(311\) − 614.016i − 1.97433i −0.159709 0.987164i \(-0.551056\pi\)
0.159709 0.987164i \(-0.448944\pi\)
\(312\) 0 0
\(313\) − 511.920i − 1.63553i −0.575555 0.817763i \(-0.695214\pi\)
0.575555 0.817763i \(-0.304786\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −429.605 −1.35522 −0.677611 0.735421i \(-0.736985\pi\)
−0.677611 + 0.735421i \(0.736985\pi\)
\(318\) 0 0
\(319\) 9.84336i 0.0308569i
\(320\) 0 0
\(321\) 0.415872 0.00129555
\(322\) 0 0
\(323\) − 307.145i − 0.950913i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −203.684 −0.622885
\(328\) 0 0
\(329\) 336.797 1.02370
\(330\) 0 0
\(331\) 537.298 1.62326 0.811628 0.584175i \(-0.198582\pi\)
0.811628 + 0.584175i \(0.198582\pi\)
\(332\) 0 0
\(333\) −109.861 −0.329913
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 158.578i − 0.470559i −0.971928 0.235279i \(-0.924400\pi\)
0.971928 0.235279i \(-0.0756005\pi\)
\(338\) 0 0
\(339\) −71.3133 −0.210364
\(340\) 0 0
\(341\) 752.434i 2.20655i
\(342\) 0 0
\(343\) 306.597 0.893870
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 169.697i 0.489041i 0.969644 + 0.244520i \(0.0786305\pi\)
−0.969644 + 0.244520i \(0.921370\pi\)
\(348\) 0 0
\(349\) 296.370i 0.849196i 0.905382 + 0.424598i \(0.139585\pi\)
−0.905382 + 0.424598i \(0.860415\pi\)
\(350\) 0 0
\(351\) − 55.8648i − 0.159159i
\(352\) 0 0
\(353\) 133.075i 0.376982i 0.982075 + 0.188491i \(0.0603596\pi\)
−0.982075 + 0.188491i \(0.939640\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −113.221 −0.317146
\(358\) 0 0
\(359\) 238.095i 0.663218i 0.943417 + 0.331609i \(0.107591\pi\)
−0.943417 + 0.331609i \(0.892409\pi\)
\(360\) 0 0
\(361\) 910.751 2.52286
\(362\) 0 0
\(363\) 273.791i 0.754244i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 381.665 1.03996 0.519979 0.854179i \(-0.325940\pi\)
0.519979 + 0.854179i \(0.325940\pi\)
\(368\) 0 0
\(369\) 7.34901 0.0199160
\(370\) 0 0
\(371\) −556.458 −1.49989
\(372\) 0 0
\(373\) −42.2729 −0.113332 −0.0566661 0.998393i \(-0.518047\pi\)
−0.0566661 + 0.998393i \(0.518047\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 6.33491i − 0.0168035i
\(378\) 0 0
\(379\) 412.302 1.08787 0.543934 0.839128i \(-0.316934\pi\)
0.543934 + 0.839128i \(0.316934\pi\)
\(380\) 0 0
\(381\) − 1.99643i − 0.00523998i
\(382\) 0 0
\(383\) −403.711 −1.05408 −0.527038 0.849842i \(-0.676697\pi\)
−0.527038 + 0.849842i \(0.676697\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 23.7457i − 0.0613585i
\(388\) 0 0
\(389\) − 78.5053i − 0.201813i −0.994896 0.100907i \(-0.967826\pi\)
0.994896 0.100907i \(-0.0321743\pi\)
\(390\) 0 0
\(391\) 97.2490i 0.248719i
\(392\) 0 0
\(393\) 332.342i 0.845655i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −323.080 −0.813803 −0.406902 0.913472i \(-0.633391\pi\)
−0.406902 + 0.913472i \(0.633391\pi\)
\(398\) 0 0
\(399\) − 468.798i − 1.17493i
\(400\) 0 0
\(401\) −621.389 −1.54960 −0.774799 0.632207i \(-0.782149\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(402\) 0 0
\(403\) − 484.245i − 1.20160i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −611.760 −1.50310
\(408\) 0 0
\(409\) −322.888 −0.789458 −0.394729 0.918798i \(-0.629161\pi\)
−0.394729 + 0.918798i \(0.629161\pi\)
\(410\) 0 0
\(411\) 29.4668 0.0716954
\(412\) 0 0
\(413\) 681.290 1.64961
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 305.495i − 0.732602i
\(418\) 0 0
\(419\) 19.2316 0.0458988 0.0229494 0.999737i \(-0.492694\pi\)
0.0229494 + 0.999737i \(0.492694\pi\)
\(420\) 0 0
\(421\) 312.791i 0.742970i 0.928439 + 0.371485i \(0.121151\pi\)
−0.928439 + 0.371485i \(0.878849\pi\)
\(422\) 0 0
\(423\) 133.127 0.314720
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 749.852i 1.75609i
\(428\) 0 0
\(429\) − 311.083i − 0.725134i
\(430\) 0 0
\(431\) − 417.415i − 0.968479i −0.874935 0.484240i \(-0.839096\pi\)
0.874935 0.484240i \(-0.160904\pi\)
\(432\) 0 0
\(433\) 279.474i 0.645436i 0.946495 + 0.322718i \(0.104596\pi\)
−0.946495 + 0.322718i \(0.895404\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −402.665 −0.921430
\(438\) 0 0
\(439\) − 30.1336i − 0.0686415i −0.999411 0.0343207i \(-0.989073\pi\)
0.999411 0.0343207i \(-0.0109268\pi\)
\(440\) 0 0
\(441\) −25.8104 −0.0585271
\(442\) 0 0
\(443\) 56.2858i 0.127056i 0.997980 + 0.0635279i \(0.0202352\pi\)
−0.997980 + 0.0635279i \(0.979765\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 367.275 0.821644
\(448\) 0 0
\(449\) 283.497 0.631396 0.315698 0.948860i \(-0.397761\pi\)
0.315698 + 0.948860i \(0.397761\pi\)
\(450\) 0 0
\(451\) 40.9229 0.0907382
\(452\) 0 0
\(453\) −248.308 −0.548141
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 265.204i 0.580315i 0.956979 + 0.290158i \(0.0937078\pi\)
−0.956979 + 0.290158i \(0.906292\pi\)
\(458\) 0 0
\(459\) −44.7532 −0.0975015
\(460\) 0 0
\(461\) 709.643i 1.53936i 0.638432 + 0.769678i \(0.279583\pi\)
−0.638432 + 0.769678i \(0.720417\pi\)
\(462\) 0 0
\(463\) −417.392 −0.901495 −0.450747 0.892652i \(-0.648843\pi\)
−0.450747 + 0.892652i \(0.648843\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 679.287i − 1.45458i −0.686332 0.727288i \(-0.740780\pi\)
0.686332 0.727288i \(-0.259220\pi\)
\(468\) 0 0
\(469\) − 679.287i − 1.44837i
\(470\) 0 0
\(471\) 142.498i 0.302543i
\(472\) 0 0
\(473\) − 132.228i − 0.279552i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −219.953 −0.461117
\(478\) 0 0
\(479\) − 157.578i − 0.328974i −0.986379 0.164487i \(-0.947403\pi\)
0.986379 0.164487i \(-0.0525968\pi\)
\(480\) 0 0
\(481\) 393.711 0.818527
\(482\) 0 0
\(483\) 148.432i 0.307313i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 736.646 1.51262 0.756311 0.654213i \(-0.227000\pi\)
0.756311 + 0.654213i \(0.227000\pi\)
\(488\) 0 0
\(489\) 48.1709 0.0985090
\(490\) 0 0
\(491\) 362.408 0.738101 0.369050 0.929409i \(-0.379683\pi\)
0.369050 + 0.929409i \(0.379683\pi\)
\(492\) 0 0
\(493\) −5.07489 −0.0102939
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 683.164i − 1.37458i
\(498\) 0 0
\(499\) 648.812 1.30022 0.650112 0.759838i \(-0.274722\pi\)
0.650112 + 0.759838i \(0.274722\pi\)
\(500\) 0 0
\(501\) 359.954i 0.718470i
\(502\) 0 0
\(503\) 402.612 0.800421 0.400210 0.916423i \(-0.368937\pi\)
0.400210 + 0.916423i \(0.368937\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 92.5126i − 0.182471i
\(508\) 0 0
\(509\) 470.175i 0.923724i 0.886952 + 0.461862i \(0.152818\pi\)
−0.886952 + 0.461862i \(0.847182\pi\)
\(510\) 0 0
\(511\) − 516.702i − 1.01116i
\(512\) 0 0
\(513\) − 185.303i − 0.361215i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 741.315 1.43388
\(518\) 0 0
\(519\) 79.2630i 0.152723i
\(520\) 0 0
\(521\) −155.978 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(522\) 0 0
\(523\) 313.578i 0.599576i 0.954006 + 0.299788i \(0.0969159\pi\)
−0.954006 + 0.299788i \(0.903084\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −387.928 −0.736107
\(528\) 0 0
\(529\) −401.507 −0.758993
\(530\) 0 0
\(531\) 269.295 0.507147
\(532\) 0 0
\(533\) −26.3369 −0.0494125
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 57.3279i − 0.106756i
\(538\) 0 0
\(539\) −143.725 −0.266652
\(540\) 0 0
\(541\) − 892.335i − 1.64942i −0.565557 0.824709i \(-0.691339\pi\)
0.565557 0.824709i \(-0.308661\pi\)
\(542\) 0 0
\(543\) 306.827 0.565059
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 671.435i − 1.22749i −0.789506 0.613743i \(-0.789663\pi\)
0.789506 0.613743i \(-0.210337\pi\)
\(548\) 0 0
\(549\) 296.396i 0.539884i
\(550\) 0 0
\(551\) − 21.0129i − 0.0381359i
\(552\) 0 0
\(553\) − 275.238i − 0.497717i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −296.095 −0.531590 −0.265795 0.964030i \(-0.585634\pi\)
−0.265795 + 0.964030i \(0.585634\pi\)
\(558\) 0 0
\(559\) 85.0982i 0.152233i
\(560\) 0 0
\(561\) −249.208 −0.444221
\(562\) 0 0
\(563\) 707.222i 1.25617i 0.778146 + 0.628084i \(0.216161\pi\)
−0.778146 + 0.628084i \(0.783839\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −68.3073 −0.120471
\(568\) 0 0
\(569\) −230.263 −0.404680 −0.202340 0.979315i \(-0.564855\pi\)
−0.202340 + 0.979315i \(0.564855\pi\)
\(570\) 0 0
\(571\) 439.428 0.769575 0.384788 0.923005i \(-0.374275\pi\)
0.384788 + 0.923005i \(0.374275\pi\)
\(572\) 0 0
\(573\) −49.8831 −0.0870560
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 184.670i 0.320053i 0.987113 + 0.160026i \(0.0511579\pi\)
−0.987113 + 0.160026i \(0.948842\pi\)
\(578\) 0 0
\(579\) −152.067 −0.262638
\(580\) 0 0
\(581\) − 725.502i − 1.24871i
\(582\) 0 0
\(583\) −1224.81 −2.10087
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 297.341i 0.506543i 0.967395 + 0.253271i \(0.0815066\pi\)
−0.967395 + 0.253271i \(0.918493\pi\)
\(588\) 0 0
\(589\) − 1606.24i − 2.72706i
\(590\) 0 0
\(591\) 602.103i 1.01879i
\(592\) 0 0
\(593\) − 607.065i − 1.02372i −0.859070 0.511859i \(-0.828957\pi\)
0.859070 0.511859i \(-0.171043\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 224.036 0.375269
\(598\) 0 0
\(599\) − 448.633i − 0.748970i −0.927233 0.374485i \(-0.877820\pi\)
0.927233 0.374485i \(-0.122180\pi\)
\(600\) 0 0
\(601\) 580.584 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(602\) 0 0
\(603\) − 268.504i − 0.445280i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −132.576 −0.218413 −0.109206 0.994019i \(-0.534831\pi\)
−0.109206 + 0.994019i \(0.534831\pi\)
\(608\) 0 0
\(609\) −7.74585 −0.0127190
\(610\) 0 0
\(611\) −477.089 −0.780834
\(612\) 0 0
\(613\) −175.738 −0.286685 −0.143343 0.989673i \(-0.545785\pi\)
−0.143343 + 0.989673i \(0.545785\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 283.254i − 0.459082i −0.973299 0.229541i \(-0.926277\pi\)
0.973299 0.229541i \(-0.0737226\pi\)
\(618\) 0 0
\(619\) −80.2105 −0.129581 −0.0647904 0.997899i \(-0.520638\pi\)
−0.0647904 + 0.997899i \(0.520638\pi\)
\(620\) 0 0
\(621\) 58.6712i 0.0944785i
\(622\) 0 0
\(623\) −59.9563 −0.0962381
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1031.86i − 1.64571i
\(628\) 0 0
\(629\) − 315.402i − 0.501434i
\(630\) 0 0
\(631\) − 178.580i − 0.283011i −0.989937 0.141505i \(-0.954806\pi\)
0.989937 0.141505i \(-0.0451942\pi\)
\(632\) 0 0
\(633\) 329.968i 0.521277i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 92.4976 0.145208
\(638\) 0 0
\(639\) − 270.036i − 0.422592i
\(640\) 0 0
\(641\) −379.689 −0.592339 −0.296169 0.955135i \(-0.595709\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(642\) 0 0
\(643\) 847.921i 1.31869i 0.751839 + 0.659347i \(0.229167\pi\)
−0.751839 + 0.659347i \(0.770833\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 372.369 0.575532 0.287766 0.957701i \(-0.407087\pi\)
0.287766 + 0.957701i \(0.407087\pi\)
\(648\) 0 0
\(649\) 1499.57 2.31058
\(650\) 0 0
\(651\) −592.099 −0.909522
\(652\) 0 0
\(653\) −650.726 −0.996517 −0.498259 0.867028i \(-0.666027\pi\)
−0.498259 + 0.867028i \(0.666027\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 204.238i − 0.310865i
\(658\) 0 0
\(659\) 589.211 0.894099 0.447049 0.894509i \(-0.352475\pi\)
0.447049 + 0.894509i \(0.352475\pi\)
\(660\) 0 0
\(661\) − 402.340i − 0.608684i −0.952563 0.304342i \(-0.901563\pi\)
0.952563 0.304342i \(-0.0984366\pi\)
\(662\) 0 0
\(663\) 160.383 0.241905
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.65315i 0.00997473i
\(668\) 0 0
\(669\) 366.220i 0.547414i
\(670\) 0 0
\(671\) 1650.48i 2.45973i
\(672\) 0 0
\(673\) 1237.67i 1.83903i 0.393056 + 0.919515i \(0.371418\pi\)
−0.393056 + 0.919515i \(0.628582\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 163.462 0.241451 0.120725 0.992686i \(-0.461478\pi\)
0.120725 + 0.992686i \(0.461478\pi\)
\(678\) 0 0
\(679\) − 1040.80i − 1.53284i
\(680\) 0 0
\(681\) −153.958 −0.226077
\(682\) 0 0
\(683\) − 992.033i − 1.45246i −0.687449 0.726232i \(-0.741270\pi\)
0.687449 0.726232i \(-0.258730\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −264.783 −0.385419
\(688\) 0 0
\(689\) 788.250 1.14405
\(690\) 0 0
\(691\) 465.365 0.673466 0.336733 0.941600i \(-0.390678\pi\)
0.336733 + 0.941600i \(0.390678\pi\)
\(692\) 0 0
\(693\) −380.369 −0.548872
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 21.0984i 0.0302703i
\(698\) 0 0
\(699\) −326.347 −0.466878
\(700\) 0 0
\(701\) 261.352i 0.372827i 0.982471 + 0.186414i \(0.0596864\pi\)
−0.982471 + 0.186414i \(0.940314\pi\)
\(702\) 0 0
\(703\) 1305.94 1.85767
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 701.512i − 0.992238i
\(708\) 0 0
\(709\) 186.604i 0.263194i 0.991303 + 0.131597i \(0.0420104\pi\)
−0.991303 + 0.131597i \(0.957990\pi\)
\(710\) 0 0
\(711\) − 108.794i − 0.153015i
\(712\) 0 0
\(713\) 508.572i 0.713284i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −394.871 −0.550727
\(718\) 0 0
\(719\) − 448.275i − 0.623470i −0.950169 0.311735i \(-0.899090\pi\)
0.950169 0.311735i \(-0.100910\pi\)
\(720\) 0 0
\(721\) −935.914 −1.29808
\(722\) 0 0
\(723\) − 460.368i − 0.636747i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −956.205 −1.31527 −0.657637 0.753335i \(-0.728444\pi\)
−0.657637 + 0.753335i \(0.728444\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 68.1721 0.0932586
\(732\) 0 0
\(733\) −398.986 −0.544320 −0.272160 0.962252i \(-0.587738\pi\)
−0.272160 + 0.962252i \(0.587738\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 1495.16i − 2.02871i
\(738\) 0 0
\(739\) 1011.87 1.36924 0.684622 0.728899i \(-0.259967\pi\)
0.684622 + 0.728899i \(0.259967\pi\)
\(740\) 0 0
\(741\) 664.076i 0.896189i
\(742\) 0 0
\(743\) 346.145 0.465875 0.232938 0.972492i \(-0.425166\pi\)
0.232938 + 0.972492i \(0.425166\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 286.771i − 0.383897i
\(748\) 0 0
\(749\) 1.82231i 0.00243300i
\(750\) 0 0
\(751\) 71.2058i 0.0948146i 0.998876 + 0.0474073i \(0.0150959\pi\)
−0.998876 + 0.0474073i \(0.984904\pi\)
\(752\) 0 0
\(753\) − 268.283i − 0.356286i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1452.44 −1.91867 −0.959337 0.282264i \(-0.908915\pi\)
−0.959337 + 0.282264i \(0.908915\pi\)
\(758\) 0 0
\(759\) 326.710i 0.430448i
\(760\) 0 0
\(761\) 414.416 0.544567 0.272284 0.962217i \(-0.412221\pi\)
0.272284 + 0.962217i \(0.412221\pi\)
\(762\) 0 0
\(763\) − 892.523i − 1.16976i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −965.081 −1.25825
\(768\) 0 0
\(769\) 132.780 0.172665 0.0863326 0.996266i \(-0.472485\pi\)
0.0863326 + 0.996266i \(0.472485\pi\)
\(770\) 0 0
\(771\) −730.968 −0.948078
\(772\) 0 0
\(773\) 135.449 0.175225 0.0876126 0.996155i \(-0.472076\pi\)
0.0876126 + 0.996155i \(0.472076\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 481.401i − 0.619564i
\(778\) 0 0
\(779\) −87.3592 −0.112143
\(780\) 0 0
\(781\) − 1503.70i − 1.92535i
\(782\) 0 0
\(783\) −3.06173 −0.00391025
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 370.900i − 0.471283i −0.971840 0.235642i \(-0.924281\pi\)
0.971840 0.235642i \(-0.0757192\pi\)
\(788\) 0 0
\(789\) − 204.525i − 0.259220i
\(790\) 0 0
\(791\) − 312.489i − 0.395055i
\(792\) 0 0
\(793\) − 1062.20i − 1.33947i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 980.881 1.23072 0.615358 0.788247i \(-0.289011\pi\)
0.615358 + 0.788247i \(0.289011\pi\)
\(798\) 0 0
\(799\) 382.196i 0.478343i
\(800\) 0 0
\(801\) −23.6991 −0.0295869
\(802\) 0 0
\(803\) − 1137.30i − 1.41631i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −855.014 −1.05950
\(808\) 0 0
\(809\) 464.769 0.574498 0.287249 0.957856i \(-0.407259\pi\)
0.287249 + 0.957856i \(0.407259\pi\)
\(810\) 0 0
\(811\) 49.1816 0.0606431 0.0303216 0.999540i \(-0.490347\pi\)
0.0303216 + 0.999540i \(0.490347\pi\)
\(812\) 0 0
\(813\) 628.657 0.773255
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 282.270i 0.345496i
\(818\) 0 0
\(819\) 244.795 0.298894
\(820\) 0 0
\(821\) − 911.027i − 1.10965i −0.831965 0.554827i \(-0.812784\pi\)
0.831965 0.554827i \(-0.187216\pi\)
\(822\) 0 0
\(823\) −1278.02 −1.55287 −0.776437 0.630195i \(-0.782975\pi\)
−0.776437 + 0.630195i \(0.782975\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 671.016i − 0.811386i −0.914009 0.405693i \(-0.867030\pi\)
0.914009 0.405693i \(-0.132970\pi\)
\(828\) 0 0
\(829\) − 31.8486i − 0.0384181i −0.999815 0.0192091i \(-0.993885\pi\)
0.999815 0.0192091i \(-0.00611481\pi\)
\(830\) 0 0
\(831\) 556.007i 0.669082i
\(832\) 0 0
\(833\) − 74.0997i − 0.0889552i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −234.041 −0.279618
\(838\) 0 0
\(839\) 112.707i 0.134335i 0.997742 + 0.0671674i \(0.0213961\pi\)
−0.997742 + 0.0671674i \(0.978604\pi\)
\(840\) 0 0
\(841\) 840.653 0.999587
\(842\) 0 0
\(843\) − 321.813i − 0.381748i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1199.73 −1.41644
\(848\) 0 0
\(849\) −361.354 −0.425623
\(850\) 0 0
\(851\) −413.490 −0.485887
\(852\) 0 0
\(853\) −512.714 −0.601072 −0.300536 0.953770i \(-0.597166\pi\)
−0.300536 + 0.953770i \(0.597166\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1620.81i 1.89126i 0.325243 + 0.945631i \(0.394554\pi\)
−0.325243 + 0.945631i \(0.605446\pi\)
\(858\) 0 0
\(859\) 225.172 0.262132 0.131066 0.991374i \(-0.458160\pi\)
0.131066 + 0.991374i \(0.458160\pi\)
\(860\) 0 0
\(861\) 32.2027i 0.0374016i
\(862\) 0 0
\(863\) 1029.21 1.19260 0.596299 0.802763i \(-0.296637\pi\)
0.596299 + 0.802763i \(0.296637\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 372.080i 0.429158i
\(868\) 0 0
\(869\) − 605.818i − 0.697144i
\(870\) 0 0
\(871\) 962.244i 1.10476i
\(872\) 0 0
\(873\) − 411.400i − 0.471248i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 570.056 0.650007 0.325003 0.945713i \(-0.394635\pi\)
0.325003 + 0.945713i \(0.394635\pi\)
\(878\) 0 0
\(879\) 531.609i 0.604789i
\(880\) 0 0
\(881\) 596.788 0.677398 0.338699 0.940895i \(-0.390013\pi\)
0.338699 + 0.940895i \(0.390013\pi\)
\(882\) 0 0
\(883\) − 856.738i − 0.970258i −0.874442 0.485129i \(-0.838773\pi\)
0.874442 0.485129i \(-0.161227\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1648.76 −1.85880 −0.929402 0.369068i \(-0.879677\pi\)
−0.929402 + 0.369068i \(0.879677\pi\)
\(888\) 0 0
\(889\) 8.74819 0.00984048
\(890\) 0 0
\(891\) −150.349 −0.168742
\(892\) 0 0
\(893\) −1582.50 −1.77212
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 210.261i − 0.234405i
\(898\) 0 0
\(899\) −26.5395 −0.0295212
\(900\) 0 0
\(901\) − 631.467i − 0.700851i
\(902\) 0 0
\(903\) 104.052 0.115229
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 844.509i 0.931101i 0.885021 + 0.465551i \(0.154144\pi\)
−0.885021 + 0.465551i \(0.845856\pi\)
\(908\) 0 0
\(909\) − 277.289i − 0.305048i
\(910\) 0 0
\(911\) 1074.78i 1.17978i 0.807483 + 0.589891i \(0.200829\pi\)
−0.807483 + 0.589891i \(0.799171\pi\)
\(912\) 0 0
\(913\) − 1596.88i − 1.74905i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1456.30 −1.58811
\(918\) 0 0
\(919\) 1142.19i 1.24286i 0.783471 + 0.621428i \(0.213447\pi\)
−0.783471 + 0.621428i \(0.786553\pi\)
\(920\) 0 0
\(921\) −491.067 −0.533188
\(922\) 0 0
\(923\) 967.736i 1.04847i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −369.941 −0.399074
\(928\) 0 0
\(929\) −415.953 −0.447742 −0.223871 0.974619i \(-0.571869\pi\)
−0.223871 + 0.974619i \(0.571869\pi\)
\(930\) 0 0
\(931\) 306.814 0.329553
\(932\) 0 0
\(933\) 1063.51 1.13988
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 846.979i 0.903927i 0.892037 + 0.451963i \(0.149276\pi\)
−0.892037 + 0.451963i \(0.850724\pi\)
\(938\) 0 0
\(939\) 886.671 0.944271
\(940\) 0 0
\(941\) 149.279i 0.158638i 0.996849 + 0.0793192i \(0.0252746\pi\)
−0.996849 + 0.0793192i \(0.974725\pi\)
\(942\) 0 0
\(943\) 27.6599 0.0293318
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 543.005i 0.573395i 0.958021 + 0.286697i \(0.0925574\pi\)
−0.958021 + 0.286697i \(0.907443\pi\)
\(948\) 0 0
\(949\) 731.935i 0.771269i
\(950\) 0 0
\(951\) − 744.098i − 0.782438i
\(952\) 0 0
\(953\) − 344.292i − 0.361272i −0.983550 0.180636i \(-0.942184\pi\)
0.983550 0.180636i \(-0.0578156\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −17.0492 −0.0178153
\(958\) 0 0
\(959\) 129.121i 0.134641i
\(960\) 0 0
\(961\) −1067.70 −1.11103
\(962\) 0 0
\(963\) 0.720311i 0 0.000747987i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1044.78 1.08044 0.540219 0.841524i \(-0.318341\pi\)
0.540219 + 0.841524i \(0.318341\pi\)
\(968\) 0 0
\(969\) 531.991 0.549010
\(970\) 0 0
\(971\) −306.656 −0.315814 −0.157907 0.987454i \(-0.550475\pi\)
−0.157907 + 0.987454i \(0.550475\pi\)
\(972\) 0 0
\(973\) 1338.65 1.37580
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1753.81i − 1.79509i −0.440919 0.897547i \(-0.645347\pi\)
0.440919 0.897547i \(-0.354653\pi\)
\(978\) 0 0
\(979\) −131.968 −0.134799
\(980\) 0 0
\(981\) − 352.790i − 0.359623i
\(982\) 0 0
\(983\) −951.541 −0.967997 −0.483999 0.875069i \(-0.660816\pi\)
−0.483999 + 0.875069i \(0.660816\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 583.349i 0.591033i
\(988\) 0 0
\(989\) − 89.3731i − 0.0903672i
\(990\) 0 0
\(991\) − 1786.06i − 1.80229i −0.433523 0.901143i \(-0.642730\pi\)
0.433523 0.901143i \(-0.357270\pi\)
\(992\) 0 0
\(993\) 930.627i 0.937187i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1375.80 1.37994 0.689969 0.723839i \(-0.257624\pi\)
0.689969 + 0.723839i \(0.257624\pi\)
\(998\) 0 0
\(999\) − 190.285i − 0.190475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.p.b.1999.14 32
4.3 odd 2 600.3.p.b.499.8 32
5.2 odd 4 480.3.g.a.271.9 16
5.3 odd 4 2400.3.g.b.751.7 16
5.4 even 2 inner 2400.3.p.b.1999.31 32
8.3 odd 2 inner 2400.3.p.b.1999.32 32
8.5 even 2 600.3.p.b.499.26 32
15.2 even 4 1440.3.g.c.271.10 16
20.3 even 4 600.3.g.d.451.12 16
20.7 even 4 120.3.g.a.91.5 16
20.19 odd 2 600.3.p.b.499.25 32
40.3 even 4 2400.3.g.b.751.2 16
40.13 odd 4 600.3.g.d.451.11 16
40.19 odd 2 inner 2400.3.p.b.1999.13 32
40.27 even 4 480.3.g.a.271.16 16
40.29 even 2 600.3.p.b.499.7 32
40.37 odd 4 120.3.g.a.91.6 yes 16
60.47 odd 4 360.3.g.c.91.12 16
120.77 even 4 360.3.g.c.91.11 16
120.107 odd 4 1440.3.g.c.271.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.5 16 20.7 even 4
120.3.g.a.91.6 yes 16 40.37 odd 4
360.3.g.c.91.11 16 120.77 even 4
360.3.g.c.91.12 16 60.47 odd 4
480.3.g.a.271.9 16 5.2 odd 4
480.3.g.a.271.16 16 40.27 even 4
600.3.g.d.451.11 16 40.13 odd 4
600.3.g.d.451.12 16 20.3 even 4
600.3.p.b.499.7 32 40.29 even 2
600.3.p.b.499.8 32 4.3 odd 2
600.3.p.b.499.25 32 20.19 odd 2
600.3.p.b.499.26 32 8.5 even 2
1440.3.g.c.271.7 16 120.107 odd 4
1440.3.g.c.271.10 16 15.2 even 4
2400.3.g.b.751.2 16 40.3 even 4
2400.3.g.b.751.7 16 5.3 odd 4
2400.3.p.b.1999.13 32 40.19 odd 2 inner
2400.3.p.b.1999.14 32 1.1 even 1 trivial
2400.3.p.b.1999.31 32 5.4 even 2 inner
2400.3.p.b.1999.32 32 8.3 odd 2 inner