Properties

Label 120.3.g.a.91.6
Level $120$
Weight $3$
Character 120.91
Analytic conductor $3.270$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [120,3,Mod(91,120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("120.91"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 120.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.26976317232\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.6
Root \(1.56126 - 1.24999i\) of defining polynomial
Character \(\chi\) \(=\) 120.91
Dual form 120.3.g.a.91.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.56126 + 1.24999i) q^{2} -1.73205 q^{3} +(0.875058 - 3.90311i) q^{4} +2.23607i q^{5} +(2.70418 - 2.16504i) q^{6} -7.58970i q^{7} +(3.51265 + 7.18758i) q^{8} +3.00000 q^{9} +(-2.79506 - 3.49108i) q^{10} +16.7055 q^{11} +(-1.51564 + 6.76039i) q^{12} +10.7512i q^{13} +(9.48703 + 11.8495i) q^{14} -3.87298i q^{15} +(-14.4685 - 6.83090i) q^{16} +8.61276 q^{17} +(-4.68378 + 3.74997i) q^{18} +35.6616 q^{19} +(8.72762 + 1.95669i) q^{20} +13.1457i q^{21} +(-26.0816 + 20.8817i) q^{22} +11.2913i q^{23} +(-6.08409 - 12.4493i) q^{24} -5.00000 q^{25} +(-13.4388 - 16.7854i) q^{26} -5.19615 q^{27} +(-29.6234 - 6.64142i) q^{28} -0.589229i q^{29} +(4.84118 + 6.04673i) q^{30} -45.0411i q^{31} +(31.1277 - 7.42072i) q^{32} -28.9347 q^{33} +(-13.4467 + 10.7658i) q^{34} +16.9711 q^{35} +(2.62517 - 11.7093i) q^{36} -36.6203i q^{37} +(-55.6770 + 44.5766i) q^{38} -18.6216i q^{39} +(-16.0719 + 7.85453i) q^{40} -2.44967 q^{41} +(-16.4320 - 20.5239i) q^{42} -7.91524 q^{43} +(14.6183 - 65.2033i) q^{44} +6.70820i q^{45} +(-14.1140 - 17.6286i) q^{46} -44.3755i q^{47} +(25.0603 + 11.8315i) q^{48} -8.60348 q^{49} +(7.80629 - 6.24994i) q^{50} -14.9177 q^{51} +(41.9630 + 9.40790i) q^{52} +73.3176i q^{53} +(8.11254 - 6.49513i) q^{54} +37.3546i q^{55} +(54.5515 - 26.6600i) q^{56} -61.7677 q^{57} +(0.736530 + 0.919939i) q^{58} -89.7651 q^{59} +(-15.1167 - 3.38908i) q^{60} +98.7987i q^{61} +(56.3009 + 70.3209i) q^{62} -22.7691i q^{63} +(-39.3226 + 50.4949i) q^{64} -24.0404 q^{65} +(45.1746 - 36.1681i) q^{66} +89.5013 q^{67} +(7.53666 - 33.6165i) q^{68} -19.5571i q^{69} +(-26.4962 + 21.2136i) q^{70} +90.0121i q^{71} +(10.5380 + 21.5627i) q^{72} +68.0795 q^{73} +(45.7750 + 57.1738i) q^{74} +8.66025 q^{75} +(31.2060 - 139.191i) q^{76} -126.790i q^{77} +(23.2768 + 29.0731i) q^{78} -36.2647i q^{79} +(15.2743 - 32.3527i) q^{80} +9.00000 q^{81} +(3.82457 - 3.06206i) q^{82} -95.5904 q^{83} +(51.3093 + 11.5033i) q^{84} +19.2587i q^{85} +(12.3577 - 9.89396i) q^{86} +1.02058i q^{87} +(58.6805 + 120.072i) q^{88} -7.89970 q^{89} +(-8.38518 - 10.4732i) q^{90} +81.5982 q^{91} +(44.0711 + 9.88052i) q^{92} +78.0135i q^{93} +(55.4689 + 69.2817i) q^{94} +79.7418i q^{95} +(-53.9147 + 12.8531i) q^{96} -137.133 q^{97} +(13.4323 - 10.7543i) q^{98} +50.1164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 14 q^{4} + 6 q^{6} + 20 q^{8} + 48 q^{9} + 10 q^{10} + 64 q^{11} - 20 q^{14} - 14 q^{16} - 12 q^{18} - 32 q^{19} - 40 q^{20} + 28 q^{22} - 54 q^{24} - 80 q^{25} + 36 q^{26} - 28 q^{28}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.56126 + 1.24999i −0.780629 + 0.624994i
\(3\) −1.73205 −0.577350
\(4\) 0.875058 3.90311i 0.218764 0.975778i
\(5\) 2.23607i 0.447214i
\(6\) 2.70418 2.16504i 0.450697 0.360841i
\(7\) 7.58970i 1.08424i −0.840300 0.542121i \(-0.817621\pi\)
0.840300 0.542121i \(-0.182379\pi\)
\(8\) 3.51265 + 7.18758i 0.439081 + 0.898447i
\(9\) 3.00000 0.333333
\(10\) −2.79506 3.49108i −0.279506 0.349108i
\(11\) 16.7055 1.51868 0.759340 0.650694i \(-0.225522\pi\)
0.759340 + 0.650694i \(0.225522\pi\)
\(12\) −1.51564 + 6.76039i −0.126304 + 0.563366i
\(13\) 10.7512i 0.827014i 0.910501 + 0.413507i \(0.135696\pi\)
−0.910501 + 0.413507i \(0.864304\pi\)
\(14\) 9.48703 + 11.8495i 0.677645 + 0.846391i
\(15\) 3.87298i 0.258199i
\(16\) −14.4685 6.83090i −0.904284 0.426931i
\(17\) 8.61276 0.506633 0.253316 0.967383i \(-0.418479\pi\)
0.253316 + 0.967383i \(0.418479\pi\)
\(18\) −4.68378 + 3.74997i −0.260210 + 0.208331i
\(19\) 35.6616 1.87693 0.938464 0.345378i \(-0.112249\pi\)
0.938464 + 0.345378i \(0.112249\pi\)
\(20\) 8.72762 + 1.95669i 0.436381 + 0.0978344i
\(21\) 13.1457i 0.625988i
\(22\) −26.0816 + 20.8817i −1.18553 + 0.949166i
\(23\) 11.2913i 0.490925i 0.969406 + 0.245462i \(0.0789398\pi\)
−0.969406 + 0.245462i \(0.921060\pi\)
\(24\) −6.08409 12.4493i −0.253504 0.518719i
\(25\) −5.00000 −0.200000
\(26\) −13.4388 16.7854i −0.516879 0.645591i
\(27\) −5.19615 −0.192450
\(28\) −29.6234 6.64142i −1.05798 0.237194i
\(29\) 0.589229i 0.0203183i −0.999948 0.0101591i \(-0.996766\pi\)
0.999948 0.0101591i \(-0.00323381\pi\)
\(30\) 4.84118 + 6.04673i 0.161373 + 0.201558i
\(31\) 45.0411i 1.45294i −0.687198 0.726470i \(-0.741160\pi\)
0.687198 0.726470i \(-0.258840\pi\)
\(32\) 31.1277 7.42072i 0.972740 0.231898i
\(33\) −28.9347 −0.876810
\(34\) −13.4467 + 10.7658i −0.395492 + 0.316643i
\(35\) 16.9711 0.484888
\(36\) 2.62517 11.7093i 0.0729215 0.325259i
\(37\) 36.6203i 0.989738i −0.868968 0.494869i \(-0.835216\pi\)
0.868968 0.494869i \(-0.164784\pi\)
\(38\) −55.6770 + 44.5766i −1.46518 + 1.17307i
\(39\) 18.6216i 0.477477i
\(40\) −16.0719 + 7.85453i −0.401798 + 0.196363i
\(41\) −2.44967 −0.0597481 −0.0298740 0.999554i \(-0.509511\pi\)
−0.0298740 + 0.999554i \(0.509511\pi\)
\(42\) −16.4320 20.5239i −0.391239 0.488664i
\(43\) −7.91524 −0.184075 −0.0920377 0.995756i \(-0.529338\pi\)
−0.0920377 + 0.995756i \(0.529338\pi\)
\(44\) 14.6183 65.2033i 0.332233 1.48189i
\(45\) 6.70820i 0.149071i
\(46\) −14.1140 17.6286i −0.306825 0.383230i
\(47\) 44.3755i 0.944160i −0.881556 0.472080i \(-0.843503\pi\)
0.881556 0.472080i \(-0.156497\pi\)
\(48\) 25.0603 + 11.8315i 0.522089 + 0.246489i
\(49\) −8.60348 −0.175581
\(50\) 7.80629 6.24994i 0.156126 0.124999i
\(51\) −14.9177 −0.292505
\(52\) 41.9630 + 9.40790i 0.806982 + 0.180921i
\(53\) 73.3176i 1.38335i 0.722209 + 0.691675i \(0.243127\pi\)
−0.722209 + 0.691675i \(0.756873\pi\)
\(54\) 8.11254 6.49513i 0.150232 0.120280i
\(55\) 37.3546i 0.679174i
\(56\) 54.5515 26.6600i 0.974134 0.476071i
\(57\) −61.7677 −1.08364
\(58\) 0.736530 + 0.919939i 0.0126988 + 0.0158610i
\(59\) −89.7651 −1.52144 −0.760721 0.649079i \(-0.775155\pi\)
−0.760721 + 0.649079i \(0.775155\pi\)
\(60\) −15.1167 3.38908i −0.251945 0.0564847i
\(61\) 98.7987i 1.61965i 0.586671 + 0.809826i \(0.300438\pi\)
−0.586671 + 0.809826i \(0.699562\pi\)
\(62\) 56.3009 + 70.3209i 0.908079 + 1.13421i
\(63\) 22.7691i 0.361414i
\(64\) −39.3226 + 50.4949i −0.614415 + 0.788983i
\(65\) −24.0404 −0.369852
\(66\) 45.1746 36.1681i 0.684464 0.548001i
\(67\) 89.5013 1.33584 0.667920 0.744233i \(-0.267185\pi\)
0.667920 + 0.744233i \(0.267185\pi\)
\(68\) 7.53666 33.6165i 0.110833 0.494361i
\(69\) 19.5571i 0.283436i
\(70\) −26.4962 + 21.2136i −0.378518 + 0.303052i
\(71\) 90.0121i 1.26778i 0.773425 + 0.633888i \(0.218542\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(72\) 10.5380 + 21.5627i 0.146360 + 0.299482i
\(73\) 68.0795 0.932596 0.466298 0.884628i \(-0.345588\pi\)
0.466298 + 0.884628i \(0.345588\pi\)
\(74\) 45.7750 + 57.1738i 0.618580 + 0.772618i
\(75\) 8.66025 0.115470
\(76\) 31.2060 139.191i 0.410605 1.83146i
\(77\) 126.790i 1.64662i
\(78\) 23.2768 + 29.0731i 0.298420 + 0.372732i
\(79\) 36.2647i 0.459046i −0.973303 0.229523i \(-0.926283\pi\)
0.973303 0.229523i \(-0.0737167\pi\)
\(80\) 15.2743 32.3527i 0.190929 0.404408i
\(81\) 9.00000 0.111111
\(82\) 3.82457 3.06206i 0.0466411 0.0373422i
\(83\) −95.5904 −1.15169 −0.575846 0.817558i \(-0.695327\pi\)
−0.575846 + 0.817558i \(0.695327\pi\)
\(84\) 51.3093 + 11.5033i 0.610825 + 0.136944i
\(85\) 19.2587i 0.226573i
\(86\) 12.3577 9.89396i 0.143695 0.115046i
\(87\) 1.02058i 0.0117307i
\(88\) 58.6805 + 120.072i 0.666824 + 1.36445i
\(89\) −7.89970 −0.0887607 −0.0443803 0.999015i \(-0.514131\pi\)
−0.0443803 + 0.999015i \(0.514131\pi\)
\(90\) −8.38518 10.4732i −0.0931686 0.116369i
\(91\) 81.5982 0.896683
\(92\) 44.0711 + 9.88052i 0.479034 + 0.107397i
\(93\) 78.0135i 0.838855i
\(94\) 55.4689 + 69.2817i 0.590095 + 0.737039i
\(95\) 79.7418i 0.839387i
\(96\) −53.9147 + 12.8531i −0.561612 + 0.133886i
\(97\) −137.133 −1.41375 −0.706873 0.707341i \(-0.749895\pi\)
−0.706873 + 0.707341i \(0.749895\pi\)
\(98\) 13.4323 10.7543i 0.137064 0.109737i
\(99\) 50.1164 0.506227
\(100\) −4.37529 + 19.5156i −0.0437529 + 0.195156i
\(101\) 92.4295i 0.915144i −0.889173 0.457572i \(-0.848719\pi\)
0.889173 0.457572i \(-0.151281\pi\)
\(102\) 23.2904 18.6470i 0.228338 0.182814i
\(103\) 123.314i 1.19722i −0.801040 0.598610i \(-0.795720\pi\)
0.801040 0.598610i \(-0.204280\pi\)
\(104\) −77.2749 + 37.7651i −0.743028 + 0.363126i
\(105\) −29.3948 −0.279950
\(106\) −91.6461 114.468i −0.864586 1.07988i
\(107\) −0.240104 −0.00224396 −0.00112198 0.999999i \(-0.500357\pi\)
−0.00112198 + 0.999999i \(0.500357\pi\)
\(108\) −4.54693 + 20.2812i −0.0421012 + 0.187789i
\(109\) 117.597i 1.07887i 0.842028 + 0.539435i \(0.181362\pi\)
−0.842028 + 0.539435i \(0.818638\pi\)
\(110\) −46.6928 58.3202i −0.424480 0.530183i
\(111\) 63.4282i 0.571425i
\(112\) −51.8444 + 109.812i −0.462897 + 0.980463i
\(113\) 41.1728 0.364361 0.182180 0.983265i \(-0.441685\pi\)
0.182180 + 0.983265i \(0.441685\pi\)
\(114\) 96.4354 77.2090i 0.845925 0.677272i
\(115\) −25.2481 −0.219548
\(116\) −2.29983 0.515610i −0.0198261 0.00444491i
\(117\) 32.2535i 0.275671i
\(118\) 140.147 112.205i 1.18768 0.950893i
\(119\) 65.3682i 0.549313i
\(120\) 27.8374 13.6044i 0.231978 0.113370i
\(121\) 158.073 1.30639
\(122\) −123.497 154.250i −1.01227 1.26435i
\(123\) 4.24295 0.0344956
\(124\) −175.800 39.4136i −1.41775 0.317852i
\(125\) 11.1803i 0.0894427i
\(126\) 28.4611 + 35.5484i 0.225882 + 0.282130i
\(127\) 1.15264i 0.00907591i −0.999990 0.00453795i \(-0.998556\pi\)
0.999990 0.00453795i \(-0.00144448\pi\)
\(128\) −1.72536 127.988i −0.0134794 0.999909i
\(129\) 13.7096 0.106276
\(130\) 37.5332 30.0502i 0.288717 0.231155i
\(131\) −191.878 −1.46472 −0.732359 0.680919i \(-0.761581\pi\)
−0.732359 + 0.680919i \(0.761581\pi\)
\(132\) −25.3196 + 112.935i −0.191815 + 0.855572i
\(133\) 270.661i 2.03504i
\(134\) −139.735 + 111.876i −1.04280 + 0.834892i
\(135\) 11.6190i 0.0860663i
\(136\) 30.2536 + 61.9049i 0.222453 + 0.455183i
\(137\) 17.0127 0.124180 0.0620901 0.998071i \(-0.480223\pi\)
0.0620901 + 0.998071i \(0.480223\pi\)
\(138\) 24.4461 + 30.5336i 0.177146 + 0.221258i
\(139\) −176.378 −1.26890 −0.634452 0.772963i \(-0.718774\pi\)
−0.634452 + 0.772963i \(0.718774\pi\)
\(140\) 14.8507 66.2400i 0.106076 0.473143i
\(141\) 76.8607i 0.545111i
\(142\) −112.514 140.532i −0.792353 0.989663i
\(143\) 179.604i 1.25597i
\(144\) −43.4056 20.4927i −0.301428 0.142310i
\(145\) 1.31756 0.00908660
\(146\) −106.290 + 85.0986i −0.728011 + 0.582867i
\(147\) 14.9017 0.101372
\(148\) −142.933 32.0449i −0.965764 0.216519i
\(149\) 212.046i 1.42313i −0.702620 0.711565i \(-0.747987\pi\)
0.702620 0.711565i \(-0.252013\pi\)
\(150\) −13.5209 + 10.8252i −0.0901393 + 0.0721681i
\(151\) 143.361i 0.949408i 0.880146 + 0.474704i \(0.157445\pi\)
−0.880146 + 0.474704i \(0.842555\pi\)
\(152\) 125.267 + 256.321i 0.824124 + 1.68632i
\(153\) 25.8383 0.168878
\(154\) 158.485 + 197.951i 1.02913 + 1.28540i
\(155\) 100.715 0.649774
\(156\) −72.6821 16.2950i −0.465911 0.104455i
\(157\) 82.2710i 0.524019i −0.965065 0.262009i \(-0.915615\pi\)
0.965065 0.262009i \(-0.0843852\pi\)
\(158\) 45.3304 + 56.6185i 0.286901 + 0.358345i
\(159\) 126.990i 0.798678i
\(160\) 16.5932 + 69.6036i 0.103708 + 0.435023i
\(161\) 85.6973 0.532282
\(162\) −14.0513 + 11.2499i −0.0867366 + 0.0694438i
\(163\) 27.8115 0.170623 0.0853113 0.996354i \(-0.472812\pi\)
0.0853113 + 0.996354i \(0.472812\pi\)
\(164\) −2.14360 + 9.56134i −0.0130708 + 0.0583008i
\(165\) 64.7000i 0.392121i
\(166\) 149.241 119.487i 0.899044 0.719800i
\(167\) 207.819i 1.24443i 0.782848 + 0.622214i \(0.213766\pi\)
−0.782848 + 0.622214i \(0.786234\pi\)
\(168\) −94.4860 + 46.1764i −0.562417 + 0.274860i
\(169\) 53.4122 0.316048
\(170\) −24.0732 30.0678i −0.141607 0.176870i
\(171\) 106.985 0.625642
\(172\) −6.92629 + 30.8941i −0.0402692 + 0.179617i
\(173\) 45.7625i 0.264523i 0.991215 + 0.132262i \(0.0422239\pi\)
−0.991215 + 0.132262i \(0.957776\pi\)
\(174\) −1.27571 1.59338i −0.00733165 0.00915737i
\(175\) 37.9485i 0.216848i
\(176\) −241.704 114.113i −1.37332 0.648372i
\(177\) 155.478 0.878405
\(178\) 12.3335 9.87453i 0.0692892 0.0554749i
\(179\) −33.0983 −0.184907 −0.0924533 0.995717i \(-0.529471\pi\)
−0.0924533 + 0.995717i \(0.529471\pi\)
\(180\) 26.1829 + 5.87007i 0.145460 + 0.0326115i
\(181\) 177.147i 0.978711i 0.872084 + 0.489356i \(0.162768\pi\)
−0.872084 + 0.489356i \(0.837232\pi\)
\(182\) −127.396 + 101.997i −0.699977 + 0.560422i
\(183\) 171.124i 0.935106i
\(184\) −81.1569 + 39.6623i −0.441070 + 0.215556i
\(185\) 81.8855 0.442624
\(186\) −97.5160 121.799i −0.524280 0.654835i
\(187\) 143.880 0.769413
\(188\) −173.203 38.8312i −0.921291 0.206549i
\(189\) 39.4372i 0.208663i
\(190\) −99.6763 124.498i −0.524612 0.655250i
\(191\) 28.8000i 0.150785i 0.997154 + 0.0753927i \(0.0240210\pi\)
−0.997154 + 0.0753927i \(0.975979\pi\)
\(192\) 68.1087 87.4598i 0.354733 0.455520i
\(193\) 87.7961 0.454902 0.227451 0.973789i \(-0.426961\pi\)
0.227451 + 0.973789i \(0.426961\pi\)
\(194\) 214.101 171.415i 1.10361 0.883583i
\(195\) 41.6391 0.213534
\(196\) −7.52855 + 33.5803i −0.0384109 + 0.171328i
\(197\) 347.625i 1.76459i −0.470696 0.882296i \(-0.655997\pi\)
0.470696 0.882296i \(-0.344003\pi\)
\(198\) −78.2447 + 62.6450i −0.395175 + 0.316389i
\(199\) 129.347i 0.649985i 0.945717 + 0.324992i \(0.105362\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(200\) −17.5633 35.9379i −0.0878163 0.179689i
\(201\) −155.021 −0.771247
\(202\) 115.536 + 144.306i 0.571960 + 0.714388i
\(203\) −4.47207 −0.0220299
\(204\) −13.0539 + 58.2256i −0.0639896 + 0.285419i
\(205\) 5.47763i 0.0267202i
\(206\) 154.141 + 192.525i 0.748256 + 0.934586i
\(207\) 33.8738i 0.163642i
\(208\) 73.4402 155.554i 0.353078 0.747855i
\(209\) 595.744 2.85045
\(210\) 45.8928 36.7431i 0.218537 0.174967i
\(211\) −190.507 −0.902877 −0.451439 0.892302i \(-0.649089\pi\)
−0.451439 + 0.892302i \(0.649089\pi\)
\(212\) 286.167 + 64.1571i 1.34984 + 0.302628i
\(213\) 155.905i 0.731951i
\(214\) 0.374864 0.300127i 0.00175170 0.00140246i
\(215\) 17.6990i 0.0823210i
\(216\) −18.2523 37.3478i −0.0845013 0.172906i
\(217\) −341.848 −1.57534
\(218\) −146.995 183.599i −0.674287 0.842197i
\(219\) −117.917 −0.538434
\(220\) 145.799 + 32.6874i 0.662723 + 0.148579i
\(221\) 92.5973i 0.418992i
\(222\) −79.2845 99.0279i −0.357138 0.446071i
\(223\) 211.437i 0.948149i −0.880485 0.474075i \(-0.842783\pi\)
0.880485 0.474075i \(-0.157217\pi\)
\(224\) −56.3210 236.250i −0.251433 1.05469i
\(225\) −15.0000 −0.0666667
\(226\) −64.2813 + 51.4655i −0.284431 + 0.227723i
\(227\) 88.8880 0.391577 0.195788 0.980646i \(-0.437273\pi\)
0.195788 + 0.980646i \(0.437273\pi\)
\(228\) −54.0503 + 241.086i −0.237063 + 1.05740i
\(229\) 152.872i 0.667565i 0.942650 + 0.333782i \(0.108325\pi\)
−0.942650 + 0.333782i \(0.891675\pi\)
\(230\) 39.4187 31.5598i 0.171386 0.137216i
\(231\) 219.606i 0.950675i
\(232\) 4.23513 2.06976i 0.0182549 0.00892137i
\(233\) 188.417 0.808656 0.404328 0.914614i \(-0.367505\pi\)
0.404328 + 0.914614i \(0.367505\pi\)
\(234\) −40.3165 50.3561i −0.172293 0.215197i
\(235\) 99.2267 0.422241
\(236\) −78.5497 + 350.363i −0.332838 + 1.48459i
\(237\) 62.8122i 0.265030i
\(238\) 81.7095 + 102.057i 0.343317 + 0.428810i
\(239\) 227.979i 0.953888i −0.878934 0.476944i \(-0.841745\pi\)
0.878934 0.476944i \(-0.158255\pi\)
\(240\) −26.4559 + 56.0364i −0.110233 + 0.233485i
\(241\) −265.794 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(242\) −246.793 + 197.590i −1.01981 + 0.816486i
\(243\) −15.5885 −0.0641500
\(244\) 385.622 + 86.4546i 1.58042 + 0.354322i
\(245\) 19.2380i 0.0785223i
\(246\) −6.62435 + 5.30364i −0.0269283 + 0.0215595i
\(247\) 383.404i 1.55224i
\(248\) 323.737 158.214i 1.30539 0.637959i
\(249\) 165.567 0.664929
\(250\) 13.9753 + 17.4554i 0.0559012 + 0.0698216i
\(251\) 154.894 0.617106 0.308553 0.951207i \(-0.400155\pi\)
0.308553 + 0.951207i \(0.400155\pi\)
\(252\) −88.8703 19.9243i −0.352660 0.0790646i
\(253\) 188.626i 0.745558i
\(254\) 1.44079 + 1.79957i 0.00567239 + 0.00708492i
\(255\) 33.3571i 0.130812i
\(256\) 162.678 + 197.666i 0.635460 + 0.772134i
\(257\) −422.025 −1.64212 −0.821060 0.570842i \(-0.806617\pi\)
−0.821060 + 0.570842i \(0.806617\pi\)
\(258\) −21.4042 + 17.1368i −0.0829621 + 0.0664219i
\(259\) −277.937 −1.07312
\(260\) −21.0367 + 93.8322i −0.0809104 + 0.360893i
\(261\) 1.76769i 0.00677275i
\(262\) 299.571 239.845i 1.14340 0.915440i
\(263\) 118.083i 0.448983i 0.974476 + 0.224492i \(0.0720721\pi\)
−0.974476 + 0.224492i \(0.927928\pi\)
\(264\) −101.638 207.971i −0.384991 0.787768i
\(265\) −163.943 −0.618653
\(266\) 338.323 + 422.572i 1.27189 + 1.58862i
\(267\) 13.6827 0.0512460
\(268\) 78.3188 349.333i 0.292234 1.30348i
\(269\) 493.643i 1.83510i 0.397617 + 0.917551i \(0.369837\pi\)
−0.397617 + 0.917551i \(0.630163\pi\)
\(270\) 14.5236 + 18.1402i 0.0537909 + 0.0671859i
\(271\) 362.955i 1.33932i −0.742669 0.669659i \(-0.766440\pi\)
0.742669 0.669659i \(-0.233560\pi\)
\(272\) −124.614 58.8329i −0.458140 0.216297i
\(273\) −141.332 −0.517700
\(274\) −26.5612 + 21.2657i −0.0969387 + 0.0776119i
\(275\) −83.5274 −0.303736
\(276\) −76.3334 17.1136i −0.276570 0.0620056i
\(277\) 321.011i 1.15888i −0.815013 0.579442i \(-0.803270\pi\)
0.815013 0.579442i \(-0.196730\pi\)
\(278\) 275.371 220.470i 0.990543 0.793057i
\(279\) 135.123i 0.484313i
\(280\) 59.6135 + 121.981i 0.212905 + 0.435646i
\(281\) −185.799 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(282\) −96.0750 119.999i −0.340691 0.425530i
\(283\) −208.628 −0.737202 −0.368601 0.929588i \(-0.620163\pi\)
−0.368601 + 0.929588i \(0.620163\pi\)
\(284\) 351.327 + 78.7658i 1.23707 + 0.277344i
\(285\) 138.117i 0.484621i
\(286\) −224.502 280.408i −0.784974 0.980447i
\(287\) 18.5923i 0.0647814i
\(288\) 93.3831 22.2622i 0.324247 0.0772992i
\(289\) −214.820 −0.743323
\(290\) −2.05705 + 1.64693i −0.00709327 + 0.00567907i
\(291\) 237.522 0.816226
\(292\) 59.5735 265.722i 0.204019 0.910006i
\(293\) 306.925i 1.04752i 0.851864 + 0.523762i \(0.175472\pi\)
−0.851864 + 0.523762i \(0.824528\pi\)
\(294\) −23.2654 + 18.6269i −0.0791339 + 0.0633568i
\(295\) 200.721i 0.680410i
\(296\) 263.211 128.634i 0.889227 0.434576i
\(297\) −86.8042 −0.292270
\(298\) 265.055 + 331.059i 0.889448 + 1.11094i
\(299\) −121.394 −0.406002
\(300\) 7.57822 33.8019i 0.0252607 0.112673i
\(301\) 60.0743i 0.199582i
\(302\) −179.199 223.823i −0.593374 0.741136i
\(303\) 160.093i 0.528358i
\(304\) −515.972 243.601i −1.69728 0.801318i
\(305\) −220.921 −0.724330
\(306\) −40.3402 + 32.2975i −0.131831 + 0.105548i
\(307\) 283.517 0.923510 0.461755 0.887008i \(-0.347220\pi\)
0.461755 + 0.887008i \(0.347220\pi\)
\(308\) −494.874 110.948i −1.60673 0.360221i
\(309\) 213.586i 0.691216i
\(310\) −157.242 + 125.893i −0.507233 + 0.406105i
\(311\) 614.016i 1.97433i −0.159709 0.987164i \(-0.551056\pi\)
0.159709 0.987164i \(-0.448944\pi\)
\(312\) 133.844 65.4111i 0.428988 0.209651i
\(313\) −511.920 −1.63553 −0.817763 0.575555i \(-0.804786\pi\)
−0.817763 + 0.575555i \(0.804786\pi\)
\(314\) 102.838 + 128.446i 0.327509 + 0.409065i
\(315\) 50.9132 0.161629
\(316\) −141.545 31.7337i −0.447927 0.100423i
\(317\) 429.605i 1.35522i 0.735421 + 0.677611i \(0.236985\pi\)
−0.735421 + 0.677611i \(0.763015\pi\)
\(318\) 158.736 + 198.264i 0.499169 + 0.623471i
\(319\) 9.84336i 0.0308569i
\(320\) −112.910 87.9279i −0.352844 0.274775i
\(321\) 0.415872 0.00129555
\(322\) −133.796 + 107.121i −0.415515 + 0.332673i
\(323\) 307.145 0.950913
\(324\) 7.87552 35.1280i 0.0243072 0.108420i
\(325\) 53.7559i 0.165403i
\(326\) −43.4209 + 34.7640i −0.133193 + 0.106638i
\(327\) 203.684i 0.622885i
\(328\) −8.60484 17.6072i −0.0262343 0.0536805i
\(329\) −336.797 −1.02370
\(330\) 80.8743 + 101.014i 0.245074 + 0.306102i
\(331\) −537.298 −1.62326 −0.811628 0.584175i \(-0.801418\pi\)
−0.811628 + 0.584175i \(0.801418\pi\)
\(332\) −83.6471 + 373.100i −0.251949 + 1.12379i
\(333\) 109.861i 0.329913i
\(334\) −259.772 324.460i −0.777760 0.971436i
\(335\) 200.131i 0.597406i
\(336\) 89.7972 190.200i 0.267253 0.566071i
\(337\) 158.578 0.470559 0.235279 0.971928i \(-0.424400\pi\)
0.235279 + 0.971928i \(0.424400\pi\)
\(338\) −83.3902 + 66.7646i −0.246717 + 0.197528i
\(339\) −71.3133 −0.210364
\(340\) 75.1689 + 16.8525i 0.221085 + 0.0495661i
\(341\) 752.434i 2.20655i
\(342\) −167.031 + 133.730i −0.488395 + 0.391023i
\(343\) 306.597i 0.893870i
\(344\) −27.8035 56.8914i −0.0808241 0.165382i
\(345\) 43.7309 0.126756
\(346\) −57.2026 71.4472i −0.165326 0.206495i
\(347\) 169.697 0.489041 0.244520 0.969644i \(-0.421370\pi\)
0.244520 + 0.969644i \(0.421370\pi\)
\(348\) 3.98342 + 0.893062i 0.0114466 + 0.00256627i
\(349\) 296.370i 0.849196i 0.905382 + 0.424598i \(0.139585\pi\)
−0.905382 + 0.424598i \(0.860415\pi\)
\(350\) −47.4352 59.2474i −0.135529 0.169278i
\(351\) 55.8648i 0.159159i
\(352\) 520.003 123.967i 1.47728 0.352178i
\(353\) 133.075 0.376982 0.188491 0.982075i \(-0.439640\pi\)
0.188491 + 0.982075i \(0.439640\pi\)
\(354\) −242.741 + 194.345i −0.685709 + 0.548998i
\(355\) −201.273 −0.566967
\(356\) −6.91269 + 30.8334i −0.0194177 + 0.0866107i
\(357\) 113.221i 0.317146i
\(358\) 51.6750 41.3725i 0.144344 0.115566i
\(359\) 238.095i 0.663218i −0.943417 0.331609i \(-0.892409\pi\)
0.943417 0.331609i \(-0.107591\pi\)
\(360\) −48.2157 + 23.5636i −0.133933 + 0.0654544i
\(361\) 910.751 2.52286
\(362\) −221.431 276.572i −0.611689 0.764011i
\(363\) −273.791 −0.754244
\(364\) 71.4031 318.487i 0.196162 0.874964i
\(365\) 152.230i 0.417069i
\(366\) 213.904 + 267.169i 0.584436 + 0.729971i
\(367\) 381.665i 1.03996i 0.854179 + 0.519979i \(0.174060\pi\)
−0.854179 + 0.519979i \(0.825940\pi\)
\(368\) 77.1295 163.368i 0.209591 0.443936i
\(369\) −7.34901 −0.0199160
\(370\) −127.844 + 102.356i −0.345525 + 0.276638i
\(371\) 556.458 1.49989
\(372\) 304.495 + 68.2663i 0.818536 + 0.183512i
\(373\) 42.2729i 0.113332i −0.998393 0.0566661i \(-0.981953\pi\)
0.998393 0.0566661i \(-0.0180470\pi\)
\(374\) −224.634 + 179.849i −0.600626 + 0.480879i
\(375\) 19.3649i 0.0516398i
\(376\) 318.953 155.876i 0.848278 0.414563i
\(377\) 6.33491 0.0168035
\(378\) −49.2961 61.5717i −0.130413 0.162888i
\(379\) 412.302 1.08787 0.543934 0.839128i \(-0.316934\pi\)
0.543934 + 0.839128i \(0.316934\pi\)
\(380\) 311.241 + 69.7787i 0.819056 + 0.183628i
\(381\) 1.99643i 0.00523998i
\(382\) −35.9997 44.9643i −0.0942400 0.117708i
\(383\) 403.711i 1.05408i 0.849842 + 0.527038i \(0.176697\pi\)
−0.849842 + 0.527038i \(0.823303\pi\)
\(384\) 2.98842 + 221.682i 0.00778234 + 0.577298i
\(385\) 283.510 0.736390
\(386\) −137.072 + 109.744i −0.355110 + 0.284311i
\(387\) −23.7457 −0.0613585
\(388\) −120.000 + 535.246i −0.309277 + 1.37950i
\(389\) 78.5053i 0.201813i −0.994896 0.100907i \(-0.967826\pi\)
0.994896 0.100907i \(-0.0321743\pi\)
\(390\) −65.0095 + 52.0484i −0.166691 + 0.133458i
\(391\) 97.2490i 0.248719i
\(392\) −30.2210 61.8382i −0.0770945 0.157751i
\(393\) 332.342 0.845655
\(394\) 434.527 + 542.732i 1.10286 + 1.37749i
\(395\) 81.0902 0.205292
\(396\) 43.8548 195.610i 0.110744 0.493965i
\(397\) 323.080i 0.813803i 0.913472 + 0.406902i \(0.133391\pi\)
−0.913472 + 0.406902i \(0.866609\pi\)
\(398\) −161.682 201.944i −0.406237 0.507397i
\(399\) 468.798i 1.17493i
\(400\) 72.3427 + 34.1545i 0.180857 + 0.0853862i
\(401\) −621.389 −1.54960 −0.774799 0.632207i \(-0.782149\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(402\) 242.027 193.774i 0.602058 0.482025i
\(403\) 484.245 1.20160
\(404\) −360.763 80.8812i −0.892977 0.200201i
\(405\) 20.1246i 0.0496904i
\(406\) 6.98206 5.59004i 0.0171972 0.0137686i
\(407\) 611.760i 1.50310i
\(408\) −52.4008 107.222i −0.128433 0.262800i
\(409\) 322.888 0.789458 0.394729 0.918798i \(-0.370839\pi\)
0.394729 + 0.918798i \(0.370839\pi\)
\(410\) 6.84698 + 8.55200i 0.0166999 + 0.0208585i
\(411\) −29.4668 −0.0716954
\(412\) −481.307 107.907i −1.16822 0.261909i
\(413\) 681.290i 1.64961i
\(414\) −42.3419 52.8858i −0.102275 0.127743i
\(415\) 213.747i 0.515052i
\(416\) 79.7815 + 334.659i 0.191782 + 0.804470i
\(417\) 305.495 0.732602
\(418\) −930.111 + 744.674i −2.22515 + 1.78152i
\(419\) 19.2316 0.0458988 0.0229494 0.999737i \(-0.492694\pi\)
0.0229494 + 0.999737i \(0.492694\pi\)
\(420\) −25.7221 + 114.731i −0.0612431 + 0.273169i
\(421\) 312.791i 0.742970i −0.928439 0.371485i \(-0.878849\pi\)
0.928439 0.371485i \(-0.121151\pi\)
\(422\) 297.431 238.132i 0.704813 0.564293i
\(423\) 133.127i 0.314720i
\(424\) −526.976 + 257.539i −1.24287 + 0.607404i
\(425\) −43.0638 −0.101327
\(426\) 194.880 + 243.409i 0.457465 + 0.571382i
\(427\) 749.852 1.75609
\(428\) −0.210105 + 0.937151i −0.000490899 + 0.00218961i
\(429\) 311.083i 0.725134i
\(430\) 22.1236 + 27.6327i 0.0514502 + 0.0642622i
\(431\) 417.415i 0.968479i −0.874935 0.484240i \(-0.839096\pi\)
0.874935 0.484240i \(-0.160904\pi\)
\(432\) 75.1808 + 35.4944i 0.174030 + 0.0821629i
\(433\) 279.474 0.645436 0.322718 0.946495i \(-0.395404\pi\)
0.322718 + 0.946495i \(0.395404\pi\)
\(434\) 533.714 427.307i 1.22976 0.984577i
\(435\) −2.28208 −0.00524615
\(436\) 458.993 + 102.904i 1.05274 + 0.236018i
\(437\) 402.665i 0.921430i
\(438\) 184.099 147.395i 0.420318 0.336518i
\(439\) 30.1336i 0.0686415i 0.999411 + 0.0343207i \(0.0109268\pi\)
−0.999411 + 0.0343207i \(0.989073\pi\)
\(440\) −268.489 + 131.214i −0.610202 + 0.298213i
\(441\) −25.8104 −0.0585271
\(442\) −115.746 144.568i −0.261868 0.327078i
\(443\) −56.2858 −0.127056 −0.0635279 0.997980i \(-0.520235\pi\)
−0.0635279 + 0.997980i \(0.520235\pi\)
\(444\) 247.567 + 55.5034i 0.557584 + 0.125008i
\(445\) 17.6643i 0.0396950i
\(446\) 264.294 + 330.108i 0.592588 + 0.740153i
\(447\) 367.275i 0.821644i
\(448\) 383.241 + 298.446i 0.855449 + 0.666175i
\(449\) −283.497 −0.631396 −0.315698 0.948860i \(-0.602239\pi\)
−0.315698 + 0.948860i \(0.602239\pi\)
\(450\) 23.4189 18.7498i 0.0520420 0.0416663i
\(451\) −40.9229 −0.0907382
\(452\) 36.0285 160.702i 0.0797092 0.355535i
\(453\) 248.308i 0.548141i
\(454\) −138.777 + 111.109i −0.305676 + 0.244733i
\(455\) 182.459i 0.401009i
\(456\) −216.969 443.960i −0.475808 0.973597i
\(457\) −265.204 −0.580315 −0.290158 0.956979i \(-0.593708\pi\)
−0.290158 + 0.956979i \(0.593708\pi\)
\(458\) −191.089 238.673i −0.417224 0.521120i
\(459\) −44.7532 −0.0975015
\(460\) −22.0935 + 98.5459i −0.0480294 + 0.214230i
\(461\) 709.643i 1.53936i −0.638432 0.769678i \(-0.720417\pi\)
0.638432 0.769678i \(-0.279583\pi\)
\(462\) −274.505 342.862i −0.594166 0.742125i
\(463\) 417.392i 0.901495i 0.892652 + 0.450747i \(0.148843\pi\)
−0.892652 + 0.450747i \(0.851157\pi\)
\(464\) −4.02496 + 8.52529i −0.00867449 + 0.0183735i
\(465\) −174.444 −0.375147
\(466\) −294.167 + 235.519i −0.631260 + 0.505405i
\(467\) −679.287 −1.45458 −0.727288 0.686332i \(-0.759220\pi\)
−0.727288 + 0.686332i \(0.759220\pi\)
\(468\) 125.889 + 28.2237i 0.268994 + 0.0603071i
\(469\) 679.287i 1.44837i
\(470\) −154.919 + 124.032i −0.329614 + 0.263898i
\(471\) 142.498i 0.302543i
\(472\) −315.313 645.194i −0.668037 1.36694i
\(473\) −132.228 −0.279552
\(474\) −78.5146 98.0661i −0.165643 0.206891i
\(475\) −178.308 −0.375385
\(476\) −255.139 57.2010i −0.536007 0.120170i
\(477\) 219.953i 0.461117i
\(478\) 284.971 + 355.934i 0.596174 + 0.744633i
\(479\) 157.578i 0.328974i 0.986379 + 0.164487i \(0.0525968\pi\)
−0.986379 + 0.164487i \(0.947403\pi\)
\(480\) −28.7403 120.557i −0.0598757 0.251160i
\(481\) 393.711 0.818527
\(482\) 414.973 332.239i 0.860939 0.689292i
\(483\) −148.432 −0.307313
\(484\) 138.323 616.977i 0.285792 1.27475i
\(485\) 306.639i 0.632246i
\(486\) 24.3376 19.4854i 0.0500774 0.0400934i
\(487\) 736.646i 1.51262i 0.654213 + 0.756311i \(0.273000\pi\)
−0.654213 + 0.756311i \(0.727000\pi\)
\(488\) −710.123 + 347.045i −1.45517 + 0.711159i
\(489\) −48.1709 −0.0985090
\(490\) 24.0472 + 30.0355i 0.0490760 + 0.0612968i
\(491\) −362.408 −0.738101 −0.369050 0.929409i \(-0.620317\pi\)
−0.369050 + 0.929409i \(0.620317\pi\)
\(492\) 3.71283 16.5607i 0.00754640 0.0336600i
\(493\) 5.07489i 0.0102939i
\(494\) −479.251 598.594i −0.970144 1.21173i
\(495\) 112.064i 0.226391i
\(496\) −307.671 + 651.680i −0.620305 + 1.31387i
\(497\) 683.164 1.37458
\(498\) −258.494 + 206.957i −0.519063 + 0.415577i
\(499\) 648.812 1.30022 0.650112 0.759838i \(-0.274722\pi\)
0.650112 + 0.759838i \(0.274722\pi\)
\(500\) −43.6381 9.78344i −0.0872762 0.0195669i
\(501\) 359.954i 0.718470i
\(502\) −241.829 + 193.615i −0.481731 + 0.385687i
\(503\) 402.612i 0.800421i −0.916423 0.400210i \(-0.868937\pi\)
0.916423 0.400210i \(-0.131063\pi\)
\(504\) 163.655 79.9799i 0.324711 0.158690i
\(505\) 206.679 0.409265
\(506\) −235.780 294.494i −0.465969 0.582004i
\(507\) −92.5126 −0.182471
\(508\) −4.49888 1.00863i −0.00885607 0.00198549i
\(509\) 470.175i 0.923724i 0.886952 + 0.461862i \(0.152818\pi\)
−0.886952 + 0.461862i \(0.847182\pi\)
\(510\) 41.6959 + 52.0790i 0.0817568 + 0.102116i
\(511\) 516.702i 1.01116i
\(512\) −501.063 105.263i −0.978638 0.205592i
\(513\) −185.303 −0.361215
\(514\) 658.890 527.526i 1.28189 1.02632i
\(515\) 275.738 0.535414
\(516\) 11.9967 53.5101i 0.0232494 0.103702i
\(517\) 741.315i 1.43388i
\(518\) 433.931 347.418i 0.837706 0.670691i
\(519\) 79.2630i 0.152723i
\(520\) −84.4454 172.792i −0.162395 0.332292i
\(521\) −155.978 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(522\) 2.20959 + 2.75982i 0.00423293 + 0.00528701i
\(523\) −313.578 −0.599576 −0.299788 0.954006i \(-0.596916\pi\)
−0.299788 + 0.954006i \(0.596916\pi\)
\(524\) −167.904 + 748.921i −0.320428 + 1.42924i
\(525\) 65.7287i 0.125198i
\(526\) −147.602 184.357i −0.280612 0.350489i
\(527\) 387.928i 0.736107i
\(528\) 418.644 + 197.650i 0.792886 + 0.374338i
\(529\) 401.507 0.758993
\(530\) 255.958 204.927i 0.482939 0.386655i
\(531\) −269.295 −0.507147
\(532\) −1056.42 236.844i −1.98575 0.445195i
\(533\) 26.3369i 0.0494125i
\(534\) −21.3622 + 17.1032i −0.0400041 + 0.0320284i
\(535\) 0.536888i 0.00100353i
\(536\) 314.387 + 643.297i 0.586542 + 1.20018i
\(537\) 57.3279 0.106756
\(538\) −617.048 770.704i −1.14693 1.43254i
\(539\) −143.725 −0.266652
\(540\) −45.3500 10.1673i −0.0839816 0.0188282i
\(541\) 892.335i 1.64942i 0.565557 + 0.824709i \(0.308661\pi\)
−0.565557 + 0.824709i \(0.691339\pi\)
\(542\) 453.690 + 566.667i 0.837066 + 1.04551i
\(543\) 306.827i 0.565059i
\(544\) 268.095 63.9129i 0.492822 0.117487i
\(545\) −262.954 −0.482485
\(546\) 220.656 176.664i 0.404132 0.323560i
\(547\) −671.435 −1.22749 −0.613743 0.789506i \(-0.710337\pi\)
−0.613743 + 0.789506i \(0.710337\pi\)
\(548\) 14.8871 66.4024i 0.0271662 0.121172i
\(549\) 296.396i 0.539884i
\(550\) 130.408 104.408i 0.237105 0.189833i
\(551\) 21.0129i 0.0381359i
\(552\) 140.568 68.6971i 0.254652 0.124451i
\(553\) −275.238 −0.497717
\(554\) 401.260 + 501.181i 0.724296 + 0.904659i
\(555\) −141.830 −0.255549
\(556\) −154.341 + 688.421i −0.277591 + 1.23817i
\(557\) 296.095i 0.531590i 0.964030 + 0.265795i \(0.0856344\pi\)
−0.964030 + 0.265795i \(0.914366\pi\)
\(558\) 168.903 + 210.963i 0.302693 + 0.378069i
\(559\) 85.0982i 0.152233i
\(560\) −245.547 115.928i −0.438476 0.207014i
\(561\) −249.208 −0.444221
\(562\) 290.080 232.247i 0.516157 0.413250i
\(563\) −707.222 −1.25617 −0.628084 0.778146i \(-0.716161\pi\)
−0.628084 + 0.778146i \(0.716161\pi\)
\(564\) 299.996 + 67.2576i 0.531907 + 0.119251i
\(565\) 92.0651i 0.162947i
\(566\) 325.722 260.783i 0.575481 0.460747i
\(567\) 68.3073i 0.120471i
\(568\) −646.969 + 316.181i −1.13903 + 0.556657i
\(569\) 230.263 0.404680 0.202340 0.979315i \(-0.435145\pi\)
0.202340 + 0.979315i \(0.435145\pi\)
\(570\) 172.644 + 215.636i 0.302885 + 0.378309i
\(571\) −439.428 −0.769575 −0.384788 0.923005i \(-0.625725\pi\)
−0.384788 + 0.923005i \(0.625725\pi\)
\(572\) 701.013 + 157.164i 1.22555 + 0.274761i
\(573\) 49.8831i 0.0870560i
\(574\) −23.2401 29.0273i −0.0404880 0.0505703i
\(575\) 56.4564i 0.0981850i
\(576\) −117.968 + 151.485i −0.204805 + 0.262994i
\(577\) −184.670 −0.320053 −0.160026 0.987113i \(-0.551158\pi\)
−0.160026 + 0.987113i \(0.551158\pi\)
\(578\) 335.390 268.523i 0.580260 0.464573i
\(579\) −152.067 −0.262638
\(580\) 1.15294 5.14257i 0.00198782 0.00886650i
\(581\) 725.502i 1.24871i
\(582\) −370.833 + 296.900i −0.637170 + 0.510137i
\(583\) 1224.81i 2.10087i
\(584\) 239.139 + 489.327i 0.409485 + 0.837888i
\(585\) −72.1211 −0.123284
\(586\) −383.652 479.189i −0.654697 0.817729i
\(587\) 297.341 0.506543 0.253271 0.967395i \(-0.418493\pi\)
0.253271 + 0.967395i \(0.418493\pi\)
\(588\) 13.0398 58.1629i 0.0221766 0.0989164i
\(589\) 1606.24i 2.72706i
\(590\) 250.899 + 313.377i 0.425252 + 0.531148i
\(591\) 602.103i 1.01879i
\(592\) −250.149 + 529.843i −0.422550 + 0.895004i
\(593\) −607.065 −1.02372 −0.511859 0.859070i \(-0.671043\pi\)
−0.511859 + 0.859070i \(0.671043\pi\)
\(594\) 135.524 108.504i 0.228155 0.182667i
\(595\) 146.168 0.245660
\(596\) −827.640 185.553i −1.38866 0.311330i
\(597\) 224.036i 0.375269i
\(598\) 189.528 151.742i 0.316937 0.253749i
\(599\) 448.633i 0.748970i 0.927233 + 0.374485i \(0.122180\pi\)
−0.927233 + 0.374485i \(0.877820\pi\)
\(600\) 30.4205 + 62.2463i 0.0507008 + 0.103744i
\(601\) 580.584 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(602\) −75.0921 93.7915i −0.124738 0.155800i
\(603\) 268.504 0.445280
\(604\) 559.552 + 125.449i 0.926411 + 0.207697i
\(605\) 353.462i 0.584235i
\(606\) −200.114 249.946i −0.330221 0.412452i
\(607\) 132.576i 0.218413i −0.994019 0.109206i \(-0.965169\pi\)
0.994019 0.109206i \(-0.0348309\pi\)
\(608\) 1110.06 264.635i 1.82576 0.435255i
\(609\) 7.74585 0.0127190
\(610\) 344.914 276.148i 0.565433 0.452702i
\(611\) 477.089 0.780834
\(612\) 22.6100 100.850i 0.0369444 0.164787i
\(613\) 175.738i 0.286685i −0.989673 0.143343i \(-0.954215\pi\)
0.989673 0.143343i \(-0.0457851\pi\)
\(614\) −442.644 + 354.393i −0.720919 + 0.577188i
\(615\) 9.48754i 0.0154269i
\(616\) 911.310 445.367i 1.47940 0.722999i
\(617\) 283.254 0.459082 0.229541 0.973299i \(-0.426277\pi\)
0.229541 + 0.973299i \(0.426277\pi\)
\(618\) −266.980 333.463i −0.432006 0.539583i
\(619\) −80.2105 −0.129581 −0.0647904 0.997899i \(-0.520638\pi\)
−0.0647904 + 0.997899i \(0.520638\pi\)
\(620\) 88.1315 393.102i 0.142148 0.634035i
\(621\) 58.6712i 0.0944785i
\(622\) 767.513 + 958.638i 1.23394 + 1.54122i
\(623\) 59.9563i 0.0962381i
\(624\) −127.202 + 269.427i −0.203850 + 0.431775i
\(625\) 25.0000 0.0400000
\(626\) 799.239 639.893i 1.27674 1.02219i
\(627\) −1031.86 −1.64571
\(628\) −321.113 71.9919i −0.511326 0.114637i
\(629\) 315.402i 0.501434i
\(630\) −79.4887 + 63.6409i −0.126173 + 0.101017i
\(631\) 178.580i 0.283011i −0.989937 0.141505i \(-0.954806\pi\)
0.989937 0.141505i \(-0.0451942\pi\)
\(632\) 260.655 127.385i 0.412429 0.201559i
\(633\) 329.968 0.521277
\(634\) −537.002 670.725i −0.847006 1.05793i
\(635\) 2.57738 0.00405887
\(636\) −495.655 111.123i −0.779332 0.174722i
\(637\) 92.4976i 0.145208i
\(638\) 12.3041 + 15.3680i 0.0192854 + 0.0240878i
\(639\) 270.036i 0.422592i
\(640\) 286.191 3.85803i 0.447173 0.00602818i
\(641\) −379.689 −0.592339 −0.296169 0.955135i \(-0.595709\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(642\) −0.649283 + 0.519835i −0.00101134 + 0.000809712i
\(643\) −847.921 −1.31869 −0.659347 0.751839i \(-0.729167\pi\)
−0.659347 + 0.751839i \(0.729167\pi\)
\(644\) 74.9901 334.486i 0.116444 0.519388i
\(645\) 30.6556i 0.0475281i
\(646\) −479.533 + 383.928i −0.742311 + 0.594315i
\(647\) 372.369i 0.575532i 0.957701 + 0.287766i \(0.0929126\pi\)
−0.957701 + 0.287766i \(0.907087\pi\)
\(648\) 31.6139 + 64.6882i 0.0487868 + 0.0998275i
\(649\) −1499.57 −2.31058
\(650\) 67.1942 + 83.9269i 0.103376 + 0.129118i
\(651\) 592.099 0.909522
\(652\) 24.3367 108.551i 0.0373262 0.166490i
\(653\) 650.726i 0.996517i −0.867028 0.498259i \(-0.833973\pi\)
0.867028 0.498259i \(-0.166027\pi\)
\(654\) 254.602 + 318.003i 0.389300 + 0.486243i
\(655\) 429.052i 0.655042i
\(656\) 35.4432 + 16.7334i 0.0540292 + 0.0255083i
\(657\) 204.238 0.310865
\(658\) 525.827 420.992i 0.799129 0.639806i
\(659\) 589.211 0.894099 0.447049 0.894509i \(-0.352475\pi\)
0.447049 + 0.894509i \(0.352475\pi\)
\(660\) −252.531 56.6163i −0.382623 0.0857823i
\(661\) 402.340i 0.608684i 0.952563 + 0.304342i \(0.0984366\pi\)
−0.952563 + 0.304342i \(0.901563\pi\)
\(662\) 838.861 671.616i 1.26716 1.01453i
\(663\) 160.383i 0.241905i
\(664\) −335.776 687.063i −0.505686 1.03473i
\(665\) 605.216 0.910099
\(666\) 137.325 + 171.521i 0.206193 + 0.257539i
\(667\) 6.65315 0.00997473
\(668\) 811.142 + 181.854i 1.21428 + 0.272236i
\(669\) 366.220i 0.547414i
\(670\) −250.161 312.456i −0.373375 0.466352i
\(671\) 1650.48i 2.45973i
\(672\) 97.5509 + 409.196i 0.145165 + 0.608923i
\(673\) 1237.67 1.83903 0.919515 0.393056i \(-0.128582\pi\)
0.919515 + 0.393056i \(0.128582\pi\)
\(674\) −247.582 + 198.221i −0.367332 + 0.294096i
\(675\) 25.9808 0.0384900
\(676\) 46.7387 208.474i 0.0691401 0.308393i
\(677\) 163.462i 0.241451i −0.992686 0.120725i \(-0.961478\pi\)
0.992686 0.120725i \(-0.0385221\pi\)
\(678\) 111.339 89.1408i 0.164216 0.131476i
\(679\) 1040.80i 1.53284i
\(680\) −138.423 + 67.6491i −0.203564 + 0.0994840i
\(681\) −153.958 −0.226077
\(682\) 940.533 + 1174.74i 1.37908 + 1.72250i
\(683\) 992.033 1.45246 0.726232 0.687449i \(-0.241270\pi\)
0.726232 + 0.687449i \(0.241270\pi\)
\(684\) 93.6179 417.574i 0.136868 0.610488i
\(685\) 38.0415i 0.0555350i
\(686\) 383.243 + 478.678i 0.558663 + 0.697781i
\(687\) 264.783i 0.385419i
\(688\) 114.522 + 54.0682i 0.166456 + 0.0785875i
\(689\) −788.250 −1.14405
\(690\) −68.2753 + 54.6631i −0.0989497 + 0.0792219i
\(691\) −465.365 −0.673466 −0.336733 0.941600i \(-0.609322\pi\)
−0.336733 + 0.941600i \(0.609322\pi\)
\(692\) 178.616 + 40.0449i 0.258116 + 0.0578683i
\(693\) 380.369i 0.548872i
\(694\) −264.941 + 212.119i −0.381759 + 0.305648i
\(695\) 394.392i 0.567471i
\(696\) −7.33546 + 3.58492i −0.0105395 + 0.00515075i
\(697\) −21.0984 −0.0302703
\(698\) −370.459 462.710i −0.530743 0.662908i
\(699\) −326.347 −0.466878
\(700\) 148.117 + 33.2071i 0.211596 + 0.0474387i
\(701\) 261.352i 0.372827i −0.982471 0.186414i \(-0.940314\pi\)
0.982471 0.186414i \(-0.0596864\pi\)
\(702\) 69.8303 + 87.2194i 0.0994734 + 0.124244i
\(703\) 1305.94i 1.85767i
\(704\) −656.902 + 843.542i −0.933100 + 1.19821i
\(705\) −171.866 −0.243781
\(706\) −207.764 + 166.342i −0.294283 + 0.235611i
\(707\) −701.512 −0.992238
\(708\) 136.052 606.847i 0.192164 0.857128i
\(709\) 186.604i 0.263194i 0.991303 + 0.131597i \(0.0420104\pi\)
−0.991303 + 0.131597i \(0.957990\pi\)
\(710\) 314.239 251.589i 0.442591 0.354351i
\(711\) 108.794i 0.153015i
\(712\) −27.7489 56.7797i −0.0389732 0.0797468i
\(713\) 508.572 0.713284
\(714\) −141.525 176.767i −0.198214 0.247573i
\(715\) −401.606 −0.561687
\(716\) −28.9629 + 129.186i −0.0404510 + 0.180428i
\(717\) 394.871i 0.550727i
\(718\) 297.616 + 371.728i 0.414507 + 0.517727i
\(719\) 448.275i 0.623470i 0.950169 + 0.311735i \(0.100910\pi\)
−0.950169 + 0.311735i \(0.899090\pi\)
\(720\) 45.8230 97.0580i 0.0636431 0.134803i
\(721\) −935.914 −1.29808
\(722\) −1421.92 + 1138.43i −1.96942 + 1.57677i
\(723\) 460.368 0.636747
\(724\) 691.423 + 155.014i 0.955005 + 0.214107i
\(725\) 2.94615i 0.00406365i
\(726\) 427.458 342.235i 0.588785 0.471398i
\(727\) 956.205i 1.31527i −0.753335 0.657637i \(-0.771556\pi\)
0.753335 0.657637i \(-0.228444\pi\)
\(728\) 286.626 + 586.493i 0.393717 + 0.805623i
\(729\) 27.0000 0.0370370
\(730\) −190.286 237.671i −0.260666 0.325577i
\(731\) −68.1721 −0.0932586
\(732\) −667.917 149.744i −0.912456 0.204568i
\(733\) 398.986i 0.544320i −0.962252 0.272160i \(-0.912262\pi\)
0.962252 0.272160i \(-0.0877379\pi\)
\(734\) −477.076 595.877i −0.649968 0.811822i
\(735\) 33.3211i 0.0453349i
\(736\) 83.7894 + 351.471i 0.113844 + 0.477542i
\(737\) 1495.16 2.02871
\(738\) 11.4737 9.18618i 0.0155470 0.0124474i
\(739\) 1011.87 1.36924 0.684622 0.728899i \(-0.259967\pi\)
0.684622 + 0.728899i \(0.259967\pi\)
\(740\) 71.6545 319.608i 0.0968305 0.431903i
\(741\) 664.076i 0.896189i
\(742\) −868.775 + 695.566i −1.17086 + 0.937421i
\(743\) 346.145i 0.465875i −0.972492 0.232938i \(-0.925166\pi\)
0.972492 0.232938i \(-0.0748338\pi\)
\(744\) −560.728 + 274.034i −0.753667 + 0.368326i
\(745\) 474.150 0.636443
\(746\) 52.8406 + 65.9989i 0.0708319 + 0.0884704i
\(747\) −286.771 −0.383897
\(748\) 125.904 561.581i 0.168320 0.750776i
\(749\) 1.82231i 0.00243300i
\(750\) −24.2059 30.2336i −0.0322746 0.0403115i
\(751\) 71.2058i 0.0948146i 0.998876 + 0.0474073i \(0.0150959\pi\)
−0.998876 + 0.0474073i \(0.984904\pi\)
\(752\) −303.125 + 642.050i −0.403091 + 0.853789i
\(753\) −268.283 −0.356286
\(754\) −9.89043 + 7.91856i −0.0131173 + 0.0105021i
\(755\) −320.564 −0.424588
\(756\) 153.928 + 34.5098i 0.203608 + 0.0456479i
\(757\) 1452.44i 1.91867i 0.282264 + 0.959337i \(0.408915\pi\)
−0.282264 + 0.959337i \(0.591085\pi\)
\(758\) −643.710 + 515.373i −0.849222 + 0.679912i
\(759\) 326.710i 0.430448i
\(760\) −573.150 + 280.105i −0.754145 + 0.368559i
\(761\) 414.416 0.544567 0.272284 0.962217i \(-0.412221\pi\)
0.272284 + 0.962217i \(0.412221\pi\)
\(762\) −2.49552 3.11695i −0.00327496 0.00409048i
\(763\) 892.523 1.16976
\(764\) 112.410 + 25.2017i 0.147133 + 0.0329865i
\(765\) 57.7761i 0.0755244i
\(766\) −504.634 630.297i −0.658791 0.822842i
\(767\) 965.081i 1.25825i
\(768\) −281.766 342.368i −0.366883 0.445792i
\(769\) −132.780 −0.172665 −0.0863326 0.996266i \(-0.527515\pi\)
−0.0863326 + 0.996266i \(0.527515\pi\)
\(770\) −442.632 + 354.384i −0.574847 + 0.460239i
\(771\) 730.968 0.948078
\(772\) 76.8267 342.678i 0.0995165 0.443884i
\(773\) 135.449i 0.175225i 0.996155 + 0.0876126i \(0.0279238\pi\)
−0.996155 + 0.0876126i \(0.972076\pi\)
\(774\) 37.0732 29.6819i 0.0478982 0.0383487i
\(775\) 225.206i 0.290588i
\(776\) −481.702 985.656i −0.620749 1.27018i
\(777\) 481.401 0.619564
\(778\) 98.1307 + 122.567i 0.126132 + 0.157541i
\(779\) −87.3592 −0.112143
\(780\) 36.4367 162.522i 0.0467137 0.208362i
\(781\) 1503.70i 1.92535i
\(782\) −121.560 151.831i −0.155448 0.194157i
\(783\) 3.06173i 0.00391025i
\(784\) 124.480 + 58.7695i 0.158775 + 0.0749611i
\(785\) 183.964 0.234348
\(786\) −518.873 + 415.424i −0.660143 + 0.528530i
\(787\) −370.900 −0.471283 −0.235642 0.971840i \(-0.575719\pi\)
−0.235642 + 0.971840i \(0.575719\pi\)
\(788\) −1356.82 304.192i −1.72185 0.386030i
\(789\) 204.525i 0.259220i
\(790\) −126.603 + 101.362i −0.160257 + 0.128306i
\(791\) 312.489i 0.395055i
\(792\) 176.042 + 360.216i 0.222275 + 0.454818i
\(793\) −1062.20 −1.33947
\(794\) −403.846 504.411i −0.508622 0.635279i
\(795\) 283.958 0.357180
\(796\) 504.856 + 113.186i 0.634241 + 0.142194i
\(797\) 980.881i 1.23072i −0.788247 0.615358i \(-0.789011\pi\)
0.788247 0.615358i \(-0.210989\pi\)
\(798\) −585.992 731.916i −0.734326 0.917187i
\(799\) 382.196i 0.478343i
\(800\) −155.638 + 37.1036i −0.194548 + 0.0463795i
\(801\) −23.6991 −0.0295869
\(802\) 970.149 776.729i 1.20966 0.968490i
\(803\) 1137.30 1.41631
\(804\) −135.652 + 605.063i −0.168722 + 0.752566i
\(805\) 191.625i 0.238044i
\(806\) −756.032 + 605.301i −0.938005 + 0.750994i
\(807\) 855.014i 1.05950i
\(808\) 664.344 324.673i 0.822208 0.401823i
\(809\) −464.769 −0.574498 −0.287249 0.957856i \(-0.592741\pi\)
−0.287249 + 0.957856i \(0.592741\pi\)
\(810\) −25.1555 31.4197i −0.0310562 0.0387898i
\(811\) −49.1816 −0.0606431 −0.0303216 0.999540i \(-0.509653\pi\)
−0.0303216 + 0.999540i \(0.509653\pi\)
\(812\) −3.91332 + 17.4550i −0.00481936 + 0.0214963i
\(813\) 628.657i 0.773255i
\(814\) 764.693 + 955.115i 0.939426 + 1.17336i
\(815\) 62.1884i 0.0763048i
\(816\) 215.838 + 101.901i 0.264507 + 0.124879i
\(817\) −282.270 −0.345496
\(818\) −504.112 + 403.607i −0.616274 + 0.493407i
\(819\) 244.795 0.298894
\(820\) −21.3798 4.79324i −0.0260729 0.00584542i
\(821\) 911.027i 1.10965i 0.831965 + 0.554827i \(0.187216\pi\)
−0.831965 + 0.554827i \(0.812784\pi\)
\(822\) 46.0053 36.8332i 0.0559676 0.0448092i
\(823\) 1278.02i 1.55287i 0.630195 + 0.776437i \(0.282975\pi\)
−0.630195 + 0.776437i \(0.717025\pi\)
\(824\) 886.327 433.158i 1.07564 0.525678i
\(825\) 144.674 0.175362
\(826\) −851.604 1063.67i −1.03100 1.28774i
\(827\) −671.016 −0.811386 −0.405693 0.914009i \(-0.632970\pi\)
−0.405693 + 0.914009i \(0.632970\pi\)
\(828\) 132.213 + 29.6416i 0.159678 + 0.0357990i
\(829\) 31.8486i 0.0384181i −0.999815 0.0192091i \(-0.993885\pi\)
0.999815 0.0192091i \(-0.00611481\pi\)
\(830\) 267.181 + 333.714i 0.321905 + 0.402065i
\(831\) 556.007i 0.669082i
\(832\) −542.880 422.764i −0.652500 0.508130i
\(833\) −74.0997 −0.0889552
\(834\) −476.957 + 381.865i −0.571890 + 0.457872i
\(835\) −464.698 −0.556525
\(836\) 521.311 2325.26i 0.623578 2.78141i
\(837\) 234.041i 0.279618i
\(838\) −30.0255 + 24.0393i −0.0358299 + 0.0286865i
\(839\) 112.707i 0.134335i −0.997742 0.0671674i \(-0.978604\pi\)
0.997742 0.0671674i \(-0.0213961\pi\)
\(840\) −103.254 211.277i −0.122921 0.251520i
\(841\) 840.653 0.999587
\(842\) 390.985 + 488.347i 0.464352 + 0.579985i
\(843\) 321.813 0.381748
\(844\) −166.705 + 743.570i −0.197518 + 0.881008i
\(845\) 119.433i 0.141341i
\(846\) 166.407 + 207.845i 0.196698 + 0.245680i
\(847\) 1199.73i 1.41644i
\(848\) 500.825 1060.80i 0.590595 1.25094i
\(849\) 361.354 0.425623
\(850\) 67.2337 53.8292i 0.0790985 0.0633285i
\(851\) 413.490 0.485887
\(852\) −608.516 136.426i −0.714221 0.160125i
\(853\) 512.714i 0.601072i −0.953770 0.300536i \(-0.902834\pi\)
0.953770 0.300536i \(-0.0971655\pi\)
\(854\) −1170.71 + 937.307i −1.37086 + 1.09755i
\(855\) 239.225i 0.279796i
\(856\) −0.843401 1.72576i −0.000985281 0.00201608i
\(857\) −1620.81 −1.89126 −0.945631 0.325243i \(-0.894554\pi\)
−0.945631 + 0.325243i \(0.894554\pi\)
\(858\) 388.850 + 485.680i 0.453205 + 0.566061i
\(859\) 225.172 0.262132 0.131066 0.991374i \(-0.458160\pi\)
0.131066 + 0.991374i \(0.458160\pi\)
\(860\) −69.0812 15.4877i −0.0803270 0.0180089i
\(861\) 32.2027i 0.0374016i
\(862\) 521.763 + 651.692i 0.605294 + 0.756023i
\(863\) 1029.21i 1.19260i −0.802763 0.596299i \(-0.796637\pi\)
0.802763 0.596299i \(-0.203363\pi\)
\(864\) −161.744 + 38.5592i −0.187204 + 0.0446287i
\(865\) −102.328 −0.118298
\(866\) −436.331 + 349.339i −0.503846 + 0.403394i
\(867\) 372.080 0.429158
\(868\) −299.137 + 1334.27i −0.344628 + 1.53718i
\(869\) 605.818i 0.697144i
\(870\) 3.56291 2.85257i 0.00409530 0.00327881i
\(871\) 962.244i 1.10476i
\(872\) −845.236 + 413.076i −0.969307 + 0.473711i
\(873\) −411.400 −0.471248
\(874\) −503.327 628.664i −0.575889 0.719296i
\(875\) −84.8554 −0.0969776
\(876\) −103.184 + 460.244i −0.117790 + 0.525392i
\(877\) 570.056i 0.650007i −0.945713 0.325003i \(-0.894635\pi\)
0.945713 0.325003i \(-0.105365\pi\)
\(878\) −37.6667 47.0464i −0.0429005 0.0535836i
\(879\) 531.609i 0.604789i
\(880\) 255.165 540.467i 0.289961 0.614167i
\(881\) 596.788 0.677398 0.338699 0.940895i \(-0.390013\pi\)
0.338699 + 0.940895i \(0.390013\pi\)
\(882\) 40.2968 32.2628i 0.0456880 0.0365791i
\(883\) 856.738 0.970258 0.485129 0.874442i \(-0.338773\pi\)
0.485129 + 0.874442i \(0.338773\pi\)
\(884\) 361.418 + 81.0280i 0.408843 + 0.0916606i
\(885\) 347.659i 0.392835i
\(886\) 87.8766 70.3565i 0.0991835 0.0794092i
\(887\) 1648.76i 1.85880i −0.369068 0.929402i \(-0.620323\pi\)
0.369068 0.929402i \(-0.379677\pi\)
\(888\) −455.895 + 222.801i −0.513396 + 0.250902i
\(889\) −8.74819 −0.00984048
\(890\) 22.0801 + 27.5785i 0.0248091 + 0.0309871i
\(891\) 150.349 0.168742
\(892\) −825.263 185.020i −0.925183 0.207421i
\(893\) 1582.50i 1.77212i
\(894\) −459.089 573.411i −0.513523 0.641400i
\(895\) 74.0100i 0.0826928i
\(896\) −971.393 + 13.0950i −1.08414 + 0.0146149i
\(897\) 210.261 0.234405
\(898\) 442.612 354.367i 0.492886 0.394619i
\(899\) −26.5395 −0.0295212
\(900\) −13.1259 + 58.5467i −0.0145843 + 0.0650518i
\(901\) 631.467i 0.700851i
\(902\) 63.8913 51.1532i 0.0708329 0.0567109i
\(903\) 104.052i 0.115229i
\(904\) 144.626 + 295.932i 0.159984 + 0.327359i
\(905\) −396.112 −0.437693
\(906\) 310.382 + 387.673i 0.342585 + 0.427895i
\(907\) 844.509 0.931101 0.465551 0.885021i \(-0.345856\pi\)
0.465551 + 0.885021i \(0.345856\pi\)
\(908\) 77.7821 346.940i 0.0856631 0.382092i
\(909\) 277.289i 0.305048i
\(910\) −228.072 284.866i −0.250628 0.313039i
\(911\) 1074.78i 1.17978i 0.807483 + 0.589891i \(0.200829\pi\)
−0.807483 + 0.589891i \(0.799171\pi\)
\(912\) 893.689 + 421.929i 0.979923 + 0.462641i
\(913\) −1596.88 −1.74905
\(914\) 414.052 331.502i 0.453011 0.362694i
\(915\) 382.646 0.418192
\(916\) 596.677 + 133.772i 0.651395 + 0.146039i
\(917\) 1456.30i 1.58811i
\(918\) 69.8713 55.9410i 0.0761126 0.0609379i
\(919\) 1142.19i 1.24286i −0.783471 0.621428i \(-0.786553\pi\)
0.783471 0.621428i \(-0.213447\pi\)
\(920\) −88.6876 181.472i −0.0963996 0.197253i
\(921\) −491.067 −0.533188
\(922\) 887.046 + 1107.94i 0.962089 + 1.20167i
\(923\) −967.736 −1.04847
\(924\) 857.146 + 192.168i 0.927647 + 0.207974i
\(925\) 183.102i 0.197948i
\(926\) −521.735 651.657i −0.563429 0.703733i
\(927\) 369.941i 0.399074i
\(928\) −4.37251 18.3413i −0.00471175 0.0197644i
\(929\) 415.953 0.447742 0.223871 0.974619i \(-0.428131\pi\)
0.223871 + 0.974619i \(0.428131\pi\)
\(930\) 272.351 218.052i 0.292851 0.234465i
\(931\) −306.814 −0.329553
\(932\) 164.876 735.412i 0.176905 0.789068i
\(933\) 1063.51i 1.13988i
\(934\) 1060.54 849.101i 1.13549 0.909102i
\(935\) 321.726i 0.344092i
\(936\) −231.825 + 113.295i −0.247676 + 0.121042i
\(937\) −846.979 −0.903927 −0.451963 0.892037i \(-0.649276\pi\)
−0.451963 + 0.892037i \(0.649276\pi\)
\(938\) 849.101 + 1060.54i 0.905225 + 1.13064i
\(939\) 886.671 0.944271
\(940\) 86.8291 387.293i 0.0923714 0.412014i
\(941\) 149.279i 0.158638i −0.996849 0.0793192i \(-0.974725\pi\)
0.996849 0.0793192i \(-0.0252746\pi\)
\(942\) −178.120 222.476i −0.189087 0.236174i
\(943\) 27.6599i 0.0293318i
\(944\) 1298.77 + 613.176i 1.37582 + 0.649551i
\(945\) −88.1843 −0.0933167
\(946\) 206.442 165.283i 0.218226 0.174718i
\(947\) 543.005 0.573395 0.286697 0.958021i \(-0.407443\pi\)
0.286697 + 0.958021i \(0.407443\pi\)
\(948\) 245.163 + 54.9643i 0.258611 + 0.0579793i
\(949\) 731.935i 0.771269i
\(950\) 278.385 222.883i 0.293037 0.234614i
\(951\) 744.098i 0.782438i
\(952\) 469.839 229.616i 0.493529 0.241193i
\(953\) −344.292 −0.361272 −0.180636 0.983550i \(-0.557816\pi\)
−0.180636 + 0.983550i \(0.557816\pi\)
\(954\) −274.938 343.403i −0.288195 0.359961i
\(955\) −64.3988 −0.0674333
\(956\) −889.828 199.495i −0.930782 0.208677i
\(957\) 17.0492i 0.0178153i
\(958\) −196.971 246.021i −0.205607 0.256807i
\(959\) 129.121i 0.134641i
\(960\) 195.566 + 152.296i 0.203715 + 0.158641i
\(961\) −1067.70 −1.11103
\(962\) −614.685 + 492.135i −0.638966 + 0.511575i
\(963\) −0.720311 −0.000747987
\(964\) −232.585 + 1037.42i −0.241271 + 1.07616i
\(965\) 196.318i 0.203438i
\(966\) 231.741 185.538i 0.239897 0.192069i
\(967\) 1044.78i 1.08044i 0.841524 + 0.540219i \(0.181659\pi\)
−0.841524 + 0.540219i \(0.818341\pi\)
\(968\) 555.256 + 1136.16i 0.573611 + 1.17372i
\(969\) −531.991 −0.549010
\(970\) 383.296 + 478.743i 0.395150 + 0.493550i
\(971\) 306.656 0.315814 0.157907 0.987454i \(-0.449525\pi\)
0.157907 + 0.987454i \(0.449525\pi\)
\(972\) −13.6408 + 60.8435i −0.0140337 + 0.0625962i
\(973\) 1338.65i 1.37580i
\(974\) −920.800 1150.10i −0.945379 1.18080i
\(975\) 93.1079i 0.0954953i
\(976\) 674.884 1429.47i 0.691479 1.46462i
\(977\) 1753.81 1.79509 0.897547 0.440919i \(-0.145347\pi\)
0.897547 + 0.440919i \(0.145347\pi\)
\(978\) 75.2073 60.2131i 0.0768990 0.0615676i
\(979\) −131.968 −0.134799
\(980\) −75.0879 16.8343i −0.0766203 0.0171779i
\(981\) 352.790i 0.359623i
\(982\) 565.812 453.005i 0.576183 0.461309i
\(983\) 951.541i 0.967997i 0.875069 + 0.483999i \(0.160816\pi\)
−0.875069 + 0.483999i \(0.839184\pi\)
\(984\) 14.9040 + 30.4966i 0.0151464 + 0.0309924i
\(985\) 777.312 0.789149
\(986\) 6.34355 + 7.92321i 0.00643362 + 0.00803571i
\(987\) 583.349 0.591033
\(988\) 1496.47 + 335.501i 1.51465 + 0.339576i
\(989\) 89.3731i 0.0903672i
\(990\) −140.078 174.961i −0.141493 0.176728i
\(991\) 1786.06i 1.80229i −0.433523 0.901143i \(-0.642730\pi\)
0.433523 0.901143i \(-0.357270\pi\)
\(992\) −334.238 1402.03i −0.336933 1.41333i
\(993\) 930.627 0.937187
\(994\) −1066.60 + 853.947i −1.07303 + 0.859102i
\(995\) −289.229 −0.290682
\(996\) 144.881 646.228i 0.145463 0.648823i
\(997\) 1375.80i 1.37994i −0.723839 0.689969i \(-0.757624\pi\)
0.723839 0.689969i \(-0.242376\pi\)
\(998\) −1012.96 + 811.008i −1.01499 + 0.812633i
\(999\) 190.285i 0.190475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.3.g.a.91.6 yes 16
3.2 odd 2 360.3.g.c.91.11 16
4.3 odd 2 480.3.g.a.271.16 16
5.2 odd 4 600.3.p.b.499.7 32
5.3 odd 4 600.3.p.b.499.26 32
5.4 even 2 600.3.g.d.451.11 16
8.3 odd 2 inner 120.3.g.a.91.5 16
8.5 even 2 480.3.g.a.271.9 16
12.11 even 2 1440.3.g.c.271.7 16
20.3 even 4 2400.3.p.b.1999.32 32
20.7 even 4 2400.3.p.b.1999.13 32
20.19 odd 2 2400.3.g.b.751.2 16
24.5 odd 2 1440.3.g.c.271.10 16
24.11 even 2 360.3.g.c.91.12 16
40.3 even 4 600.3.p.b.499.8 32
40.13 odd 4 2400.3.p.b.1999.14 32
40.19 odd 2 600.3.g.d.451.12 16
40.27 even 4 600.3.p.b.499.25 32
40.29 even 2 2400.3.g.b.751.7 16
40.37 odd 4 2400.3.p.b.1999.31 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.5 16 8.3 odd 2 inner
120.3.g.a.91.6 yes 16 1.1 even 1 trivial
360.3.g.c.91.11 16 3.2 odd 2
360.3.g.c.91.12 16 24.11 even 2
480.3.g.a.271.9 16 8.5 even 2
480.3.g.a.271.16 16 4.3 odd 2
600.3.g.d.451.11 16 5.4 even 2
600.3.g.d.451.12 16 40.19 odd 2
600.3.p.b.499.7 32 5.2 odd 4
600.3.p.b.499.8 32 40.3 even 4
600.3.p.b.499.25 32 40.27 even 4
600.3.p.b.499.26 32 5.3 odd 4
1440.3.g.c.271.7 16 12.11 even 2
1440.3.g.c.271.10 16 24.5 odd 2
2400.3.g.b.751.2 16 20.19 odd 2
2400.3.g.b.751.7 16 40.29 even 2
2400.3.p.b.1999.13 32 20.7 even 4
2400.3.p.b.1999.14 32 40.13 odd 4
2400.3.p.b.1999.31 32 40.37 odd 4
2400.3.p.b.1999.32 32 20.3 even 4