Properties

Label 600.3.g.d.451.11
Level $600$
Weight $3$
Character 600.451
Analytic conductor $16.349$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(451,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 451.11
Root \(1.56126 + 1.24999i\) of defining polynomial
Character \(\chi\) \(=\) 600.451
Dual form 600.3.g.d.451.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56126 - 1.24999i) q^{2} +1.73205 q^{3} +(0.875058 - 3.90311i) q^{4} +(2.70418 - 2.16504i) q^{6} +7.58970i q^{7} +(-3.51265 - 7.18758i) q^{8} +3.00000 q^{9} +16.7055 q^{11} +(1.51564 - 6.76039i) q^{12} -10.7512i q^{13} +(9.48703 + 11.8495i) q^{14} +(-14.4685 - 6.83090i) q^{16} -8.61276 q^{17} +(4.68378 - 3.74997i) q^{18} +35.6616 q^{19} +13.1457i q^{21} +(26.0816 - 20.8817i) q^{22} -11.2913i q^{23} +(-6.08409 - 12.4493i) q^{24} +(-13.4388 - 16.7854i) q^{26} +5.19615 q^{27} +(29.6234 + 6.64142i) q^{28} -0.589229i q^{29} -45.0411i q^{31} +(-31.1277 + 7.42072i) q^{32} +28.9347 q^{33} +(-13.4467 + 10.7658i) q^{34} +(2.62517 - 11.7093i) q^{36} +36.6203i q^{37} +(55.6770 - 44.5766i) q^{38} -18.6216i q^{39} -2.44967 q^{41} +(16.4320 + 20.5239i) q^{42} +7.91524 q^{43} +(14.6183 - 65.2033i) q^{44} +(-14.1140 - 17.6286i) q^{46} +44.3755i q^{47} +(-25.0603 - 11.8315i) q^{48} -8.60348 q^{49} -14.9177 q^{51} +(-41.9630 - 9.40790i) q^{52} -73.3176i q^{53} +(8.11254 - 6.49513i) q^{54} +(54.5515 - 26.6600i) q^{56} +61.7677 q^{57} +(-0.736530 - 0.919939i) q^{58} -89.7651 q^{59} +98.7987i q^{61} +(-56.3009 - 70.3209i) q^{62} +22.7691i q^{63} +(-39.3226 + 50.4949i) q^{64} +(45.1746 - 36.1681i) q^{66} -89.5013 q^{67} +(-7.53666 + 33.6165i) q^{68} -19.5571i q^{69} +90.0121i q^{71} +(-10.5380 - 21.5627i) q^{72} -68.0795 q^{73} +(45.7750 + 57.1738i) q^{74} +(31.2060 - 139.191i) q^{76} +126.790i q^{77} +(-23.2768 - 29.0731i) q^{78} -36.2647i q^{79} +9.00000 q^{81} +(-3.82457 + 3.06206i) q^{82} +95.5904 q^{83} +(51.3093 + 11.5033i) q^{84} +(12.3577 - 9.89396i) q^{86} -1.02058i q^{87} +(-58.6805 - 120.072i) q^{88} -7.89970 q^{89} +81.5982 q^{91} +(-44.0711 - 9.88052i) q^{92} -78.0135i q^{93} +(55.4689 + 69.2817i) q^{94} +(-53.9147 + 12.8531i) q^{96} +137.133 q^{97} +(-13.4323 + 10.7543i) q^{98} +50.1164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 14 q^{4} + 6 q^{6} - 20 q^{8} + 48 q^{9} + 64 q^{11} - 20 q^{14} - 14 q^{16} + 12 q^{18} - 32 q^{19} - 28 q^{22} - 54 q^{24} + 36 q^{26} + 28 q^{28} - 36 q^{32} - 72 q^{34} + 42 q^{36}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.56126 1.24999i 0.780629 0.624994i
\(3\) 1.73205 0.577350
\(4\) 0.875058 3.90311i 0.218764 0.975778i
\(5\) 0 0
\(6\) 2.70418 2.16504i 0.450697 0.360841i
\(7\) 7.58970i 1.08424i 0.840300 + 0.542121i \(0.182379\pi\)
−0.840300 + 0.542121i \(0.817621\pi\)
\(8\) −3.51265 7.18758i −0.439081 0.898447i
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 16.7055 1.51868 0.759340 0.650694i \(-0.225522\pi\)
0.759340 + 0.650694i \(0.225522\pi\)
\(12\) 1.51564 6.76039i 0.126304 0.563366i
\(13\) 10.7512i 0.827014i −0.910501 0.413507i \(-0.864304\pi\)
0.910501 0.413507i \(-0.135696\pi\)
\(14\) 9.48703 + 11.8495i 0.677645 + 0.846391i
\(15\) 0 0
\(16\) −14.4685 6.83090i −0.904284 0.426931i
\(17\) −8.61276 −0.506633 −0.253316 0.967383i \(-0.581521\pi\)
−0.253316 + 0.967383i \(0.581521\pi\)
\(18\) 4.68378 3.74997i 0.260210 0.208331i
\(19\) 35.6616 1.87693 0.938464 0.345378i \(-0.112249\pi\)
0.938464 + 0.345378i \(0.112249\pi\)
\(20\) 0 0
\(21\) 13.1457i 0.625988i
\(22\) 26.0816 20.8817i 1.18553 0.949166i
\(23\) 11.2913i 0.490925i −0.969406 0.245462i \(-0.921060\pi\)
0.969406 0.245462i \(-0.0789398\pi\)
\(24\) −6.08409 12.4493i −0.253504 0.518719i
\(25\) 0 0
\(26\) −13.4388 16.7854i −0.516879 0.645591i
\(27\) 5.19615 0.192450
\(28\) 29.6234 + 6.64142i 1.05798 + 0.237194i
\(29\) 0.589229i 0.0203183i −0.999948 0.0101591i \(-0.996766\pi\)
0.999948 0.0101591i \(-0.00323381\pi\)
\(30\) 0 0
\(31\) 45.0411i 1.45294i −0.687198 0.726470i \(-0.741160\pi\)
0.687198 0.726470i \(-0.258840\pi\)
\(32\) −31.1277 + 7.42072i −0.972740 + 0.231898i
\(33\) 28.9347 0.876810
\(34\) −13.4467 + 10.7658i −0.395492 + 0.316643i
\(35\) 0 0
\(36\) 2.62517 11.7093i 0.0729215 0.325259i
\(37\) 36.6203i 0.989738i 0.868968 + 0.494869i \(0.164784\pi\)
−0.868968 + 0.494869i \(0.835216\pi\)
\(38\) 55.6770 44.5766i 1.46518 1.17307i
\(39\) 18.6216i 0.477477i
\(40\) 0 0
\(41\) −2.44967 −0.0597481 −0.0298740 0.999554i \(-0.509511\pi\)
−0.0298740 + 0.999554i \(0.509511\pi\)
\(42\) 16.4320 + 20.5239i 0.391239 + 0.488664i
\(43\) 7.91524 0.184075 0.0920377 0.995756i \(-0.470662\pi\)
0.0920377 + 0.995756i \(0.470662\pi\)
\(44\) 14.6183 65.2033i 0.332233 1.48189i
\(45\) 0 0
\(46\) −14.1140 17.6286i −0.306825 0.383230i
\(47\) 44.3755i 0.944160i 0.881556 + 0.472080i \(0.156497\pi\)
−0.881556 + 0.472080i \(0.843503\pi\)
\(48\) −25.0603 11.8315i −0.522089 0.246489i
\(49\) −8.60348 −0.175581
\(50\) 0 0
\(51\) −14.9177 −0.292505
\(52\) −41.9630 9.40790i −0.806982 0.180921i
\(53\) 73.3176i 1.38335i −0.722209 0.691675i \(-0.756873\pi\)
0.722209 0.691675i \(-0.243127\pi\)
\(54\) 8.11254 6.49513i 0.150232 0.120280i
\(55\) 0 0
\(56\) 54.5515 26.6600i 0.974134 0.476071i
\(57\) 61.7677 1.08364
\(58\) −0.736530 0.919939i −0.0126988 0.0158610i
\(59\) −89.7651 −1.52144 −0.760721 0.649079i \(-0.775155\pi\)
−0.760721 + 0.649079i \(0.775155\pi\)
\(60\) 0 0
\(61\) 98.7987i 1.61965i 0.586671 + 0.809826i \(0.300438\pi\)
−0.586671 + 0.809826i \(0.699562\pi\)
\(62\) −56.3009 70.3209i −0.908079 1.13421i
\(63\) 22.7691i 0.361414i
\(64\) −39.3226 + 50.4949i −0.614415 + 0.788983i
\(65\) 0 0
\(66\) 45.1746 36.1681i 0.684464 0.548001i
\(67\) −89.5013 −1.33584 −0.667920 0.744233i \(-0.732815\pi\)
−0.667920 + 0.744233i \(0.732815\pi\)
\(68\) −7.53666 + 33.6165i −0.110833 + 0.494361i
\(69\) 19.5571i 0.283436i
\(70\) 0 0
\(71\) 90.0121i 1.26778i 0.773425 + 0.633888i \(0.218542\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(72\) −10.5380 21.5627i −0.146360 0.299482i
\(73\) −68.0795 −0.932596 −0.466298 0.884628i \(-0.654412\pi\)
−0.466298 + 0.884628i \(0.654412\pi\)
\(74\) 45.7750 + 57.1738i 0.618580 + 0.772618i
\(75\) 0 0
\(76\) 31.2060 139.191i 0.410605 1.83146i
\(77\) 126.790i 1.64662i
\(78\) −23.2768 29.0731i −0.298420 0.372732i
\(79\) 36.2647i 0.459046i −0.973303 0.229523i \(-0.926283\pi\)
0.973303 0.229523i \(-0.0737167\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) −3.82457 + 3.06206i −0.0466411 + 0.0373422i
\(83\) 95.5904 1.15169 0.575846 0.817558i \(-0.304673\pi\)
0.575846 + 0.817558i \(0.304673\pi\)
\(84\) 51.3093 + 11.5033i 0.610825 + 0.136944i
\(85\) 0 0
\(86\) 12.3577 9.89396i 0.143695 0.115046i
\(87\) 1.02058i 0.0117307i
\(88\) −58.6805 120.072i −0.666824 1.36445i
\(89\) −7.89970 −0.0887607 −0.0443803 0.999015i \(-0.514131\pi\)
−0.0443803 + 0.999015i \(0.514131\pi\)
\(90\) 0 0
\(91\) 81.5982 0.896683
\(92\) −44.0711 9.88052i −0.479034 0.107397i
\(93\) 78.0135i 0.838855i
\(94\) 55.4689 + 69.2817i 0.590095 + 0.737039i
\(95\) 0 0
\(96\) −53.9147 + 12.8531i −0.561612 + 0.133886i
\(97\) 137.133 1.41375 0.706873 0.707341i \(-0.250105\pi\)
0.706873 + 0.707341i \(0.250105\pi\)
\(98\) −13.4323 + 10.7543i −0.137064 + 0.109737i
\(99\) 50.1164 0.506227
\(100\) 0 0
\(101\) 92.4295i 0.915144i −0.889173 0.457572i \(-0.848719\pi\)
0.889173 0.457572i \(-0.151281\pi\)
\(102\) −23.2904 + 18.6470i −0.228338 + 0.182814i
\(103\) 123.314i 1.19722i 0.801040 + 0.598610i \(0.204280\pi\)
−0.801040 + 0.598610i \(0.795720\pi\)
\(104\) −77.2749 + 37.7651i −0.743028 + 0.363126i
\(105\) 0 0
\(106\) −91.6461 114.468i −0.864586 1.07988i
\(107\) 0.240104 0.00224396 0.00112198 0.999999i \(-0.499643\pi\)
0.00112198 + 0.999999i \(0.499643\pi\)
\(108\) 4.54693 20.2812i 0.0421012 0.187789i
\(109\) 117.597i 1.07887i 0.842028 + 0.539435i \(0.181362\pi\)
−0.842028 + 0.539435i \(0.818638\pi\)
\(110\) 0 0
\(111\) 63.4282i 0.571425i
\(112\) 51.8444 109.812i 0.462897 0.980463i
\(113\) −41.1728 −0.364361 −0.182180 0.983265i \(-0.558315\pi\)
−0.182180 + 0.983265i \(0.558315\pi\)
\(114\) 96.4354 77.2090i 0.845925 0.677272i
\(115\) 0 0
\(116\) −2.29983 0.515610i −0.0198261 0.00444491i
\(117\) 32.2535i 0.275671i
\(118\) −140.147 + 112.205i −1.18768 + 0.950893i
\(119\) 65.3682i 0.549313i
\(120\) 0 0
\(121\) 158.073 1.30639
\(122\) 123.497 + 154.250i 1.01227 + 1.26435i
\(123\) −4.24295 −0.0344956
\(124\) −175.800 39.4136i −1.41775 0.317852i
\(125\) 0 0
\(126\) 28.4611 + 35.5484i 0.225882 + 0.282130i
\(127\) 1.15264i 0.00907591i 0.999990 + 0.00453795i \(0.00144448\pi\)
−0.999990 + 0.00453795i \(0.998556\pi\)
\(128\) 1.72536 + 127.988i 0.0134794 + 0.999909i
\(129\) 13.7096 0.106276
\(130\) 0 0
\(131\) −191.878 −1.46472 −0.732359 0.680919i \(-0.761581\pi\)
−0.732359 + 0.680919i \(0.761581\pi\)
\(132\) 25.3196 112.935i 0.191815 0.855572i
\(133\) 270.661i 2.03504i
\(134\) −139.735 + 111.876i −1.04280 + 0.834892i
\(135\) 0 0
\(136\) 30.2536 + 61.9049i 0.222453 + 0.455183i
\(137\) −17.0127 −0.124180 −0.0620901 0.998071i \(-0.519777\pi\)
−0.0620901 + 0.998071i \(0.519777\pi\)
\(138\) −24.4461 30.5336i −0.177146 0.221258i
\(139\) −176.378 −1.26890 −0.634452 0.772963i \(-0.718774\pi\)
−0.634452 + 0.772963i \(0.718774\pi\)
\(140\) 0 0
\(141\) 76.8607i 0.545111i
\(142\) 112.514 + 140.532i 0.792353 + 0.989663i
\(143\) 179.604i 1.25597i
\(144\) −43.4056 20.4927i −0.301428 0.142310i
\(145\) 0 0
\(146\) −106.290 + 85.0986i −0.728011 + 0.582867i
\(147\) −14.9017 −0.101372
\(148\) 142.933 + 32.0449i 0.965764 + 0.216519i
\(149\) 212.046i 1.42313i −0.702620 0.711565i \(-0.747987\pi\)
0.702620 0.711565i \(-0.252013\pi\)
\(150\) 0 0
\(151\) 143.361i 0.949408i 0.880146 + 0.474704i \(0.157445\pi\)
−0.880146 + 0.474704i \(0.842555\pi\)
\(152\) −125.267 256.321i −0.824124 1.68632i
\(153\) −25.8383 −0.168878
\(154\) 158.485 + 197.951i 1.02913 + 1.28540i
\(155\) 0 0
\(156\) −72.6821 16.2950i −0.465911 0.104455i
\(157\) 82.2710i 0.524019i 0.965065 + 0.262009i \(0.0843852\pi\)
−0.965065 + 0.262009i \(0.915615\pi\)
\(158\) −45.3304 56.6185i −0.286901 0.358345i
\(159\) 126.990i 0.798678i
\(160\) 0 0
\(161\) 85.6973 0.532282
\(162\) 14.0513 11.2499i 0.0867366 0.0694438i
\(163\) −27.8115 −0.170623 −0.0853113 0.996354i \(-0.527188\pi\)
−0.0853113 + 0.996354i \(0.527188\pi\)
\(164\) −2.14360 + 9.56134i −0.0130708 + 0.0583008i
\(165\) 0 0
\(166\) 149.241 119.487i 0.899044 0.719800i
\(167\) 207.819i 1.24443i −0.782848 0.622214i \(-0.786234\pi\)
0.782848 0.622214i \(-0.213766\pi\)
\(168\) 94.4860 46.1764i 0.562417 0.274860i
\(169\) 53.4122 0.316048
\(170\) 0 0
\(171\) 106.985 0.625642
\(172\) 6.92629 30.8941i 0.0402692 0.179617i
\(173\) 45.7625i 0.264523i −0.991215 0.132262i \(-0.957776\pi\)
0.991215 0.132262i \(-0.0422239\pi\)
\(174\) −1.27571 1.59338i −0.00733165 0.00915737i
\(175\) 0 0
\(176\) −241.704 114.113i −1.37332 0.648372i
\(177\) −155.478 −0.878405
\(178\) −12.3335 + 9.87453i −0.0692892 + 0.0554749i
\(179\) −33.0983 −0.184907 −0.0924533 0.995717i \(-0.529471\pi\)
−0.0924533 + 0.995717i \(0.529471\pi\)
\(180\) 0 0
\(181\) 177.147i 0.978711i 0.872084 + 0.489356i \(0.162768\pi\)
−0.872084 + 0.489356i \(0.837232\pi\)
\(182\) 127.396 101.997i 0.699977 0.560422i
\(183\) 171.124i 0.935106i
\(184\) −81.1569 + 39.6623i −0.441070 + 0.215556i
\(185\) 0 0
\(186\) −97.5160 121.799i −0.524280 0.654835i
\(187\) −143.880 −0.769413
\(188\) 173.203 + 38.8312i 0.921291 + 0.206549i
\(189\) 39.4372i 0.208663i
\(190\) 0 0
\(191\) 28.8000i 0.150785i 0.997154 + 0.0753927i \(0.0240210\pi\)
−0.997154 + 0.0753927i \(0.975979\pi\)
\(192\) −68.1087 + 87.4598i −0.354733 + 0.455520i
\(193\) −87.7961 −0.454902 −0.227451 0.973789i \(-0.573039\pi\)
−0.227451 + 0.973789i \(0.573039\pi\)
\(194\) 214.101 171.415i 1.10361 0.883583i
\(195\) 0 0
\(196\) −7.52855 + 33.5803i −0.0384109 + 0.171328i
\(197\) 347.625i 1.76459i 0.470696 + 0.882296i \(0.344003\pi\)
−0.470696 + 0.882296i \(0.655997\pi\)
\(198\) 78.2447 62.6450i 0.395175 0.316389i
\(199\) 129.347i 0.649985i 0.945717 + 0.324992i \(0.105362\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(200\) 0 0
\(201\) −155.021 −0.771247
\(202\) −115.536 144.306i −0.571960 0.714388i
\(203\) 4.47207 0.0220299
\(204\) −13.0539 + 58.2256i −0.0639896 + 0.285419i
\(205\) 0 0
\(206\) 154.141 + 192.525i 0.748256 + 0.934586i
\(207\) 33.8738i 0.163642i
\(208\) −73.4402 + 155.554i −0.353078 + 0.747855i
\(209\) 595.744 2.85045
\(210\) 0 0
\(211\) −190.507 −0.902877 −0.451439 0.892302i \(-0.649089\pi\)
−0.451439 + 0.892302i \(0.649089\pi\)
\(212\) −286.167 64.1571i −1.34984 0.302628i
\(213\) 155.905i 0.731951i
\(214\) 0.374864 0.300127i 0.00175170 0.00140246i
\(215\) 0 0
\(216\) −18.2523 37.3478i −0.0845013 0.172906i
\(217\) 341.848 1.57534
\(218\) 146.995 + 183.599i 0.674287 + 0.842197i
\(219\) −117.917 −0.538434
\(220\) 0 0
\(221\) 92.5973i 0.418992i
\(222\) 79.2845 + 99.0279i 0.357138 + 0.446071i
\(223\) 211.437i 0.948149i 0.880485 + 0.474075i \(0.157217\pi\)
−0.880485 + 0.474075i \(0.842783\pi\)
\(224\) −56.3210 236.250i −0.251433 1.05469i
\(225\) 0 0
\(226\) −64.2813 + 51.4655i −0.284431 + 0.227723i
\(227\) −88.8880 −0.391577 −0.195788 0.980646i \(-0.562727\pi\)
−0.195788 + 0.980646i \(0.562727\pi\)
\(228\) 54.0503 241.086i 0.237063 1.05740i
\(229\) 152.872i 0.667565i 0.942650 + 0.333782i \(0.108325\pi\)
−0.942650 + 0.333782i \(0.891675\pi\)
\(230\) 0 0
\(231\) 219.606i 0.950675i
\(232\) −4.23513 + 2.06976i −0.0182549 + 0.00892137i
\(233\) −188.417 −0.808656 −0.404328 0.914614i \(-0.632495\pi\)
−0.404328 + 0.914614i \(0.632495\pi\)
\(234\) −40.3165 50.3561i −0.172293 0.215197i
\(235\) 0 0
\(236\) −78.5497 + 350.363i −0.332838 + 1.48459i
\(237\) 62.8122i 0.265030i
\(238\) −81.7095 102.057i −0.343317 0.428810i
\(239\) 227.979i 0.953888i −0.878934 0.476944i \(-0.841745\pi\)
0.878934 0.476944i \(-0.158255\pi\)
\(240\) 0 0
\(241\) −265.794 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(242\) 246.793 197.590i 1.01981 0.816486i
\(243\) 15.5885 0.0641500
\(244\) 385.622 + 86.4546i 1.58042 + 0.354322i
\(245\) 0 0
\(246\) −6.62435 + 5.30364i −0.0269283 + 0.0215595i
\(247\) 383.404i 1.55224i
\(248\) −323.737 + 158.214i −1.30539 + 0.637959i
\(249\) 165.567 0.664929
\(250\) 0 0
\(251\) 154.894 0.617106 0.308553 0.951207i \(-0.400155\pi\)
0.308553 + 0.951207i \(0.400155\pi\)
\(252\) 88.8703 + 19.9243i 0.352660 + 0.0790646i
\(253\) 188.626i 0.745558i
\(254\) 1.44079 + 1.79957i 0.00567239 + 0.00708492i
\(255\) 0 0
\(256\) 162.678 + 197.666i 0.635460 + 0.772134i
\(257\) 422.025 1.64212 0.821060 0.570842i \(-0.193383\pi\)
0.821060 + 0.570842i \(0.193383\pi\)
\(258\) 21.4042 17.1368i 0.0829621 0.0664219i
\(259\) −277.937 −1.07312
\(260\) 0 0
\(261\) 1.76769i 0.00677275i
\(262\) −299.571 + 239.845i −1.14340 + 0.915440i
\(263\) 118.083i 0.448983i −0.974476 0.224492i \(-0.927928\pi\)
0.974476 0.224492i \(-0.0720721\pi\)
\(264\) −101.638 207.971i −0.384991 0.787768i
\(265\) 0 0
\(266\) 338.323 + 422.572i 1.27189 + 1.58862i
\(267\) −13.6827 −0.0512460
\(268\) −78.3188 + 349.333i −0.292234 + 1.30348i
\(269\) 493.643i 1.83510i 0.397617 + 0.917551i \(0.369837\pi\)
−0.397617 + 0.917551i \(0.630163\pi\)
\(270\) 0 0
\(271\) 362.955i 1.33932i −0.742669 0.669659i \(-0.766440\pi\)
0.742669 0.669659i \(-0.233560\pi\)
\(272\) 124.614 + 58.8329i 0.458140 + 0.216297i
\(273\) 141.332 0.517700
\(274\) −26.5612 + 21.2657i −0.0969387 + 0.0776119i
\(275\) 0 0
\(276\) −76.3334 17.1136i −0.276570 0.0620056i
\(277\) 321.011i 1.15888i 0.815013 + 0.579442i \(0.196730\pi\)
−0.815013 + 0.579442i \(0.803270\pi\)
\(278\) −275.371 + 220.470i −0.990543 + 0.793057i
\(279\) 135.123i 0.484313i
\(280\) 0 0
\(281\) −185.799 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(282\) 96.0750 + 119.999i 0.340691 + 0.425530i
\(283\) 208.628 0.737202 0.368601 0.929588i \(-0.379837\pi\)
0.368601 + 0.929588i \(0.379837\pi\)
\(284\) 351.327 + 78.7658i 1.23707 + 0.277344i
\(285\) 0 0
\(286\) −224.502 280.408i −0.784974 0.980447i
\(287\) 18.5923i 0.0647814i
\(288\) −93.3831 + 22.2622i −0.324247 + 0.0772992i
\(289\) −214.820 −0.743323
\(290\) 0 0
\(291\) 237.522 0.816226
\(292\) −59.5735 + 265.722i −0.204019 + 0.910006i
\(293\) 306.925i 1.04752i −0.851864 0.523762i \(-0.824528\pi\)
0.851864 0.523762i \(-0.175472\pi\)
\(294\) −23.2654 + 18.6269i −0.0791339 + 0.0633568i
\(295\) 0 0
\(296\) 263.211 128.634i 0.889227 0.434576i
\(297\) 86.8042 0.292270
\(298\) −265.055 331.059i −0.889448 1.11094i
\(299\) −121.394 −0.406002
\(300\) 0 0
\(301\) 60.0743i 0.199582i
\(302\) 179.199 + 223.823i 0.593374 + 0.741136i
\(303\) 160.093i 0.528358i
\(304\) −515.972 243.601i −1.69728 0.801318i
\(305\) 0 0
\(306\) −40.3402 + 32.2975i −0.131831 + 0.105548i
\(307\) −283.517 −0.923510 −0.461755 0.887008i \(-0.652780\pi\)
−0.461755 + 0.887008i \(0.652780\pi\)
\(308\) 494.874 + 110.948i 1.60673 + 0.360221i
\(309\) 213.586i 0.691216i
\(310\) 0 0
\(311\) 614.016i 1.97433i −0.159709 0.987164i \(-0.551056\pi\)
0.159709 0.987164i \(-0.448944\pi\)
\(312\) −133.844 + 65.4111i −0.428988 + 0.209651i
\(313\) 511.920 1.63553 0.817763 0.575555i \(-0.195214\pi\)
0.817763 + 0.575555i \(0.195214\pi\)
\(314\) 102.838 + 128.446i 0.327509 + 0.409065i
\(315\) 0 0
\(316\) −141.545 31.7337i −0.447927 0.100423i
\(317\) 429.605i 1.35522i −0.735421 0.677611i \(-0.763015\pi\)
0.735421 0.677611i \(-0.236985\pi\)
\(318\) −158.736 198.264i −0.499169 0.623471i
\(319\) 9.84336i 0.0308569i
\(320\) 0 0
\(321\) 0.415872 0.00129555
\(322\) 133.796 107.121i 0.415515 0.332673i
\(323\) −307.145 −0.950913
\(324\) 7.87552 35.1280i 0.0243072 0.108420i
\(325\) 0 0
\(326\) −43.4209 + 34.7640i −0.133193 + 0.106638i
\(327\) 203.684i 0.622885i
\(328\) 8.60484 + 17.6072i 0.0262343 + 0.0536805i
\(329\) −336.797 −1.02370
\(330\) 0 0
\(331\) −537.298 −1.62326 −0.811628 0.584175i \(-0.801418\pi\)
−0.811628 + 0.584175i \(0.801418\pi\)
\(332\) 83.6471 373.100i 0.251949 1.12379i
\(333\) 109.861i 0.329913i
\(334\) −259.772 324.460i −0.777760 0.971436i
\(335\) 0 0
\(336\) 89.7972 190.200i 0.267253 0.566071i
\(337\) −158.578 −0.470559 −0.235279 0.971928i \(-0.575600\pi\)
−0.235279 + 0.971928i \(0.575600\pi\)
\(338\) 83.3902 66.7646i 0.246717 0.197528i
\(339\) −71.3133 −0.210364
\(340\) 0 0
\(341\) 752.434i 2.20655i
\(342\) 167.031 133.730i 0.488395 0.391023i
\(343\) 306.597i 0.893870i
\(344\) −27.8035 56.8914i −0.0808241 0.165382i
\(345\) 0 0
\(346\) −57.2026 71.4472i −0.165326 0.206495i
\(347\) −169.697 −0.489041 −0.244520 0.969644i \(-0.578630\pi\)
−0.244520 + 0.969644i \(0.578630\pi\)
\(348\) −3.98342 0.893062i −0.0114466 0.00256627i
\(349\) 296.370i 0.849196i 0.905382 + 0.424598i \(0.139585\pi\)
−0.905382 + 0.424598i \(0.860415\pi\)
\(350\) 0 0
\(351\) 55.8648i 0.159159i
\(352\) −520.003 + 123.967i −1.47728 + 0.352178i
\(353\) −133.075 −0.376982 −0.188491 0.982075i \(-0.560360\pi\)
−0.188491 + 0.982075i \(0.560360\pi\)
\(354\) −242.741 + 194.345i −0.685709 + 0.548998i
\(355\) 0 0
\(356\) −6.91269 + 30.8334i −0.0194177 + 0.0866107i
\(357\) 113.221i 0.317146i
\(358\) −51.6750 + 41.3725i −0.144344 + 0.115566i
\(359\) 238.095i 0.663218i −0.943417 0.331609i \(-0.892409\pi\)
0.943417 0.331609i \(-0.107591\pi\)
\(360\) 0 0
\(361\) 910.751 2.52286
\(362\) 221.431 + 276.572i 0.611689 + 0.764011i
\(363\) 273.791 0.754244
\(364\) 71.4031 318.487i 0.196162 0.874964i
\(365\) 0 0
\(366\) 213.904 + 267.169i 0.584436 + 0.729971i
\(367\) 381.665i 1.03996i −0.854179 0.519979i \(-0.825940\pi\)
0.854179 0.519979i \(-0.174060\pi\)
\(368\) −77.1295 + 163.368i −0.209591 + 0.443936i
\(369\) −7.34901 −0.0199160
\(370\) 0 0
\(371\) 556.458 1.49989
\(372\) −304.495 68.2663i −0.818536 0.183512i
\(373\) 42.2729i 0.113332i 0.998393 + 0.0566661i \(0.0180470\pi\)
−0.998393 + 0.0566661i \(0.981953\pi\)
\(374\) −224.634 + 179.849i −0.600626 + 0.480879i
\(375\) 0 0
\(376\) 318.953 155.876i 0.848278 0.414563i
\(377\) −6.33491 −0.0168035
\(378\) 49.2961 + 61.5717i 0.130413 + 0.162888i
\(379\) 412.302 1.08787 0.543934 0.839128i \(-0.316934\pi\)
0.543934 + 0.839128i \(0.316934\pi\)
\(380\) 0 0
\(381\) 1.99643i 0.00523998i
\(382\) 35.9997 + 44.9643i 0.0942400 + 0.117708i
\(383\) 403.711i 1.05408i −0.849842 0.527038i \(-0.823303\pi\)
0.849842 0.527038i \(-0.176697\pi\)
\(384\) 2.98842 + 221.682i 0.00778234 + 0.577298i
\(385\) 0 0
\(386\) −137.072 + 109.744i −0.355110 + 0.284311i
\(387\) 23.7457 0.0613585
\(388\) 120.000 535.246i 0.309277 1.37950i
\(389\) 78.5053i 0.201813i −0.994896 0.100907i \(-0.967826\pi\)
0.994896 0.100907i \(-0.0321743\pi\)
\(390\) 0 0
\(391\) 97.2490i 0.248719i
\(392\) 30.2210 + 61.8382i 0.0770945 + 0.157751i
\(393\) −332.342 −0.845655
\(394\) 434.527 + 542.732i 1.10286 + 1.37749i
\(395\) 0 0
\(396\) 43.8548 195.610i 0.110744 0.493965i
\(397\) 323.080i 0.813803i −0.913472 0.406902i \(-0.866609\pi\)
0.913472 0.406902i \(-0.133391\pi\)
\(398\) 161.682 + 201.944i 0.406237 + 0.507397i
\(399\) 468.798i 1.17493i
\(400\) 0 0
\(401\) −621.389 −1.54960 −0.774799 0.632207i \(-0.782149\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(402\) −242.027 + 193.774i −0.602058 + 0.482025i
\(403\) −484.245 −1.20160
\(404\) −360.763 80.8812i −0.892977 0.200201i
\(405\) 0 0
\(406\) 6.98206 5.59004i 0.0171972 0.0137686i
\(407\) 611.760i 1.50310i
\(408\) 52.4008 + 107.222i 0.128433 + 0.262800i
\(409\) 322.888 0.789458 0.394729 0.918798i \(-0.370839\pi\)
0.394729 + 0.918798i \(0.370839\pi\)
\(410\) 0 0
\(411\) −29.4668 −0.0716954
\(412\) 481.307 + 107.907i 1.16822 + 0.261909i
\(413\) 681.290i 1.64961i
\(414\) −42.3419 52.8858i −0.102275 0.127743i
\(415\) 0 0
\(416\) 79.7815 + 334.659i 0.191782 + 0.804470i
\(417\) −305.495 −0.732602
\(418\) 930.111 744.674i 2.22515 1.78152i
\(419\) 19.2316 0.0458988 0.0229494 0.999737i \(-0.492694\pi\)
0.0229494 + 0.999737i \(0.492694\pi\)
\(420\) 0 0
\(421\) 312.791i 0.742970i −0.928439 0.371485i \(-0.878849\pi\)
0.928439 0.371485i \(-0.121151\pi\)
\(422\) −297.431 + 238.132i −0.704813 + 0.564293i
\(423\) 133.127i 0.314720i
\(424\) −526.976 + 257.539i −1.24287 + 0.607404i
\(425\) 0 0
\(426\) 194.880 + 243.409i 0.457465 + 0.571382i
\(427\) −749.852 −1.75609
\(428\) 0.210105 0.937151i 0.000490899 0.00218961i
\(429\) 311.083i 0.725134i
\(430\) 0 0
\(431\) 417.415i 0.968479i −0.874935 0.484240i \(-0.839096\pi\)
0.874935 0.484240i \(-0.160904\pi\)
\(432\) −75.1808 35.4944i −0.174030 0.0821629i
\(433\) −279.474 −0.645436 −0.322718 0.946495i \(-0.604596\pi\)
−0.322718 + 0.946495i \(0.604596\pi\)
\(434\) 533.714 427.307i 1.22976 0.984577i
\(435\) 0 0
\(436\) 458.993 + 102.904i 1.05274 + 0.236018i
\(437\) 402.665i 0.921430i
\(438\) −184.099 + 147.395i −0.420318 + 0.336518i
\(439\) 30.1336i 0.0686415i 0.999411 + 0.0343207i \(0.0109268\pi\)
−0.999411 + 0.0343207i \(0.989073\pi\)
\(440\) 0 0
\(441\) −25.8104 −0.0585271
\(442\) 115.746 + 144.568i 0.261868 + 0.327078i
\(443\) 56.2858 0.127056 0.0635279 0.997980i \(-0.479765\pi\)
0.0635279 + 0.997980i \(0.479765\pi\)
\(444\) 247.567 + 55.5034i 0.557584 + 0.125008i
\(445\) 0 0
\(446\) 264.294 + 330.108i 0.592588 + 0.740153i
\(447\) 367.275i 0.821644i
\(448\) −383.241 298.446i −0.855449 0.666175i
\(449\) −283.497 −0.631396 −0.315698 0.948860i \(-0.602239\pi\)
−0.315698 + 0.948860i \(0.602239\pi\)
\(450\) 0 0
\(451\) −40.9229 −0.0907382
\(452\) −36.0285 + 160.702i −0.0797092 + 0.355535i
\(453\) 248.308i 0.548141i
\(454\) −138.777 + 111.109i −0.305676 + 0.244733i
\(455\) 0 0
\(456\) −216.969 443.960i −0.475808 0.973597i
\(457\) 265.204 0.580315 0.290158 0.956979i \(-0.406292\pi\)
0.290158 + 0.956979i \(0.406292\pi\)
\(458\) 191.089 + 238.673i 0.417224 + 0.521120i
\(459\) −44.7532 −0.0975015
\(460\) 0 0
\(461\) 709.643i 1.53936i −0.638432 0.769678i \(-0.720417\pi\)
0.638432 0.769678i \(-0.279583\pi\)
\(462\) 274.505 + 342.862i 0.594166 + 0.742125i
\(463\) 417.392i 0.901495i −0.892652 0.450747i \(-0.851157\pi\)
0.892652 0.450747i \(-0.148843\pi\)
\(464\) −4.02496 + 8.52529i −0.00867449 + 0.0183735i
\(465\) 0 0
\(466\) −294.167 + 235.519i −0.631260 + 0.505405i
\(467\) 679.287 1.45458 0.727288 0.686332i \(-0.240780\pi\)
0.727288 + 0.686332i \(0.240780\pi\)
\(468\) −125.889 28.2237i −0.268994 0.0603071i
\(469\) 679.287i 1.44837i
\(470\) 0 0
\(471\) 142.498i 0.302543i
\(472\) 315.313 + 645.194i 0.668037 + 1.36694i
\(473\) 132.228 0.279552
\(474\) −78.5146 98.0661i −0.165643 0.206891i
\(475\) 0 0
\(476\) −255.139 57.2010i −0.536007 0.120170i
\(477\) 219.953i 0.461117i
\(478\) −284.971 355.934i −0.596174 0.744633i
\(479\) 157.578i 0.328974i 0.986379 + 0.164487i \(0.0525968\pi\)
−0.986379 + 0.164487i \(0.947403\pi\)
\(480\) 0 0
\(481\) 393.711 0.818527
\(482\) −414.973 + 332.239i −0.860939 + 0.689292i
\(483\) 148.432 0.307313
\(484\) 138.323 616.977i 0.285792 1.27475i
\(485\) 0 0
\(486\) 24.3376 19.4854i 0.0500774 0.0400934i
\(487\) 736.646i 1.51262i −0.654213 0.756311i \(-0.727000\pi\)
0.654213 0.756311i \(-0.273000\pi\)
\(488\) 710.123 347.045i 1.45517 0.711159i
\(489\) −48.1709 −0.0985090
\(490\) 0 0
\(491\) −362.408 −0.738101 −0.369050 0.929409i \(-0.620317\pi\)
−0.369050 + 0.929409i \(0.620317\pi\)
\(492\) −3.71283 + 16.5607i −0.00754640 + 0.0336600i
\(493\) 5.07489i 0.0102939i
\(494\) −479.251 598.594i −0.970144 1.21173i
\(495\) 0 0
\(496\) −307.671 + 651.680i −0.620305 + 1.31387i
\(497\) −683.164 −1.37458
\(498\) 258.494 206.957i 0.519063 0.415577i
\(499\) 648.812 1.30022 0.650112 0.759838i \(-0.274722\pi\)
0.650112 + 0.759838i \(0.274722\pi\)
\(500\) 0 0
\(501\) 359.954i 0.718470i
\(502\) 241.829 193.615i 0.481731 0.385687i
\(503\) 402.612i 0.800421i 0.916423 + 0.400210i \(0.131063\pi\)
−0.916423 + 0.400210i \(0.868937\pi\)
\(504\) 163.655 79.9799i 0.324711 0.158690i
\(505\) 0 0
\(506\) −235.780 294.494i −0.465969 0.582004i
\(507\) 92.5126 0.182471
\(508\) 4.49888 + 1.00863i 0.00885607 + 0.00198549i
\(509\) 470.175i 0.923724i 0.886952 + 0.461862i \(0.152818\pi\)
−0.886952 + 0.461862i \(0.847182\pi\)
\(510\) 0 0
\(511\) 516.702i 1.01116i
\(512\) 501.063 + 105.263i 0.978638 + 0.205592i
\(513\) 185.303 0.361215
\(514\) 658.890 527.526i 1.28189 1.02632i
\(515\) 0 0
\(516\) 11.9967 53.5101i 0.0232494 0.103702i
\(517\) 741.315i 1.43388i
\(518\) −433.931 + 347.418i −0.837706 + 0.670691i
\(519\) 79.2630i 0.152723i
\(520\) 0 0
\(521\) −155.978 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(522\) −2.20959 2.75982i −0.00423293 0.00528701i
\(523\) 313.578 0.599576 0.299788 0.954006i \(-0.403084\pi\)
0.299788 + 0.954006i \(0.403084\pi\)
\(524\) −167.904 + 748.921i −0.320428 + 1.42924i
\(525\) 0 0
\(526\) −147.602 184.357i −0.280612 0.350489i
\(527\) 387.928i 0.736107i
\(528\) −418.644 197.650i −0.792886 0.374338i
\(529\) 401.507 0.758993
\(530\) 0 0
\(531\) −269.295 −0.507147
\(532\) 1056.42 + 236.844i 1.98575 + 0.445195i
\(533\) 26.3369i 0.0494125i
\(534\) −21.3622 + 17.1032i −0.0400041 + 0.0320284i
\(535\) 0 0
\(536\) 314.387 + 643.297i 0.586542 + 1.20018i
\(537\) −57.3279 −0.106756
\(538\) 617.048 + 770.704i 1.14693 + 1.43254i
\(539\) −143.725 −0.266652
\(540\) 0 0
\(541\) 892.335i 1.64942i 0.565557 + 0.824709i \(0.308661\pi\)
−0.565557 + 0.824709i \(0.691339\pi\)
\(542\) −453.690 566.667i −0.837066 1.04551i
\(543\) 306.827i 0.565059i
\(544\) 268.095 63.9129i 0.492822 0.117487i
\(545\) 0 0
\(546\) 220.656 176.664i 0.404132 0.323560i
\(547\) 671.435 1.22749 0.613743 0.789506i \(-0.289663\pi\)
0.613743 + 0.789506i \(0.289663\pi\)
\(548\) −14.8871 + 66.4024i −0.0271662 + 0.121172i
\(549\) 296.396i 0.539884i
\(550\) 0 0
\(551\) 21.0129i 0.0381359i
\(552\) −140.568 + 68.6971i −0.254652 + 0.124451i
\(553\) 275.238 0.497717
\(554\) 401.260 + 501.181i 0.724296 + 0.904659i
\(555\) 0 0
\(556\) −154.341 + 688.421i −0.277591 + 1.23817i
\(557\) 296.095i 0.531590i −0.964030 0.265795i \(-0.914366\pi\)
0.964030 0.265795i \(-0.0856344\pi\)
\(558\) −168.903 210.963i −0.302693 0.378069i
\(559\) 85.0982i 0.152233i
\(560\) 0 0
\(561\) −249.208 −0.444221
\(562\) −290.080 + 232.247i −0.516157 + 0.413250i
\(563\) 707.222 1.25617 0.628084 0.778146i \(-0.283839\pi\)
0.628084 + 0.778146i \(0.283839\pi\)
\(564\) 299.996 + 67.2576i 0.531907 + 0.119251i
\(565\) 0 0
\(566\) 325.722 260.783i 0.575481 0.460747i
\(567\) 68.3073i 0.120471i
\(568\) 646.969 316.181i 1.13903 0.556657i
\(569\) 230.263 0.404680 0.202340 0.979315i \(-0.435145\pi\)
0.202340 + 0.979315i \(0.435145\pi\)
\(570\) 0 0
\(571\) −439.428 −0.769575 −0.384788 0.923005i \(-0.625725\pi\)
−0.384788 + 0.923005i \(0.625725\pi\)
\(572\) −701.013 157.164i −1.22555 0.274761i
\(573\) 49.8831i 0.0870560i
\(574\) −23.2401 29.0273i −0.0404880 0.0505703i
\(575\) 0 0
\(576\) −117.968 + 151.485i −0.204805 + 0.262994i
\(577\) 184.670 0.320053 0.160026 0.987113i \(-0.448842\pi\)
0.160026 + 0.987113i \(0.448842\pi\)
\(578\) −335.390 + 268.523i −0.580260 + 0.464573i
\(579\) −152.067 −0.262638
\(580\) 0 0
\(581\) 725.502i 1.24871i
\(582\) 370.833 296.900i 0.637170 0.510137i
\(583\) 1224.81i 2.10087i
\(584\) 239.139 + 489.327i 0.409485 + 0.837888i
\(585\) 0 0
\(586\) −383.652 479.189i −0.654697 0.817729i
\(587\) −297.341 −0.506543 −0.253271 0.967395i \(-0.581507\pi\)
−0.253271 + 0.967395i \(0.581507\pi\)
\(588\) −13.0398 + 58.1629i −0.0221766 + 0.0989164i
\(589\) 1606.24i 2.72706i
\(590\) 0 0
\(591\) 602.103i 1.01879i
\(592\) 250.149 529.843i 0.422550 0.895004i
\(593\) 607.065 1.02372 0.511859 0.859070i \(-0.328957\pi\)
0.511859 + 0.859070i \(0.328957\pi\)
\(594\) 135.524 108.504i 0.228155 0.182667i
\(595\) 0 0
\(596\) −827.640 185.553i −1.38866 0.311330i
\(597\) 224.036i 0.375269i
\(598\) −189.528 + 151.742i −0.316937 + 0.253749i
\(599\) 448.633i 0.748970i 0.927233 + 0.374485i \(0.122180\pi\)
−0.927233 + 0.374485i \(0.877820\pi\)
\(600\) 0 0
\(601\) 580.584 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(602\) 75.0921 + 93.7915i 0.124738 + 0.155800i
\(603\) −268.504 −0.445280
\(604\) 559.552 + 125.449i 0.926411 + 0.207697i
\(605\) 0 0
\(606\) −200.114 249.946i −0.330221 0.412452i
\(607\) 132.576i 0.218413i 0.994019 + 0.109206i \(0.0348309\pi\)
−0.994019 + 0.109206i \(0.965169\pi\)
\(608\) −1110.06 + 264.635i −1.82576 + 0.435255i
\(609\) 7.74585 0.0127190
\(610\) 0 0
\(611\) 477.089 0.780834
\(612\) −22.6100 + 100.850i −0.0369444 + 0.164787i
\(613\) 175.738i 0.286685i 0.989673 + 0.143343i \(0.0457851\pi\)
−0.989673 + 0.143343i \(0.954215\pi\)
\(614\) −442.644 + 354.393i −0.720919 + 0.577188i
\(615\) 0 0
\(616\) 911.310 445.367i 1.47940 0.722999i
\(617\) −283.254 −0.459082 −0.229541 0.973299i \(-0.573723\pi\)
−0.229541 + 0.973299i \(0.573723\pi\)
\(618\) 266.980 + 333.463i 0.432006 + 0.539583i
\(619\) −80.2105 −0.129581 −0.0647904 0.997899i \(-0.520638\pi\)
−0.0647904 + 0.997899i \(0.520638\pi\)
\(620\) 0 0
\(621\) 58.6712i 0.0944785i
\(622\) −767.513 958.638i −1.23394 1.54122i
\(623\) 59.9563i 0.0962381i
\(624\) −127.202 + 269.427i −0.203850 + 0.431775i
\(625\) 0 0
\(626\) 799.239 639.893i 1.27674 1.02219i
\(627\) 1031.86 1.64571
\(628\) 321.113 + 71.9919i 0.511326 + 0.114637i
\(629\) 315.402i 0.501434i
\(630\) 0 0
\(631\) 178.580i 0.283011i −0.989937 0.141505i \(-0.954806\pi\)
0.989937 0.141505i \(-0.0451942\pi\)
\(632\) −260.655 + 127.385i −0.412429 + 0.201559i
\(633\) −329.968 −0.521277
\(634\) −537.002 670.725i −0.847006 1.05793i
\(635\) 0 0
\(636\) −495.655 111.123i −0.779332 0.174722i
\(637\) 92.4976i 0.145208i
\(638\) −12.3041 15.3680i −0.0192854 0.0240878i
\(639\) 270.036i 0.422592i
\(640\) 0 0
\(641\) −379.689 −0.592339 −0.296169 0.955135i \(-0.595709\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(642\) 0.649283 0.519835i 0.00101134 0.000809712i
\(643\) 847.921 1.31869 0.659347 0.751839i \(-0.270833\pi\)
0.659347 + 0.751839i \(0.270833\pi\)
\(644\) 74.9901 334.486i 0.116444 0.519388i
\(645\) 0 0
\(646\) −479.533 + 383.928i −0.742311 + 0.594315i
\(647\) 372.369i 0.575532i −0.957701 0.287766i \(-0.907087\pi\)
0.957701 0.287766i \(-0.0929126\pi\)
\(648\) −31.6139 64.6882i −0.0487868 0.0998275i
\(649\) −1499.57 −2.31058
\(650\) 0 0
\(651\) 592.099 0.909522
\(652\) −24.3367 + 108.551i −0.0373262 + 0.166490i
\(653\) 650.726i 0.996517i 0.867028 + 0.498259i \(0.166027\pi\)
−0.867028 + 0.498259i \(0.833973\pi\)
\(654\) 254.602 + 318.003i 0.389300 + 0.486243i
\(655\) 0 0
\(656\) 35.4432 + 16.7334i 0.0540292 + 0.0255083i
\(657\) −204.238 −0.310865
\(658\) −525.827 + 420.992i −0.799129 + 0.639806i
\(659\) 589.211 0.894099 0.447049 0.894509i \(-0.352475\pi\)
0.447049 + 0.894509i \(0.352475\pi\)
\(660\) 0 0
\(661\) 402.340i 0.608684i 0.952563 + 0.304342i \(0.0984366\pi\)
−0.952563 + 0.304342i \(0.901563\pi\)
\(662\) −838.861 + 671.616i −1.26716 + 1.01453i
\(663\) 160.383i 0.241905i
\(664\) −335.776 687.063i −0.505686 1.03473i
\(665\) 0 0
\(666\) 137.325 + 171.521i 0.206193 + 0.257539i
\(667\) −6.65315 −0.00997473
\(668\) −811.142 181.854i −1.21428 0.272236i
\(669\) 366.220i 0.547414i
\(670\) 0 0
\(671\) 1650.48i 2.45973i
\(672\) −97.5509 409.196i −0.145165 0.608923i
\(673\) −1237.67 −1.83903 −0.919515 0.393056i \(-0.871418\pi\)
−0.919515 + 0.393056i \(0.871418\pi\)
\(674\) −247.582 + 198.221i −0.367332 + 0.294096i
\(675\) 0 0
\(676\) 46.7387 208.474i 0.0691401 0.308393i
\(677\) 163.462i 0.241451i 0.992686 + 0.120725i \(0.0385221\pi\)
−0.992686 + 0.120725i \(0.961478\pi\)
\(678\) −111.339 + 89.1408i −0.164216 + 0.131476i
\(679\) 1040.80i 1.53284i
\(680\) 0 0
\(681\) −153.958 −0.226077
\(682\) −940.533 1174.74i −1.37908 1.72250i
\(683\) −992.033 −1.45246 −0.726232 0.687449i \(-0.758730\pi\)
−0.726232 + 0.687449i \(0.758730\pi\)
\(684\) 93.6179 417.574i 0.136868 0.610488i
\(685\) 0 0
\(686\) 383.243 + 478.678i 0.558663 + 0.697781i
\(687\) 264.783i 0.385419i
\(688\) −114.522 54.0682i −0.166456 0.0785875i
\(689\) −788.250 −1.14405
\(690\) 0 0
\(691\) −465.365 −0.673466 −0.336733 0.941600i \(-0.609322\pi\)
−0.336733 + 0.941600i \(0.609322\pi\)
\(692\) −178.616 40.0449i −0.258116 0.0578683i
\(693\) 380.369i 0.548872i
\(694\) −264.941 + 212.119i −0.381759 + 0.305648i
\(695\) 0 0
\(696\) −7.33546 + 3.58492i −0.0105395 + 0.00515075i
\(697\) 21.0984 0.0302703
\(698\) 370.459 + 462.710i 0.530743 + 0.662908i
\(699\) −326.347 −0.466878
\(700\) 0 0
\(701\) 261.352i 0.372827i −0.982471 0.186414i \(-0.940314\pi\)
0.982471 0.186414i \(-0.0596864\pi\)
\(702\) −69.8303 87.2194i −0.0994734 0.124244i
\(703\) 1305.94i 1.85767i
\(704\) −656.902 + 843.542i −0.933100 + 1.19821i
\(705\) 0 0
\(706\) −207.764 + 166.342i −0.294283 + 0.235611i
\(707\) 701.512 0.992238
\(708\) −136.052 + 606.847i −0.192164 + 0.857128i
\(709\) 186.604i 0.263194i 0.991303 + 0.131597i \(0.0420104\pi\)
−0.991303 + 0.131597i \(0.957990\pi\)
\(710\) 0 0
\(711\) 108.794i 0.153015i
\(712\) 27.7489 + 56.7797i 0.0389732 + 0.0797468i
\(713\) −508.572 −0.713284
\(714\) −141.525 176.767i −0.198214 0.247573i
\(715\) 0 0
\(716\) −28.9629 + 129.186i −0.0404510 + 0.180428i
\(717\) 394.871i 0.550727i
\(718\) −297.616 371.728i −0.414507 0.517727i
\(719\) 448.275i 0.623470i 0.950169 + 0.311735i \(0.100910\pi\)
−0.950169 + 0.311735i \(0.899090\pi\)
\(720\) 0 0
\(721\) −935.914 −1.29808
\(722\) 1421.92 1138.43i 1.96942 1.57677i
\(723\) −460.368 −0.636747
\(724\) 691.423 + 155.014i 0.955005 + 0.214107i
\(725\) 0 0
\(726\) 427.458 342.235i 0.588785 0.471398i
\(727\) 956.205i 1.31527i 0.753335 + 0.657637i \(0.228444\pi\)
−0.753335 + 0.657637i \(0.771556\pi\)
\(728\) −286.626 586.493i −0.393717 0.805623i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −68.1721 −0.0932586
\(732\) 667.917 + 149.744i 0.912456 + 0.204568i
\(733\) 398.986i 0.544320i 0.962252 + 0.272160i \(0.0877379\pi\)
−0.962252 + 0.272160i \(0.912262\pi\)
\(734\) −477.076 595.877i −0.649968 0.811822i
\(735\) 0 0
\(736\) 83.7894 + 351.471i 0.113844 + 0.477542i
\(737\) −1495.16 −2.02871
\(738\) −11.4737 + 9.18618i −0.0155470 + 0.0124474i
\(739\) 1011.87 1.36924 0.684622 0.728899i \(-0.259967\pi\)
0.684622 + 0.728899i \(0.259967\pi\)
\(740\) 0 0
\(741\) 664.076i 0.896189i
\(742\) 868.775 695.566i 1.17086 0.937421i
\(743\) 346.145i 0.465875i 0.972492 + 0.232938i \(0.0748338\pi\)
−0.972492 + 0.232938i \(0.925166\pi\)
\(744\) −560.728 + 274.034i −0.753667 + 0.368326i
\(745\) 0 0
\(746\) 52.8406 + 65.9989i 0.0708319 + 0.0884704i
\(747\) 286.771 0.383897
\(748\) −125.904 + 561.581i −0.168320 + 0.750776i
\(749\) 1.82231i 0.00243300i
\(750\) 0 0
\(751\) 71.2058i 0.0948146i 0.998876 + 0.0474073i \(0.0150959\pi\)
−0.998876 + 0.0474073i \(0.984904\pi\)
\(752\) 303.125 642.050i 0.403091 0.853789i
\(753\) 268.283 0.356286
\(754\) −9.89043 + 7.91856i −0.0131173 + 0.0105021i
\(755\) 0 0
\(756\) 153.928 + 34.5098i 0.203608 + 0.0456479i
\(757\) 1452.44i 1.91867i −0.282264 0.959337i \(-0.591085\pi\)
0.282264 0.959337i \(-0.408915\pi\)
\(758\) 643.710 515.373i 0.849222 0.679912i
\(759\) 326.710i 0.430448i
\(760\) 0 0
\(761\) 414.416 0.544567 0.272284 0.962217i \(-0.412221\pi\)
0.272284 + 0.962217i \(0.412221\pi\)
\(762\) 2.49552 + 3.11695i 0.00327496 + 0.00409048i
\(763\) −892.523 −1.16976
\(764\) 112.410 + 25.2017i 0.147133 + 0.0329865i
\(765\) 0 0
\(766\) −504.634 630.297i −0.658791 0.822842i
\(767\) 965.081i 1.25825i
\(768\) 281.766 + 342.368i 0.366883 + 0.445792i
\(769\) −132.780 −0.172665 −0.0863326 0.996266i \(-0.527515\pi\)
−0.0863326 + 0.996266i \(0.527515\pi\)
\(770\) 0 0
\(771\) 730.968 0.948078
\(772\) −76.8267 + 342.678i −0.0995165 + 0.443884i
\(773\) 135.449i 0.175225i −0.996155 0.0876126i \(-0.972076\pi\)
0.996155 0.0876126i \(-0.0279238\pi\)
\(774\) 37.0732 29.6819i 0.0478982 0.0383487i
\(775\) 0 0
\(776\) −481.702 985.656i −0.620749 1.27018i
\(777\) −481.401 −0.619564
\(778\) −98.1307 122.567i −0.126132 0.157541i
\(779\) −87.3592 −0.112143
\(780\) 0 0
\(781\) 1503.70i 1.92535i
\(782\) 121.560 + 151.831i 0.155448 + 0.194157i
\(783\) 3.06173i 0.00391025i
\(784\) 124.480 + 58.7695i 0.158775 + 0.0749611i
\(785\) 0 0
\(786\) −518.873 + 415.424i −0.660143 + 0.528530i
\(787\) 370.900 0.471283 0.235642 0.971840i \(-0.424281\pi\)
0.235642 + 0.971840i \(0.424281\pi\)
\(788\) 1356.82 + 304.192i 1.72185 + 0.386030i
\(789\) 204.525i 0.259220i
\(790\) 0 0
\(791\) 312.489i 0.395055i
\(792\) −176.042 360.216i −0.222275 0.454818i
\(793\) 1062.20 1.33947
\(794\) −403.846 504.411i −0.508622 0.635279i
\(795\) 0 0
\(796\) 504.856 + 113.186i 0.634241 + 0.142194i
\(797\) 980.881i 1.23072i 0.788247 + 0.615358i \(0.210989\pi\)
−0.788247 + 0.615358i \(0.789011\pi\)
\(798\) 585.992 + 731.916i 0.734326 + 0.917187i
\(799\) 382.196i 0.478343i
\(800\) 0 0
\(801\) −23.6991 −0.0295869
\(802\) −970.149 + 776.729i −1.20966 + 0.968490i
\(803\) −1137.30 −1.41631
\(804\) −135.652 + 605.063i −0.168722 + 0.752566i
\(805\) 0 0
\(806\) −756.032 + 605.301i −0.938005 + 0.750994i
\(807\) 855.014i 1.05950i
\(808\) −664.344 + 324.673i −0.822208 + 0.401823i
\(809\) −464.769 −0.574498 −0.287249 0.957856i \(-0.592741\pi\)
−0.287249 + 0.957856i \(0.592741\pi\)
\(810\) 0 0
\(811\) −49.1816 −0.0606431 −0.0303216 0.999540i \(-0.509653\pi\)
−0.0303216 + 0.999540i \(0.509653\pi\)
\(812\) 3.91332 17.4550i 0.00481936 0.0214963i
\(813\) 628.657i 0.773255i
\(814\) 764.693 + 955.115i 0.939426 + 1.17336i
\(815\) 0 0
\(816\) 215.838 + 101.901i 0.264507 + 0.124879i
\(817\) 282.270 0.345496
\(818\) 504.112 403.607i 0.616274 0.493407i
\(819\) 244.795 0.298894
\(820\) 0 0
\(821\) 911.027i 1.10965i 0.831965 + 0.554827i \(0.187216\pi\)
−0.831965 + 0.554827i \(0.812784\pi\)
\(822\) −46.0053 + 36.8332i −0.0559676 + 0.0448092i
\(823\) 1278.02i 1.55287i −0.630195 0.776437i \(-0.717025\pi\)
0.630195 0.776437i \(-0.282975\pi\)
\(824\) 886.327 433.158i 1.07564 0.525678i
\(825\) 0 0
\(826\) −851.604 1063.67i −1.03100 1.28774i
\(827\) 671.016 0.811386 0.405693 0.914009i \(-0.367030\pi\)
0.405693 + 0.914009i \(0.367030\pi\)
\(828\) −132.213 29.6416i −0.159678 0.0357990i
\(829\) 31.8486i 0.0384181i −0.999815 0.0192091i \(-0.993885\pi\)
0.999815 0.0192091i \(-0.00611481\pi\)
\(830\) 0 0
\(831\) 556.007i 0.669082i
\(832\) 542.880 + 422.764i 0.652500 + 0.508130i
\(833\) 74.0997 0.0889552
\(834\) −476.957 + 381.865i −0.571890 + 0.457872i
\(835\) 0 0
\(836\) 521.311 2325.26i 0.623578 2.78141i
\(837\) 234.041i 0.279618i
\(838\) 30.0255 24.0393i 0.0358299 0.0286865i
\(839\) 112.707i 0.134335i −0.997742 0.0671674i \(-0.978604\pi\)
0.997742 0.0671674i \(-0.0213961\pi\)
\(840\) 0 0
\(841\) 840.653 0.999587
\(842\) −390.985 488.347i −0.464352 0.579985i
\(843\) −321.813 −0.381748
\(844\) −166.705 + 743.570i −0.197518 + 0.881008i
\(845\) 0 0
\(846\) 166.407 + 207.845i 0.196698 + 0.245680i
\(847\) 1199.73i 1.41644i
\(848\) −500.825 + 1060.80i −0.590595 + 1.25094i
\(849\) 361.354 0.425623
\(850\) 0 0
\(851\) 413.490 0.485887
\(852\) 608.516 + 136.426i 0.714221 + 0.160125i
\(853\) 512.714i 0.601072i 0.953770 + 0.300536i \(0.0971655\pi\)
−0.953770 + 0.300536i \(0.902834\pi\)
\(854\) −1170.71 + 937.307i −1.37086 + 1.09755i
\(855\) 0 0
\(856\) −0.843401 1.72576i −0.000985281 0.00201608i
\(857\) 1620.81 1.89126 0.945631 0.325243i \(-0.105446\pi\)
0.945631 + 0.325243i \(0.105446\pi\)
\(858\) −388.850 485.680i −0.453205 0.566061i
\(859\) 225.172 0.262132 0.131066 0.991374i \(-0.458160\pi\)
0.131066 + 0.991374i \(0.458160\pi\)
\(860\) 0 0
\(861\) 32.2027i 0.0374016i
\(862\) −521.763 651.692i −0.605294 0.756023i
\(863\) 1029.21i 1.19260i 0.802763 + 0.596299i \(0.203363\pi\)
−0.802763 + 0.596299i \(0.796637\pi\)
\(864\) −161.744 + 38.5592i −0.187204 + 0.0446287i
\(865\) 0 0
\(866\) −436.331 + 349.339i −0.503846 + 0.403394i
\(867\) −372.080 −0.429158
\(868\) 299.137 1334.27i 0.344628 1.53718i
\(869\) 605.818i 0.697144i
\(870\) 0 0
\(871\) 962.244i 1.10476i
\(872\) 845.236 413.076i 0.969307 0.473711i
\(873\) 411.400 0.471248
\(874\) −503.327 628.664i −0.575889 0.719296i
\(875\) 0 0
\(876\) −103.184 + 460.244i −0.117790 + 0.525392i
\(877\) 570.056i 0.650007i 0.945713 + 0.325003i \(0.105365\pi\)
−0.945713 + 0.325003i \(0.894635\pi\)
\(878\) 37.6667 + 47.0464i 0.0429005 + 0.0535836i
\(879\) 531.609i 0.604789i
\(880\) 0 0
\(881\) 596.788 0.677398 0.338699 0.940895i \(-0.390013\pi\)
0.338699 + 0.940895i \(0.390013\pi\)
\(882\) −40.2968 + 32.2628i −0.0456880 + 0.0365791i
\(883\) −856.738 −0.970258 −0.485129 0.874442i \(-0.661227\pi\)
−0.485129 + 0.874442i \(0.661227\pi\)
\(884\) 361.418 + 81.0280i 0.408843 + 0.0916606i
\(885\) 0 0
\(886\) 87.8766 70.3565i 0.0991835 0.0794092i
\(887\) 1648.76i 1.85880i 0.369068 + 0.929402i \(0.379677\pi\)
−0.369068 + 0.929402i \(0.620323\pi\)
\(888\) 455.895 222.801i 0.513396 0.250902i
\(889\) −8.74819 −0.00984048
\(890\) 0 0
\(891\) 150.349 0.168742
\(892\) 825.263 + 185.020i 0.925183 + 0.207421i
\(893\) 1582.50i 1.77212i
\(894\) −459.089 573.411i −0.513523 0.641400i
\(895\) 0 0
\(896\) −971.393 + 13.0950i −1.08414 + 0.0146149i
\(897\) −210.261 −0.234405
\(898\) −442.612 + 354.367i −0.492886 + 0.394619i
\(899\) −26.5395 −0.0295212
\(900\) 0 0
\(901\) 631.467i 0.700851i
\(902\) −63.8913 + 51.1532i −0.0708329 + 0.0567109i
\(903\) 104.052i 0.115229i
\(904\) 144.626 + 295.932i 0.159984 + 0.327359i
\(905\) 0 0
\(906\) 310.382 + 387.673i 0.342585 + 0.427895i
\(907\) −844.509 −0.931101 −0.465551 0.885021i \(-0.654144\pi\)
−0.465551 + 0.885021i \(0.654144\pi\)
\(908\) −77.7821 + 346.940i −0.0856631 + 0.382092i
\(909\) 277.289i 0.305048i
\(910\) 0 0
\(911\) 1074.78i 1.17978i 0.807483 + 0.589891i \(0.200829\pi\)
−0.807483 + 0.589891i \(0.799171\pi\)
\(912\) −893.689 421.929i −0.979923 0.462641i
\(913\) 1596.88 1.74905
\(914\) 414.052 331.502i 0.453011 0.362694i
\(915\) 0 0
\(916\) 596.677 + 133.772i 0.651395 + 0.146039i
\(917\) 1456.30i 1.58811i
\(918\) −69.8713 + 55.9410i −0.0761126 + 0.0609379i
\(919\) 1142.19i 1.24286i −0.783471 0.621428i \(-0.786553\pi\)
0.783471 0.621428i \(-0.213447\pi\)
\(920\) 0 0
\(921\) −491.067 −0.533188
\(922\) −887.046 1107.94i −0.962089 1.20167i
\(923\) 967.736 1.04847
\(924\) 857.146 + 192.168i 0.927647 + 0.207974i
\(925\) 0 0
\(926\) −521.735 651.657i −0.563429 0.703733i
\(927\) 369.941i 0.399074i
\(928\) 4.37251 + 18.3413i 0.00471175 + 0.0197644i
\(929\) 415.953 0.447742 0.223871 0.974619i \(-0.428131\pi\)
0.223871 + 0.974619i \(0.428131\pi\)
\(930\) 0 0
\(931\) −306.814 −0.329553
\(932\) −164.876 + 735.412i −0.176905 + 0.789068i
\(933\) 1063.51i 1.13988i
\(934\) 1060.54 849.101i 1.13549 0.909102i
\(935\) 0 0
\(936\) −231.825 + 113.295i −0.247676 + 0.121042i
\(937\) 846.979 0.903927 0.451963 0.892037i \(-0.350724\pi\)
0.451963 + 0.892037i \(0.350724\pi\)
\(938\) −849.101 1060.54i −0.905225 1.13064i
\(939\) 886.671 0.944271
\(940\) 0 0
\(941\) 149.279i 0.158638i −0.996849 0.0793192i \(-0.974725\pi\)
0.996849 0.0793192i \(-0.0252746\pi\)
\(942\) 178.120 + 222.476i 0.189087 + 0.236174i
\(943\) 27.6599i 0.0293318i
\(944\) 1298.77 + 613.176i 1.37582 + 0.649551i
\(945\) 0 0
\(946\) 206.442 165.283i 0.218226 0.174718i
\(947\) −543.005 −0.573395 −0.286697 0.958021i \(-0.592557\pi\)
−0.286697 + 0.958021i \(0.592557\pi\)
\(948\) −245.163 54.9643i −0.258611 0.0579793i
\(949\) 731.935i 0.771269i
\(950\) 0 0
\(951\) 744.098i 0.782438i
\(952\) −469.839 + 229.616i −0.493529 + 0.241193i
\(953\) 344.292 0.361272 0.180636 0.983550i \(-0.442184\pi\)
0.180636 + 0.983550i \(0.442184\pi\)
\(954\) −274.938 343.403i −0.288195 0.359961i
\(955\) 0 0
\(956\) −889.828 199.495i −0.930782 0.208677i
\(957\) 17.0492i 0.0178153i
\(958\) 196.971 + 246.021i 0.205607 + 0.256807i
\(959\) 129.121i 0.134641i
\(960\) 0 0
\(961\) −1067.70 −1.11103
\(962\) 614.685 492.135i 0.638966 0.511575i
\(963\) 0.720311 0.000747987
\(964\) −232.585 + 1037.42i −0.241271 + 1.07616i
\(965\) 0 0
\(966\) 231.741 185.538i 0.239897 0.192069i
\(967\) 1044.78i 1.08044i −0.841524 0.540219i \(-0.818341\pi\)
0.841524 0.540219i \(-0.181659\pi\)
\(968\) −555.256 1136.16i −0.573611 1.17372i
\(969\) −531.991 −0.549010
\(970\) 0 0
\(971\) 306.656 0.315814 0.157907 0.987454i \(-0.449525\pi\)
0.157907 + 0.987454i \(0.449525\pi\)
\(972\) 13.6408 60.8435i 0.0140337 0.0625962i
\(973\) 1338.65i 1.37580i
\(974\) −920.800 1150.10i −0.945379 1.18080i
\(975\) 0 0
\(976\) 674.884 1429.47i 0.691479 1.46462i
\(977\) −1753.81 −1.79509 −0.897547 0.440919i \(-0.854653\pi\)
−0.897547 + 0.440919i \(0.854653\pi\)
\(978\) −75.2073 + 60.2131i −0.0768990 + 0.0615676i
\(979\) −131.968 −0.134799
\(980\) 0 0
\(981\) 352.790i 0.359623i
\(982\) −565.812 + 453.005i −0.576183 + 0.461309i
\(983\) 951.541i 0.967997i −0.875069 0.483999i \(-0.839184\pi\)
0.875069 0.483999i \(-0.160816\pi\)
\(984\) 14.9040 + 30.4966i 0.0151464 + 0.0309924i
\(985\) 0 0
\(986\) 6.34355 + 7.92321i 0.00643362 + 0.00803571i
\(987\) −583.349 −0.591033
\(988\) −1496.47 335.501i −1.51465 0.339576i
\(989\) 89.3731i 0.0903672i
\(990\) 0 0
\(991\) 1786.06i 1.80229i −0.433523 0.901143i \(-0.642730\pi\)
0.433523 0.901143i \(-0.357270\pi\)
\(992\) 334.238 + 1402.03i 0.336933 + 1.41333i
\(993\) −930.627 −0.937187
\(994\) −1066.60 + 853.947i −1.07303 + 0.859102i
\(995\) 0 0
\(996\) 144.881 646.228i 0.145463 0.648823i
\(997\) 1375.80i 1.37994i 0.723839 + 0.689969i \(0.242376\pi\)
−0.723839 + 0.689969i \(0.757624\pi\)
\(998\) 1012.96 811.008i 1.01499 0.812633i
\(999\) 190.285i 0.190475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.g.d.451.11 16
4.3 odd 2 2400.3.g.b.751.2 16
5.2 odd 4 600.3.p.b.499.26 32
5.3 odd 4 600.3.p.b.499.7 32
5.4 even 2 120.3.g.a.91.6 yes 16
8.3 odd 2 inner 600.3.g.d.451.12 16
8.5 even 2 2400.3.g.b.751.7 16
15.14 odd 2 360.3.g.c.91.11 16
20.3 even 4 2400.3.p.b.1999.13 32
20.7 even 4 2400.3.p.b.1999.32 32
20.19 odd 2 480.3.g.a.271.16 16
40.3 even 4 600.3.p.b.499.25 32
40.13 odd 4 2400.3.p.b.1999.31 32
40.19 odd 2 120.3.g.a.91.5 16
40.27 even 4 600.3.p.b.499.8 32
40.29 even 2 480.3.g.a.271.9 16
40.37 odd 4 2400.3.p.b.1999.14 32
60.59 even 2 1440.3.g.c.271.7 16
120.29 odd 2 1440.3.g.c.271.10 16
120.59 even 2 360.3.g.c.91.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.5 16 40.19 odd 2
120.3.g.a.91.6 yes 16 5.4 even 2
360.3.g.c.91.11 16 15.14 odd 2
360.3.g.c.91.12 16 120.59 even 2
480.3.g.a.271.9 16 40.29 even 2
480.3.g.a.271.16 16 20.19 odd 2
600.3.g.d.451.11 16 1.1 even 1 trivial
600.3.g.d.451.12 16 8.3 odd 2 inner
600.3.p.b.499.7 32 5.3 odd 4
600.3.p.b.499.8 32 40.27 even 4
600.3.p.b.499.25 32 40.3 even 4
600.3.p.b.499.26 32 5.2 odd 4
1440.3.g.c.271.7 16 60.59 even 2
1440.3.g.c.271.10 16 120.29 odd 2
2400.3.g.b.751.2 16 4.3 odd 2
2400.3.g.b.751.7 16 8.5 even 2
2400.3.p.b.1999.13 32 20.3 even 4
2400.3.p.b.1999.14 32 40.37 odd 4
2400.3.p.b.1999.31 32 40.13 odd 4
2400.3.p.b.1999.32 32 20.7 even 4