Newspace parameters
| Level: | \( N \) | \(=\) | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 600.p (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(16.3488158616\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Twist minimal: | no (minimal twist has level 120) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 499.1 | −1.94989 | − | 0.444906i | 1.73205i | 3.60412 | + | 1.73503i | 0 | 0.770599 | − | 3.37730i | 5.48395 | −6.25570 | − | 4.98661i | −3.00000 | 0 | ||||||||||
| 499.2 | −1.94989 | + | 0.444906i | − | 1.73205i | 3.60412 | − | 1.73503i | 0 | 0.770599 | + | 3.37730i | 5.48395 | −6.25570 | + | 4.98661i | −3.00000 | 0 | |||||||||
| 499.3 | −1.68225 | − | 1.08168i | 1.73205i | 1.65995 | + | 3.63931i | 0 | 1.87352 | − | 2.91375i | −3.06445 | 1.14409 | − | 7.91777i | −3.00000 | 0 | ||||||||||
| 499.4 | −1.68225 | + | 1.08168i | − | 1.73205i | 1.65995 | − | 3.63931i | 0 | 1.87352 | + | 2.91375i | −3.06445 | 1.14409 | + | 7.91777i | −3.00000 | 0 | |||||||||
| 499.5 | −1.64881 | − | 1.13200i | − | 1.73205i | 1.43715 | + | 3.73291i | 0 | −1.96068 | + | 2.85582i | −11.6935 | 1.85607 | − | 7.78171i | −3.00000 | 0 | |||||||||
| 499.6 | −1.64881 | + | 1.13200i | 1.73205i | 1.43715 | − | 3.73291i | 0 | −1.96068 | − | 2.85582i | −11.6935 | 1.85607 | + | 7.78171i | −3.00000 | 0 | ||||||||||
| 499.7 | −1.24999 | − | 1.56126i | 1.73205i | −0.875058 | + | 3.90311i | 0 | 2.70418 | − | 2.16504i | 7.58970 | 7.18758 | − | 3.51265i | −3.00000 | 0 | ||||||||||
| 499.8 | −1.24999 | + | 1.56126i | − | 1.73205i | −0.875058 | − | 3.90311i | 0 | 2.70418 | + | 2.16504i | 7.58970 | 7.18758 | + | 3.51265i | −3.00000 | 0 | |||||||||
| 499.9 | −0.840753 | − | 1.81470i | 1.73205i | −2.58627 | + | 3.05143i | 0 | 3.14315 | − | 1.45623i | −6.88771 | 7.71184 | + | 2.12781i | −3.00000 | 0 | ||||||||||
| 499.10 | −0.840753 | + | 1.81470i | − | 1.73205i | −2.58627 | − | 3.05143i | 0 | 3.14315 | + | 1.45623i | −6.88771 | 7.71184 | − | 2.12781i | −3.00000 | 0 | |||||||||
| 499.11 | −0.714481 | − | 1.86802i | 1.73205i | −2.97903 | + | 2.66934i | 0 | 3.23551 | − | 1.23752i | 0.274624 | 7.11485 | + | 3.65772i | −3.00000 | 0 | ||||||||||
| 499.12 | −0.714481 | + | 1.86802i | − | 1.73205i | −2.97903 | − | 2.66934i | 0 | 3.23551 | + | 1.23752i | 0.274624 | 7.11485 | − | 3.65772i | −3.00000 | 0 | |||||||||
| 499.13 | −0.436996 | − | 1.95167i | − | 1.73205i | −3.61807 | + | 1.70575i | 0 | −3.38040 | + | 0.756900i | 8.35441 | 4.91015 | + | 6.31589i | −3.00000 | 0 | |||||||||
| 499.14 | −0.436996 | + | 1.95167i | 1.73205i | −3.61807 | − | 1.70575i | 0 | −3.38040 | − | 0.756900i | 8.35441 | 4.91015 | − | 6.31589i | −3.00000 | 0 | ||||||||||
| 499.15 | −0.422617 | − | 1.95484i | − | 1.73205i | −3.64279 | + | 1.65230i | 0 | −3.38588 | + | 0.731994i | −8.99346 | 4.76948 | + | 6.42278i | −3.00000 | 0 | |||||||||
| 499.16 | −0.422617 | + | 1.95484i | 1.73205i | −3.64279 | − | 1.65230i | 0 | −3.38588 | − | 0.731994i | −8.99346 | 4.76948 | − | 6.42278i | −3.00000 | 0 | ||||||||||
| 499.17 | 0.422617 | − | 1.95484i | − | 1.73205i | −3.64279 | − | 1.65230i | 0 | −3.38588 | − | 0.731994i | 8.99346 | −4.76948 | + | 6.42278i | −3.00000 | 0 | |||||||||
| 499.18 | 0.422617 | + | 1.95484i | 1.73205i | −3.64279 | + | 1.65230i | 0 | −3.38588 | + | 0.731994i | 8.99346 | −4.76948 | − | 6.42278i | −3.00000 | 0 | ||||||||||
| 499.19 | 0.436996 | − | 1.95167i | − | 1.73205i | −3.61807 | − | 1.70575i | 0 | −3.38040 | − | 0.756900i | −8.35441 | −4.91015 | + | 6.31589i | −3.00000 | 0 | |||||||||
| 499.20 | 0.436996 | + | 1.95167i | 1.73205i | −3.61807 | + | 1.70575i | 0 | −3.38040 | + | 0.756900i | −8.35441 | −4.91015 | − | 6.31589i | −3.00000 | 0 | ||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 8.d | odd | 2 | 1 | inner |
| 40.e | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 600.3.p.b | 32 | |
| 4.b | odd | 2 | 1 | 2400.3.p.b | 32 | ||
| 5.b | even | 2 | 1 | inner | 600.3.p.b | 32 | |
| 5.c | odd | 4 | 1 | 120.3.g.a | ✓ | 16 | |
| 5.c | odd | 4 | 1 | 600.3.g.d | 16 | ||
| 8.b | even | 2 | 1 | 2400.3.p.b | 32 | ||
| 8.d | odd | 2 | 1 | inner | 600.3.p.b | 32 | |
| 15.e | even | 4 | 1 | 360.3.g.c | 16 | ||
| 20.d | odd | 2 | 1 | 2400.3.p.b | 32 | ||
| 20.e | even | 4 | 1 | 480.3.g.a | 16 | ||
| 20.e | even | 4 | 1 | 2400.3.g.b | 16 | ||
| 40.e | odd | 2 | 1 | inner | 600.3.p.b | 32 | |
| 40.f | even | 2 | 1 | 2400.3.p.b | 32 | ||
| 40.i | odd | 4 | 1 | 480.3.g.a | 16 | ||
| 40.i | odd | 4 | 1 | 2400.3.g.b | 16 | ||
| 40.k | even | 4 | 1 | 120.3.g.a | ✓ | 16 | |
| 40.k | even | 4 | 1 | 600.3.g.d | 16 | ||
| 60.l | odd | 4 | 1 | 1440.3.g.c | 16 | ||
| 120.q | odd | 4 | 1 | 360.3.g.c | 16 | ||
| 120.w | even | 4 | 1 | 1440.3.g.c | 16 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 120.3.g.a | ✓ | 16 | 5.c | odd | 4 | 1 | |
| 120.3.g.a | ✓ | 16 | 40.k | even | 4 | 1 | |
| 360.3.g.c | 16 | 15.e | even | 4 | 1 | ||
| 360.3.g.c | 16 | 120.q | odd | 4 | 1 | ||
| 480.3.g.a | 16 | 20.e | even | 4 | 1 | ||
| 480.3.g.a | 16 | 40.i | odd | 4 | 1 | ||
| 600.3.g.d | 16 | 5.c | odd | 4 | 1 | ||
| 600.3.g.d | 16 | 40.k | even | 4 | 1 | ||
| 600.3.p.b | 32 | 1.a | even | 1 | 1 | trivial | |
| 600.3.p.b | 32 | 5.b | even | 2 | 1 | inner | |
| 600.3.p.b | 32 | 8.d | odd | 2 | 1 | inner | |
| 600.3.p.b | 32 | 40.e | odd | 2 | 1 | inner | |
| 1440.3.g.c | 16 | 60.l | odd | 4 | 1 | ||
| 1440.3.g.c | 16 | 120.w | even | 4 | 1 | ||
| 2400.3.g.b | 16 | 20.e | even | 4 | 1 | ||
| 2400.3.g.b | 16 | 40.i | odd | 4 | 1 | ||
| 2400.3.p.b | 32 | 4.b | odd | 2 | 1 | ||
| 2400.3.p.b | 32 | 8.b | even | 2 | 1 | ||
| 2400.3.p.b | 32 | 20.d | odd | 2 | 1 | ||
| 2400.3.p.b | 32 | 40.f | even | 2 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{16} - 432 T_{7}^{14} + 74976 T_{7}^{12} - 6766336 T_{7}^{10} + 340312320 T_{7}^{8} + \cdots + 44930433024 \)
acting on \(S_{3}^{\mathrm{new}}(600, [\chi])\).