Properties

Label 600.3.p
Level $600$
Weight $3$
Character orbit 600.p
Rep. character $\chi_{600}(499,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $3$
Sturm bound $360$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(360\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(600, [\chi])\).

Total New Old
Modular forms 252 72 180
Cusp forms 228 72 156
Eisenstein series 24 0 24

Trace form

\( 72 q - 4 q^{4} + 12 q^{6} - 216 q^{9} - 76 q^{14} - 60 q^{16} + 64 q^{19} + 36 q^{24} + 12 q^{26} + 272 q^{34} + 12 q^{36} + 80 q^{41} - 304 q^{44} - 16 q^{46} + 504 q^{49} + 192 q^{51} - 36 q^{54} - 56 q^{56}+ \cdots - 252 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
600.3.p.a 600.p 40.e $8$ $16.349$ 8.0.22581504.2 None 24.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}-\beta _{4})q^{2}-\beta _{4}q^{3}+(2-\beta _{3}+\cdots)q^{4}+\cdots\)
600.3.p.b 600.p 40.e $32$ $16.349$ None 120.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
600.3.p.c 600.p 40.e $32$ $16.349$ None 600.3.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(600, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)