Properties

Label 540.2.n.d.179.6
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.6
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00727 - 0.992675i) q^{2} +(0.0291929 + 1.99979i) q^{4} +(0.493735 - 2.18088i) q^{5} +(-1.65751 - 2.87089i) q^{7} +(1.95573 - 2.04331i) q^{8} +(-2.66223 + 1.70662i) q^{10} +(-1.17952 - 2.04298i) q^{11} +(3.81058 + 2.20004i) q^{13} +(-1.18030 + 4.53714i) q^{14} +(-3.99830 + 0.116759i) q^{16} -0.889368 q^{17} +3.03537i q^{19} +(4.37570 + 0.923698i) q^{20} +(-0.839925 + 3.22872i) q^{22} +(-6.29952 - 3.63703i) q^{23} +(-4.51245 - 2.15355i) q^{25} +(-1.65437 - 5.99870i) q^{26} +(5.69278 - 3.39848i) q^{28} +(-1.03714 + 0.598791i) q^{29} +(0.205172 + 0.118456i) q^{31} +(4.14327 + 3.85140i) q^{32} +(0.895835 + 0.882853i) q^{34} +(-7.07943 + 2.19737i) q^{35} -11.4975i q^{37} +(3.01314 - 3.05745i) q^{38} +(-3.49059 - 5.27407i) q^{40} +(-2.45213 - 1.41574i) q^{41} +(-4.17637 - 7.23369i) q^{43} +(4.05110 - 2.41842i) q^{44} +(2.73494 + 9.91686i) q^{46} +(-6.55796 + 3.78624i) q^{47} +(-1.99467 + 3.45488i) q^{49} +(2.40749 + 6.64861i) q^{50} +(-4.28837 + 7.68457i) q^{52} +0.772055 q^{53} +(-5.03787 + 1.56369i) q^{55} +(-9.10776 - 2.22789i) q^{56} +(1.63908 + 0.426394i) q^{58} +(-1.06446 + 1.84370i) q^{59} +(1.91303 + 3.31346i) q^{61} +(-0.0890754 - 0.322986i) q^{62} +(-0.350216 - 7.99233i) q^{64} +(6.67943 - 7.22417i) q^{65} +(-3.17238 + 5.49472i) q^{67} +(-0.0259632 - 1.77855i) q^{68} +(9.31218 + 4.81423i) q^{70} +11.7244 q^{71} +6.10889i q^{73} +(-11.4133 + 11.5811i) q^{74} +(-6.07010 + 0.0886114i) q^{76} +(-3.91012 + 6.77253i) q^{77} +(8.94873 - 5.16655i) q^{79} +(-1.71946 + 8.77744i) q^{80} +(1.06459 + 3.86020i) q^{82} +(-2.25103 + 1.29963i) q^{83} +(-0.439112 + 1.93960i) q^{85} +(-2.97396 + 11.4321i) q^{86} +(-6.48127 - 1.58541i) q^{88} +4.68130i q^{89} -14.5863i q^{91} +(7.08939 - 12.7039i) q^{92} +(10.3642 + 2.69615i) q^{94} +(6.61978 + 1.49867i) q^{95} +(-5.34684 + 3.08700i) q^{97} +(5.43875 - 1.49994i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00727 0.992675i −0.712249 0.701927i
\(3\) 0 0
\(4\) 0.0291929 + 1.99979i 0.0145965 + 0.999893i
\(5\) 0.493735 2.18088i 0.220805 0.975318i
\(6\) 0 0
\(7\) −1.65751 2.87089i −0.626480 1.08509i −0.988253 0.152828i \(-0.951162\pi\)
0.361773 0.932266i \(-0.382172\pi\)
\(8\) 1.95573 2.04331i 0.691456 0.722418i
\(9\) 0 0
\(10\) −2.66223 + 1.70662i −0.841870 + 0.539680i
\(11\) −1.17952 2.04298i −0.355638 0.615983i 0.631589 0.775303i \(-0.282403\pi\)
−0.987227 + 0.159320i \(0.949070\pi\)
\(12\) 0 0
\(13\) 3.81058 + 2.20004i 1.05686 + 0.610181i 0.924563 0.381029i \(-0.124430\pi\)
0.132301 + 0.991210i \(0.457763\pi\)
\(14\) −1.18030 + 4.53714i −0.315448 + 1.21260i
\(15\) 0 0
\(16\) −3.99830 + 0.116759i −0.999574 + 0.0291898i
\(17\) −0.889368 −0.215703 −0.107852 0.994167i \(-0.534397\pi\)
−0.107852 + 0.994167i \(0.534397\pi\)
\(18\) 0 0
\(19\) 3.03537i 0.696363i 0.937427 + 0.348181i \(0.113201\pi\)
−0.937427 + 0.348181i \(0.886799\pi\)
\(20\) 4.37570 + 0.923698i 0.978437 + 0.206545i
\(21\) 0 0
\(22\) −0.839925 + 3.22872i −0.179073 + 0.688365i
\(23\) −6.29952 3.63703i −1.31354 0.758374i −0.330861 0.943680i \(-0.607339\pi\)
−0.982681 + 0.185306i \(0.940672\pi\)
\(24\) 0 0
\(25\) −4.51245 2.15355i −0.902490 0.430710i
\(26\) −1.65437 5.99870i −0.324448 1.17644i
\(27\) 0 0
\(28\) 5.69278 3.39848i 1.07583 0.642251i
\(29\) −1.03714 + 0.598791i −0.192592 + 0.111193i −0.593195 0.805059i \(-0.702134\pi\)
0.400604 + 0.916251i \(0.368800\pi\)
\(30\) 0 0
\(31\) 0.205172 + 0.118456i 0.0368499 + 0.0212753i 0.518312 0.855192i \(-0.326561\pi\)
−0.481462 + 0.876467i \(0.659894\pi\)
\(32\) 4.14327 + 3.85140i 0.732434 + 0.680838i
\(33\) 0 0
\(34\) 0.895835 + 0.882853i 0.153634 + 0.151408i
\(35\) −7.07943 + 2.19737i −1.19664 + 0.371423i
\(36\) 0 0
\(37\) 11.4975i 1.89018i −0.326807 0.945091i \(-0.605973\pi\)
0.326807 0.945091i \(-0.394027\pi\)
\(38\) 3.01314 3.05745i 0.488796 0.495983i
\(39\) 0 0
\(40\) −3.49059 5.27407i −0.551911 0.833903i
\(41\) −2.45213 1.41574i −0.382958 0.221101i 0.296146 0.955143i \(-0.404298\pi\)
−0.679105 + 0.734042i \(0.737632\pi\)
\(42\) 0 0
\(43\) −4.17637 7.23369i −0.636891 1.10313i −0.986111 0.166087i \(-0.946887\pi\)
0.349220 0.937041i \(-0.386447\pi\)
\(44\) 4.05110 2.41842i 0.610726 0.364591i
\(45\) 0 0
\(46\) 2.73494 + 9.91686i 0.403245 + 1.46216i
\(47\) −6.55796 + 3.78624i −0.956577 + 0.552280i −0.895118 0.445829i \(-0.852909\pi\)
−0.0614594 + 0.998110i \(0.519575\pi\)
\(48\) 0 0
\(49\) −1.99467 + 3.45488i −0.284954 + 0.493554i
\(50\) 2.40749 + 6.64861i 0.340470 + 0.940255i
\(51\) 0 0
\(52\) −4.28837 + 7.68457i −0.594689 + 1.06566i
\(53\) 0.772055 0.106050 0.0530249 0.998593i \(-0.483114\pi\)
0.0530249 + 0.998593i \(0.483114\pi\)
\(54\) 0 0
\(55\) −5.03787 + 1.56369i −0.679306 + 0.210848i
\(56\) −9.10776 2.22789i −1.21708 0.297715i
\(57\) 0 0
\(58\) 1.63908 + 0.426394i 0.215222 + 0.0559883i
\(59\) −1.06446 + 1.84370i −0.138581 + 0.240029i −0.926960 0.375161i \(-0.877587\pi\)
0.788379 + 0.615190i \(0.210921\pi\)
\(60\) 0 0
\(61\) 1.91303 + 3.31346i 0.244938 + 0.424245i 0.962114 0.272647i \(-0.0878990\pi\)
−0.717176 + 0.696892i \(0.754566\pi\)
\(62\) −0.0890754 0.322986i −0.0113126 0.0410193i
\(63\) 0 0
\(64\) −0.350216 7.99233i −0.0437769 0.999041i
\(65\) 6.67943 7.22417i 0.828481 0.896048i
\(66\) 0 0
\(67\) −3.17238 + 5.49472i −0.387567 + 0.671287i −0.992122 0.125277i \(-0.960018\pi\)
0.604554 + 0.796564i \(0.293351\pi\)
\(68\) −0.0259632 1.77855i −0.00314851 0.215680i
\(69\) 0 0
\(70\) 9.31218 + 4.81423i 1.11302 + 0.575410i
\(71\) 11.7244 1.39143 0.695717 0.718316i \(-0.255087\pi\)
0.695717 + 0.718316i \(0.255087\pi\)
\(72\) 0 0
\(73\) 6.10889i 0.714992i 0.933915 + 0.357496i \(0.116369\pi\)
−0.933915 + 0.357496i \(0.883631\pi\)
\(74\) −11.4133 + 11.5811i −1.32677 + 1.34628i
\(75\) 0 0
\(76\) −6.07010 + 0.0886114i −0.696288 + 0.0101644i
\(77\) −3.91012 + 6.77253i −0.445600 + 0.771802i
\(78\) 0 0
\(79\) 8.94873 5.16655i 1.00681 0.581283i 0.0965546 0.995328i \(-0.469218\pi\)
0.910256 + 0.414045i \(0.135884\pi\)
\(80\) −1.71946 + 8.77744i −0.192242 + 0.981348i
\(81\) 0 0
\(82\) 1.06459 + 3.86020i 0.117565 + 0.426288i
\(83\) −2.25103 + 1.29963i −0.247083 + 0.142653i −0.618428 0.785842i \(-0.712230\pi\)
0.371345 + 0.928495i \(0.378897\pi\)
\(84\) 0 0
\(85\) −0.439112 + 1.93960i −0.0476284 + 0.210379i
\(86\) −2.97396 + 11.4321i −0.320690 + 1.23275i
\(87\) 0 0
\(88\) −6.48127 1.58541i −0.690906 0.169006i
\(89\) 4.68130i 0.496217i 0.968732 + 0.248108i \(0.0798089\pi\)
−0.968732 + 0.248108i \(0.920191\pi\)
\(90\) 0 0
\(91\) 14.5863i 1.52906i
\(92\) 7.08939 12.7039i 0.739120 1.32447i
\(93\) 0 0
\(94\) 10.3642 + 2.69615i 1.06898 + 0.278087i
\(95\) 6.61978 + 1.49867i 0.679175 + 0.153760i
\(96\) 0 0
\(97\) −5.34684 + 3.08700i −0.542890 + 0.313438i −0.746249 0.665667i \(-0.768147\pi\)
0.203360 + 0.979104i \(0.434814\pi\)
\(98\) 5.43875 1.49994i 0.549397 0.151517i
\(99\) 0 0
\(100\) 4.17491 9.08681i 0.417491 0.908681i
\(101\) 6.72336 3.88174i 0.669000 0.386247i −0.126698 0.991941i \(-0.540438\pi\)
0.795697 + 0.605694i \(0.207105\pi\)
\(102\) 0 0
\(103\) 6.58033 11.3975i 0.648379 1.12302i −0.335131 0.942171i \(-0.608781\pi\)
0.983510 0.180853i \(-0.0578860\pi\)
\(104\) 11.9478 3.48350i 1.17158 0.341585i
\(105\) 0 0
\(106\) −0.777669 0.766400i −0.0755339 0.0744393i
\(107\) 0.252175i 0.0243786i −0.999926 0.0121893i \(-0.996120\pi\)
0.999926 0.0121893i \(-0.00388008\pi\)
\(108\) 0 0
\(109\) 0.459068 0.0439708 0.0219854 0.999758i \(-0.493001\pi\)
0.0219854 + 0.999758i \(0.493001\pi\)
\(110\) 6.62674 + 3.42590i 0.631835 + 0.326647i
\(111\) 0 0
\(112\) 6.96242 + 11.2851i 0.657886 + 1.06635i
\(113\) 8.71557 15.0958i 0.819892 1.42009i −0.0858696 0.996306i \(-0.527367\pi\)
0.905761 0.423788i \(-0.139300\pi\)
\(114\) 0 0
\(115\) −11.0422 + 11.9428i −1.02969 + 1.11367i
\(116\) −1.22773 2.05657i −0.113992 0.190948i
\(117\) 0 0
\(118\) 2.90240 0.800444i 0.267187 0.0736868i
\(119\) 1.47414 + 2.55328i 0.135134 + 0.234059i
\(120\) 0 0
\(121\) 2.71748 4.70681i 0.247043 0.427891i
\(122\) 1.36225 5.23657i 0.123332 0.474097i
\(123\) 0 0
\(124\) −0.230897 + 0.413758i −0.0207352 + 0.0371565i
\(125\) −6.92458 + 8.77782i −0.619354 + 0.785112i
\(126\) 0 0
\(127\) 10.5666 0.937635 0.468817 0.883295i \(-0.344680\pi\)
0.468817 + 0.883295i \(0.344680\pi\)
\(128\) −7.58102 + 8.39810i −0.670074 + 0.742294i
\(129\) 0 0
\(130\) −13.8993 + 0.646199i −1.21905 + 0.0566754i
\(131\) 8.12900 14.0798i 0.710234 1.23016i −0.254535 0.967064i \(-0.581922\pi\)
0.964769 0.263098i \(-0.0847444\pi\)
\(132\) 0 0
\(133\) 8.71423 5.03116i 0.755619 0.436257i
\(134\) 8.64991 2.38554i 0.747239 0.206079i
\(135\) 0 0
\(136\) −1.73937 + 1.81725i −0.149149 + 0.155828i
\(137\) 6.59587 + 11.4244i 0.563523 + 0.976051i 0.997185 + 0.0749753i \(0.0238878\pi\)
−0.433662 + 0.901076i \(0.642779\pi\)
\(138\) 0 0
\(139\) −5.61535 3.24202i −0.476288 0.274985i 0.242580 0.970131i \(-0.422006\pi\)
−0.718868 + 0.695146i \(0.755340\pi\)
\(140\) −4.60093 14.0932i −0.388850 1.19109i
\(141\) 0 0
\(142\) −11.8097 11.6385i −0.991047 0.976685i
\(143\) 10.3799i 0.868014i
\(144\) 0 0
\(145\) 0.793820 + 2.55751i 0.0659232 + 0.212390i
\(146\) 6.06415 6.15332i 0.501872 0.509252i
\(147\) 0 0
\(148\) 22.9926 0.335646i 1.88998 0.0275900i
\(149\) −7.25009 4.18584i −0.593950 0.342917i 0.172708 0.984973i \(-0.444748\pi\)
−0.766658 + 0.642056i \(0.778082\pi\)
\(150\) 0 0
\(151\) 14.2008 8.19886i 1.15565 0.667214i 0.205391 0.978680i \(-0.434153\pi\)
0.950257 + 0.311466i \(0.100820\pi\)
\(152\) 6.20220 + 5.93638i 0.503065 + 0.481504i
\(153\) 0 0
\(154\) 10.6615 2.94030i 0.859127 0.236936i
\(155\) 0.359638 0.388968i 0.0288868 0.0312427i
\(156\) 0 0
\(157\) 9.27700 + 5.35608i 0.740386 + 0.427462i 0.822209 0.569185i \(-0.192741\pi\)
−0.0818239 + 0.996647i \(0.526075\pi\)
\(158\) −14.1425 3.67906i −1.12512 0.292690i
\(159\) 0 0
\(160\) 10.4451 7.13440i 0.825758 0.564024i
\(161\) 24.1137i 1.90042i
\(162\) 0 0
\(163\) 1.33584 0.104631 0.0523153 0.998631i \(-0.483340\pi\)
0.0523153 + 0.998631i \(0.483340\pi\)
\(164\) 2.75959 4.94507i 0.215488 0.386145i
\(165\) 0 0
\(166\) 3.55752 + 0.925458i 0.276117 + 0.0718295i
\(167\) 6.20942 + 3.58501i 0.480500 + 0.277417i 0.720625 0.693325i \(-0.243855\pi\)
−0.240125 + 0.970742i \(0.577188\pi\)
\(168\) 0 0
\(169\) 3.18034 + 5.50851i 0.244641 + 0.423731i
\(170\) 2.36770 1.51781i 0.181594 0.116411i
\(171\) 0 0
\(172\) 14.3439 8.56303i 1.09371 0.652925i
\(173\) −1.28765 2.23027i −0.0978979 0.169564i 0.812916 0.582380i \(-0.197879\pi\)
−0.910814 + 0.412816i \(0.864545\pi\)
\(174\) 0 0
\(175\) 1.29682 + 16.5243i 0.0980307 + 1.24912i
\(176\) 4.95460 + 8.03074i 0.373467 + 0.605340i
\(177\) 0 0
\(178\) 4.64701 4.71534i 0.348308 0.353430i
\(179\) −10.1847 −0.761243 −0.380622 0.924731i \(-0.624290\pi\)
−0.380622 + 0.924731i \(0.624290\pi\)
\(180\) 0 0
\(181\) 4.17537 0.310353 0.155176 0.987887i \(-0.450405\pi\)
0.155176 + 0.987887i \(0.450405\pi\)
\(182\) −14.4795 + 14.6924i −1.07329 + 1.08907i
\(183\) 0 0
\(184\) −19.7518 + 5.75880i −1.45612 + 0.424545i
\(185\) −25.0747 5.67673i −1.84353 0.417362i
\(186\) 0 0
\(187\) 1.04902 + 1.81696i 0.0767123 + 0.132870i
\(188\) −7.76312 13.0040i −0.566184 0.948414i
\(189\) 0 0
\(190\) −5.18022 8.08086i −0.375813 0.586247i
\(191\) 12.5152 + 21.6770i 0.905570 + 1.56849i 0.820151 + 0.572147i \(0.193889\pi\)
0.0854186 + 0.996345i \(0.472777\pi\)
\(192\) 0 0
\(193\) −16.3830 9.45871i −1.17927 0.680853i −0.223426 0.974721i \(-0.571724\pi\)
−0.955846 + 0.293868i \(0.905057\pi\)
\(194\) 8.45011 + 2.19823i 0.606683 + 0.157824i
\(195\) 0 0
\(196\) −6.96725 3.88807i −0.497661 0.277719i
\(197\) −5.25418 −0.374345 −0.187172 0.982327i \(-0.559932\pi\)
−0.187172 + 0.982327i \(0.559932\pi\)
\(198\) 0 0
\(199\) 18.8487i 1.33615i 0.744095 + 0.668074i \(0.232881\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(200\) −13.2255 + 5.00856i −0.935185 + 0.354159i
\(201\) 0 0
\(202\) −10.6256 2.76415i −0.747612 0.194485i
\(203\) 3.43813 + 1.98500i 0.241309 + 0.139320i
\(204\) 0 0
\(205\) −4.29825 + 4.64879i −0.300203 + 0.324686i
\(206\) −17.9421 + 4.94821i −1.25009 + 0.344758i
\(207\) 0 0
\(208\) −15.4927 8.35148i −1.07423 0.579071i
\(209\) 6.20122 3.58028i 0.428948 0.247653i
\(210\) 0 0
\(211\) −3.96081 2.28678i −0.272674 0.157428i 0.357428 0.933941i \(-0.383654\pi\)
−0.630102 + 0.776512i \(0.716987\pi\)
\(212\) 0.0225385 + 1.54395i 0.00154795 + 0.106039i
\(213\) 0 0
\(214\) −0.250327 + 0.254008i −0.0171120 + 0.0173636i
\(215\) −17.8378 + 5.53663i −1.21653 + 0.377595i
\(216\) 0 0
\(217\) 0.785367i 0.0533142i
\(218\) −0.462407 0.455706i −0.0313181 0.0308643i
\(219\) 0 0
\(220\) −3.27412 10.0290i −0.220741 0.676156i
\(221\) −3.38900 1.95664i −0.227969 0.131618i
\(222\) 0 0
\(223\) 11.8767 + 20.5711i 0.795323 + 1.37754i 0.922634 + 0.385677i \(0.126032\pi\)
−0.127310 + 0.991863i \(0.540634\pi\)
\(224\) 4.18943 18.2786i 0.279918 1.22129i
\(225\) 0 0
\(226\) −23.7642 + 6.55386i −1.58077 + 0.435956i
\(227\) 24.1252 13.9287i 1.60124 0.924478i 0.610005 0.792398i \(-0.291168\pi\)
0.991239 0.132081i \(-0.0421658\pi\)
\(228\) 0 0
\(229\) 8.35991 14.4798i 0.552439 0.956852i −0.445659 0.895203i \(-0.647031\pi\)
0.998098 0.0616492i \(-0.0196360\pi\)
\(230\) 22.9778 1.06827i 1.51511 0.0704399i
\(231\) 0 0
\(232\) −0.804848 + 3.29027i −0.0528409 + 0.216017i
\(233\) 1.67938 0.110020 0.0550101 0.998486i \(-0.482481\pi\)
0.0550101 + 0.998486i \(0.482481\pi\)
\(234\) 0 0
\(235\) 5.01943 + 16.1715i 0.327432 + 1.05491i
\(236\) −3.71808 2.07487i −0.242027 0.135063i
\(237\) 0 0
\(238\) 1.04972 4.03518i 0.0680432 0.261562i
\(239\) −5.41085 + 9.37186i −0.349999 + 0.606215i −0.986249 0.165267i \(-0.947151\pi\)
0.636250 + 0.771483i \(0.280485\pi\)
\(240\) 0 0
\(241\) −5.45657 9.45105i −0.351488 0.608796i 0.635022 0.772494i \(-0.280991\pi\)
−0.986510 + 0.163698i \(0.947658\pi\)
\(242\) −7.40957 + 2.04346i −0.476305 + 0.131359i
\(243\) 0 0
\(244\) −6.57037 + 3.92238i −0.420625 + 0.251104i
\(245\) 6.54982 + 6.05593i 0.418453 + 0.386899i
\(246\) 0 0
\(247\) −6.67794 + 11.5665i −0.424907 + 0.735961i
\(248\) 0.643303 0.187561i 0.0408498 0.0119101i
\(249\) 0 0
\(250\) 15.6885 1.96779i 0.992225 0.124454i
\(251\) 5.05766 0.319237 0.159618 0.987179i \(-0.448974\pi\)
0.159618 + 0.987179i \(0.448974\pi\)
\(252\) 0 0
\(253\) 17.1598i 1.07883i
\(254\) −10.6434 10.4892i −0.667829 0.658151i
\(255\) 0 0
\(256\) 15.9727 0.933676i 0.998296 0.0583548i
\(257\) 6.69541 11.5968i 0.417649 0.723388i −0.578054 0.815999i \(-0.696188\pi\)
0.995702 + 0.0926101i \(0.0295210\pi\)
\(258\) 0 0
\(259\) −33.0081 + 19.0573i −2.05103 + 1.18416i
\(260\) 14.6418 + 13.1465i 0.908045 + 0.815314i
\(261\) 0 0
\(262\) −22.1648 + 6.11278i −1.36935 + 0.377649i
\(263\) 9.43213 5.44564i 0.581610 0.335793i −0.180163 0.983637i \(-0.557663\pi\)
0.761773 + 0.647844i \(0.224329\pi\)
\(264\) 0 0
\(265\) 0.381190 1.68376i 0.0234163 0.103432i
\(266\) −13.7719 3.58265i −0.844410 0.219666i
\(267\) 0 0
\(268\) −11.0809 6.18367i −0.676872 0.377728i
\(269\) 21.5020i 1.31100i −0.755195 0.655500i \(-0.772458\pi\)
0.755195 0.655500i \(-0.227542\pi\)
\(270\) 0 0
\(271\) 18.9445i 1.15080i −0.817873 0.575399i \(-0.804847\pi\)
0.817873 0.575399i \(-0.195153\pi\)
\(272\) 3.55595 0.103842i 0.215611 0.00629634i
\(273\) 0 0
\(274\) 4.69686 18.0550i 0.283748 1.09074i
\(275\) 0.922846 + 11.7590i 0.0556497 + 0.709096i
\(276\) 0 0
\(277\) −16.1616 + 9.33092i −0.971058 + 0.560641i −0.899559 0.436800i \(-0.856112\pi\)
−0.0714994 + 0.997441i \(0.522778\pi\)
\(278\) 2.43791 + 8.83982i 0.146216 + 0.530177i
\(279\) 0 0
\(280\) −9.35558 + 18.7629i −0.559103 + 1.12130i
\(281\) 5.84683 3.37567i 0.348792 0.201375i −0.315361 0.948972i \(-0.602126\pi\)
0.664153 + 0.747596i \(0.268792\pi\)
\(282\) 0 0
\(283\) 2.63488 4.56374i 0.156627 0.271286i −0.777023 0.629472i \(-0.783271\pi\)
0.933650 + 0.358186i \(0.116605\pi\)
\(284\) 0.342270 + 23.4464i 0.0203100 + 1.39129i
\(285\) 0 0
\(286\) −10.3039 + 10.4554i −0.609283 + 0.618242i
\(287\) 9.38639i 0.554061i
\(288\) 0 0
\(289\) −16.2090 −0.953472
\(290\) 1.73919 3.36412i 0.102129 0.197548i
\(291\) 0 0
\(292\) −12.2165 + 0.178336i −0.714916 + 0.0104364i
\(293\) −11.1453 + 19.3041i −0.651113 + 1.12776i 0.331741 + 0.943371i \(0.392364\pi\)
−0.982853 + 0.184390i \(0.940969\pi\)
\(294\) 0 0
\(295\) 3.49532 + 3.23176i 0.203506 + 0.188160i
\(296\) −23.4930 22.4861i −1.36550 1.30698i
\(297\) 0 0
\(298\) 3.14763 + 11.4133i 0.182337 + 0.661153i
\(299\) −16.0032 27.7184i −0.925490 1.60300i
\(300\) 0 0
\(301\) −13.8448 + 23.9798i −0.797999 + 1.38217i
\(302\) −22.4429 5.83834i −1.29144 0.335959i
\(303\) 0 0
\(304\) −0.354408 12.1363i −0.0203267 0.696066i
\(305\) 8.17078 2.53611i 0.467857 0.145217i
\(306\) 0 0
\(307\) −0.415414 −0.0237089 −0.0118545 0.999930i \(-0.503773\pi\)
−0.0118545 + 0.999930i \(0.503773\pi\)
\(308\) −13.6578 7.62170i −0.778224 0.434287i
\(309\) 0 0
\(310\) −0.748373 + 0.0347931i −0.0425047 + 0.00197611i
\(311\) 0.284562 0.492876i 0.0161360 0.0279484i −0.857845 0.513909i \(-0.828197\pi\)
0.873981 + 0.485961i \(0.161530\pi\)
\(312\) 0 0
\(313\) 24.3028 14.0312i 1.37367 0.793091i 0.382285 0.924044i \(-0.375137\pi\)
0.991388 + 0.130954i \(0.0418039\pi\)
\(314\) −4.02762 14.6041i −0.227292 0.824156i
\(315\) 0 0
\(316\) 10.5932 + 17.7447i 0.595917 + 0.998219i
\(317\) −6.63676 11.4952i −0.372758 0.645635i 0.617231 0.786782i \(-0.288254\pi\)
−0.989989 + 0.141147i \(0.954921\pi\)
\(318\) 0 0
\(319\) 2.44664 + 1.41257i 0.136986 + 0.0790887i
\(320\) −17.6032 3.18232i −0.984049 0.177897i
\(321\) 0 0
\(322\) 23.9370 24.2890i 1.33396 1.35357i
\(323\) 2.69956i 0.150208i
\(324\) 0 0
\(325\) −12.4572 18.1338i −0.690999 1.00588i
\(326\) −1.34555 1.32605i −0.0745231 0.0734431i
\(327\) 0 0
\(328\) −7.68850 + 2.24165i −0.424526 + 0.123774i
\(329\) 21.7398 + 12.5515i 1.19855 + 0.691985i
\(330\) 0 0
\(331\) 7.43989 4.29542i 0.408933 0.236098i −0.281398 0.959591i \(-0.590798\pi\)
0.690331 + 0.723493i \(0.257465\pi\)
\(332\) −2.66471 4.46364i −0.146245 0.244974i
\(333\) 0 0
\(334\) −2.69583 9.77502i −0.147509 0.534865i
\(335\) 10.4170 + 9.63150i 0.569141 + 0.526225i
\(336\) 0 0
\(337\) −0.914017 0.527708i −0.0497897 0.0287461i 0.474899 0.880041i \(-0.342485\pi\)
−0.524688 + 0.851294i \(0.675818\pi\)
\(338\) 2.26469 8.70561i 0.123183 0.473523i
\(339\) 0 0
\(340\) −3.89161 0.821507i −0.211052 0.0445525i
\(341\) 0.558884i 0.0302652i
\(342\) 0 0
\(343\) −9.98036 −0.538889
\(344\) −22.9485 5.61355i −1.23730 0.302662i
\(345\) 0 0
\(346\) −0.916922 + 3.52470i −0.0492940 + 0.189489i
\(347\) −5.97844 3.45165i −0.320939 0.185294i 0.330872 0.943676i \(-0.392657\pi\)
−0.651811 + 0.758381i \(0.725991\pi\)
\(348\) 0 0
\(349\) −15.5145 26.8719i −0.830473 1.43842i −0.897663 0.440682i \(-0.854737\pi\)
0.0671899 0.997740i \(-0.478597\pi\)
\(350\) 15.0970 17.9318i 0.806968 0.958493i
\(351\) 0 0
\(352\) 2.98128 13.0074i 0.158903 0.693299i
\(353\) 7.67847 + 13.2995i 0.408684 + 0.707861i 0.994743 0.102408i \(-0.0326546\pi\)
−0.586059 + 0.810269i \(0.699321\pi\)
\(354\) 0 0
\(355\) 5.78876 25.5695i 0.307235 1.35709i
\(356\) −9.36161 + 0.136661i −0.496164 + 0.00724301i
\(357\) 0 0
\(358\) 10.2588 + 10.1101i 0.542194 + 0.534337i
\(359\) 8.51196 0.449244 0.224622 0.974446i \(-0.427885\pi\)
0.224622 + 0.974446i \(0.427885\pi\)
\(360\) 0 0
\(361\) 9.78650 0.515079
\(362\) −4.20573 4.14478i −0.221048 0.217845i
\(363\) 0 0
\(364\) 29.1696 0.425818i 1.52890 0.0223189i
\(365\) 13.3227 + 3.01617i 0.697344 + 0.157874i
\(366\) 0 0
\(367\) −0.646542 1.11984i −0.0337492 0.0584553i 0.848657 0.528943i \(-0.177411\pi\)
−0.882407 + 0.470488i \(0.844078\pi\)
\(368\) 25.6120 + 13.8064i 1.33512 + 0.719708i
\(369\) 0 0
\(370\) 19.6219 + 30.6090i 1.02009 + 1.59129i
\(371\) −1.27969 2.21648i −0.0664381 0.115074i
\(372\) 0 0
\(373\) −14.1837 8.18898i −0.734406 0.424010i 0.0856259 0.996327i \(-0.472711\pi\)
−0.820032 + 0.572318i \(0.806044\pi\)
\(374\) 0.747002 2.87152i 0.0386265 0.148483i
\(375\) 0 0
\(376\) −5.08917 + 20.8048i −0.262454 + 1.07293i
\(377\) −5.26946 −0.271391
\(378\) 0 0
\(379\) 11.7940i 0.605818i −0.953020 0.302909i \(-0.902042\pi\)
0.953020 0.302909i \(-0.0979578\pi\)
\(380\) −2.80377 + 13.2819i −0.143830 + 0.681347i
\(381\) 0 0
\(382\) 8.91198 34.2582i 0.455977 1.75280i
\(383\) 9.75933 + 5.63455i 0.498678 + 0.287912i 0.728168 0.685399i \(-0.240372\pi\)
−0.229489 + 0.973311i \(0.573706\pi\)
\(384\) 0 0
\(385\) 12.8395 + 11.8713i 0.654361 + 0.605019i
\(386\) 7.11268 + 25.7905i 0.362026 + 1.31270i
\(387\) 0 0
\(388\) −6.32944 10.6024i −0.321328 0.538257i
\(389\) −17.4583 + 10.0796i −0.885172 + 0.511054i −0.872360 0.488864i \(-0.837411\pi\)
−0.0128115 + 0.999918i \(0.504078\pi\)
\(390\) 0 0
\(391\) 5.60259 + 3.23466i 0.283335 + 0.163584i
\(392\) 3.15833 + 10.8326i 0.159520 + 0.547127i
\(393\) 0 0
\(394\) 5.29239 + 5.21569i 0.266627 + 0.262763i
\(395\) −6.84932 22.0670i −0.344627 1.11031i
\(396\) 0 0
\(397\) 5.11859i 0.256895i 0.991716 + 0.128447i \(0.0409993\pi\)
−0.991716 + 0.128447i \(0.959001\pi\)
\(398\) 18.7106 18.9858i 0.937879 0.951670i
\(399\) 0 0
\(400\) 18.2936 + 8.08366i 0.914678 + 0.404183i
\(401\) −9.58291 5.53269i −0.478548 0.276290i 0.241263 0.970460i \(-0.422438\pi\)
−0.719811 + 0.694170i \(0.755772\pi\)
\(402\) 0 0
\(403\) 0.521215 + 0.902771i 0.0259636 + 0.0449702i
\(404\) 7.95892 + 13.3320i 0.395971 + 0.663291i
\(405\) 0 0
\(406\) −1.49267 5.41238i −0.0740798 0.268612i
\(407\) −23.4893 + 13.5615i −1.16432 + 0.672221i
\(408\) 0 0
\(409\) −8.08315 + 14.0004i −0.399686 + 0.692276i −0.993687 0.112188i \(-0.964214\pi\)
0.594001 + 0.804464i \(0.297548\pi\)
\(410\) 8.94425 0.415833i 0.441725 0.0205365i
\(411\) 0 0
\(412\) 22.9846 + 12.8265i 1.13237 + 0.631917i
\(413\) 7.05742 0.347273
\(414\) 0 0
\(415\) 1.72293 + 5.55090i 0.0845753 + 0.272483i
\(416\) 7.31504 + 23.7914i 0.358650 + 1.16647i
\(417\) 0 0
\(418\) −9.80037 2.54949i −0.479352 0.124699i
\(419\) −3.65564 + 6.33176i −0.178590 + 0.309327i −0.941398 0.337298i \(-0.890487\pi\)
0.762808 + 0.646625i \(0.223820\pi\)
\(420\) 0 0
\(421\) 14.9731 + 25.9341i 0.729742 + 1.26395i 0.956992 + 0.290114i \(0.0936932\pi\)
−0.227250 + 0.973836i \(0.572973\pi\)
\(422\) 1.71959 + 6.23521i 0.0837083 + 0.303525i
\(423\) 0 0
\(424\) 1.50993 1.57755i 0.0733288 0.0766124i
\(425\) 4.01323 + 1.91530i 0.194670 + 0.0929056i
\(426\) 0 0
\(427\) 6.34172 10.9842i 0.306897 0.531562i
\(428\) 0.504295 0.00736171i 0.0243760 0.000355842i
\(429\) 0 0
\(430\) 23.4636 + 12.1303i 1.13152 + 0.584973i
\(431\) 30.7505 1.48120 0.740599 0.671947i \(-0.234542\pi\)
0.740599 + 0.671947i \(0.234542\pi\)
\(432\) 0 0
\(433\) 29.3734i 1.41160i 0.708413 + 0.705798i \(0.249411\pi\)
−0.708413 + 0.705798i \(0.750589\pi\)
\(434\) −0.779614 + 0.791078i −0.0374227 + 0.0379730i
\(435\) 0 0
\(436\) 0.0134016 + 0.918039i 0.000641818 + 0.0439661i
\(437\) 11.0398 19.1214i 0.528103 0.914701i
\(438\) 0 0
\(439\) 6.77418 3.91108i 0.323314 0.186665i −0.329555 0.944136i \(-0.606899\pi\)
0.652869 + 0.757471i \(0.273565\pi\)
\(440\) −6.65762 + 13.3521i −0.317390 + 0.636535i
\(441\) 0 0
\(442\) 1.47134 + 5.33505i 0.0699844 + 0.253763i
\(443\) −23.1263 + 13.3520i −1.09876 + 0.634371i −0.935896 0.352277i \(-0.885408\pi\)
−0.162867 + 0.986648i \(0.552074\pi\)
\(444\) 0 0
\(445\) 10.2093 + 2.31132i 0.483969 + 0.109567i
\(446\) 8.45731 32.5104i 0.400465 1.53941i
\(447\) 0 0
\(448\) −22.3646 + 14.2528i −1.05663 + 0.673381i
\(449\) 23.8441i 1.12527i −0.826704 0.562637i \(-0.809787\pi\)
0.826704 0.562637i \(-0.190213\pi\)
\(450\) 0 0
\(451\) 6.67955i 0.314528i
\(452\) 30.4428 + 16.9886i 1.43191 + 0.799076i
\(453\) 0 0
\(454\) −38.1272 9.91849i −1.78940 0.465498i
\(455\) −31.8110 7.20178i −1.49132 0.337625i
\(456\) 0 0
\(457\) 13.6451 7.87798i 0.638289 0.368516i −0.145666 0.989334i \(-0.546532\pi\)
0.783955 + 0.620817i \(0.213199\pi\)
\(458\) −22.7944 + 6.28641i −1.06511 + 0.293745i
\(459\) 0 0
\(460\) −24.2053 21.7334i −1.12858 1.01333i
\(461\) −9.24515 + 5.33769i −0.430590 + 0.248601i −0.699598 0.714537i \(-0.746637\pi\)
0.269008 + 0.963138i \(0.413304\pi\)
\(462\) 0 0
\(463\) −3.17644 + 5.50175i −0.147622 + 0.255688i −0.930348 0.366678i \(-0.880495\pi\)
0.782726 + 0.622366i \(0.213828\pi\)
\(464\) 4.07687 2.51524i 0.189264 0.116767i
\(465\) 0 0
\(466\) −1.69160 1.66708i −0.0783617 0.0772261i
\(467\) 7.76191i 0.359179i −0.983742 0.179589i \(-0.942523\pi\)
0.983742 0.179589i \(-0.0574769\pi\)
\(468\) 0 0
\(469\) 21.0330 0.971213
\(470\) 10.9971 21.2718i 0.507259 0.981194i
\(471\) 0 0
\(472\) 1.68545 + 5.78081i 0.0775790 + 0.266083i
\(473\) −9.85221 + 17.0645i −0.453005 + 0.784628i
\(474\) 0 0
\(475\) 6.53683 13.6970i 0.299930 0.628461i
\(476\) −5.06298 + 3.02249i −0.232061 + 0.138536i
\(477\) 0 0
\(478\) 14.7534 4.06880i 0.674805 0.186103i
\(479\) 3.56565 + 6.17588i 0.162919 + 0.282183i 0.935914 0.352228i \(-0.114576\pi\)
−0.772996 + 0.634411i \(0.781243\pi\)
\(480\) 0 0
\(481\) 25.2950 43.8122i 1.15335 1.99767i
\(482\) −3.88558 + 14.9364i −0.176983 + 0.680333i
\(483\) 0 0
\(484\) 9.49194 + 5.29697i 0.431452 + 0.240771i
\(485\) 4.09245 + 13.1850i 0.185829 + 0.598699i
\(486\) 0 0
\(487\) −15.1089 −0.684649 −0.342325 0.939582i \(-0.611214\pi\)
−0.342325 + 0.939582i \(0.611214\pi\)
\(488\) 10.5118 + 2.57134i 0.475846 + 0.116399i
\(489\) 0 0
\(490\) −0.585879 12.6018i −0.0264673 0.569292i
\(491\) 14.7215 25.4984i 0.664372 1.15073i −0.315083 0.949064i \(-0.602032\pi\)
0.979455 0.201662i \(-0.0646342\pi\)
\(492\) 0 0
\(493\) 0.922396 0.532546i 0.0415426 0.0239847i
\(494\) 18.2083 5.02162i 0.819230 0.225933i
\(495\) 0 0
\(496\) −0.834168 0.449666i −0.0374552 0.0201906i
\(497\) −19.4333 33.6595i −0.871705 1.50984i
\(498\) 0 0
\(499\) 18.0795 + 10.4382i 0.809351 + 0.467279i 0.846730 0.532022i \(-0.178568\pi\)
−0.0373795 + 0.999301i \(0.511901\pi\)
\(500\) −17.7559 13.5914i −0.794069 0.607828i
\(501\) 0 0
\(502\) −5.09444 5.02061i −0.227376 0.224081i
\(503\) 22.6713i 1.01086i 0.862867 + 0.505431i \(0.168667\pi\)
−0.862867 + 0.505431i \(0.831333\pi\)
\(504\) 0 0
\(505\) −5.14603 16.5794i −0.228995 0.737773i
\(506\) 17.0341 17.2846i 0.757257 0.768392i
\(507\) 0 0
\(508\) 0.308470 + 21.1310i 0.0136862 + 0.937535i
\(509\) 23.5593 + 13.6020i 1.04425 + 0.602896i 0.921033 0.389484i \(-0.127347\pi\)
0.123213 + 0.992380i \(0.460680\pi\)
\(510\) 0 0
\(511\) 17.5380 10.1255i 0.775834 0.447928i
\(512\) −17.0157 14.9153i −0.751996 0.659168i
\(513\) 0 0
\(514\) −18.2560 + 5.03476i −0.805236 + 0.222074i
\(515\) −21.6075 19.9782i −0.952141 0.880345i
\(516\) 0 0
\(517\) 15.4705 + 8.93188i 0.680390 + 0.392824i
\(518\) 52.1658 + 13.5705i 2.29204 + 0.596254i
\(519\) 0 0
\(520\) −1.69802 27.7767i −0.0744631 1.21809i
\(521\) 2.18176i 0.0955847i 0.998857 + 0.0477924i \(0.0152186\pi\)
−0.998857 + 0.0477924i \(0.984781\pi\)
\(522\) 0 0
\(523\) −28.8185 −1.26014 −0.630071 0.776537i \(-0.716974\pi\)
−0.630071 + 0.776537i \(0.716974\pi\)
\(524\) 28.3940 + 15.8452i 1.24040 + 0.692203i
\(525\) 0 0
\(526\) −14.9065 3.87779i −0.649953 0.169080i
\(527\) −0.182473 0.105351i −0.00794865 0.00458916i
\(528\) 0 0
\(529\) 14.9560 + 25.9046i 0.650261 + 1.12629i
\(530\) −2.05539 + 1.31760i −0.0892802 + 0.0572330i
\(531\) 0 0
\(532\) 10.3156 + 17.2797i 0.447240 + 0.749171i
\(533\) −6.22935 10.7896i −0.269823 0.467348i
\(534\) 0 0
\(535\) −0.549962 0.124507i −0.0237769 0.00538292i
\(536\) 5.02308 + 17.2283i 0.216964 + 0.744151i
\(537\) 0 0
\(538\) −21.3445 + 21.6584i −0.920227 + 0.933759i
\(539\) 9.41102 0.405361
\(540\) 0 0
\(541\) 3.32257 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(542\) −18.8058 + 19.0823i −0.807777 + 0.819655i
\(543\) 0 0
\(544\) −3.68489 3.42531i −0.157989 0.146859i
\(545\) 0.226658 1.00117i 0.00970897 0.0428855i
\(546\) 0 0
\(547\) −13.8697 24.0231i −0.593027 1.02715i −0.993822 0.110986i \(-0.964599\pi\)
0.400795 0.916168i \(-0.368734\pi\)
\(548\) −22.6538 + 13.5238i −0.967721 + 0.577710i
\(549\) 0 0
\(550\) 10.7433 12.7606i 0.458097 0.544114i
\(551\) −1.81756 3.14810i −0.0774305 0.134114i
\(552\) 0 0
\(553\) −29.6652 17.1272i −1.26149 0.728323i
\(554\) 25.5417 + 6.64447i 1.08516 + 0.282296i
\(555\) 0 0
\(556\) 6.31943 11.3241i 0.268003 0.480251i
\(557\) 30.0401 1.27284 0.636419 0.771344i \(-0.280415\pi\)
0.636419 + 0.771344i \(0.280415\pi\)
\(558\) 0 0
\(559\) 36.7527i 1.55447i
\(560\) 28.0491 9.61231i 1.18529 0.406194i
\(561\) 0 0
\(562\) −9.24028 2.40378i −0.389778 0.101398i
\(563\) 1.52959 + 0.883109i 0.0644645 + 0.0372186i 0.531886 0.846816i \(-0.321484\pi\)
−0.467421 + 0.884035i \(0.654817\pi\)
\(564\) 0 0
\(565\) −28.6189 26.4609i −1.20401 1.11322i
\(566\) −7.18435 + 1.98135i −0.301981 + 0.0832824i
\(567\) 0 0
\(568\) 22.9298 23.9566i 0.962115 1.00520i
\(569\) −31.9951 + 18.4724i −1.34131 + 0.774403i −0.986999 0.160726i \(-0.948616\pi\)
−0.354306 + 0.935129i \(0.615283\pi\)
\(570\) 0 0
\(571\) −26.5164 15.3092i −1.10968 0.640672i −0.170930 0.985283i \(-0.554677\pi\)
−0.938745 + 0.344612i \(0.888011\pi\)
\(572\) 20.7577 0.303021i 0.867922 0.0126699i
\(573\) 0 0
\(574\) 9.31764 9.45465i 0.388911 0.394629i
\(575\) 20.5938 + 29.9783i 0.858819 + 1.25018i
\(576\) 0 0
\(577\) 23.6405i 0.984168i 0.870548 + 0.492084i \(0.163765\pi\)
−0.870548 + 0.492084i \(0.836235\pi\)
\(578\) 16.3269 + 16.0903i 0.679109 + 0.669268i
\(579\) 0 0
\(580\) −5.09131 + 1.66213i −0.211405 + 0.0690163i
\(581\) 7.46221 + 4.30831i 0.309585 + 0.178739i
\(582\) 0 0
\(583\) −0.910652 1.57730i −0.0377154 0.0653249i
\(584\) 12.4824 + 11.9474i 0.516523 + 0.494385i
\(585\) 0 0
\(586\) 30.3890 8.38091i 1.25536 0.346212i
\(587\) 0.0513568 0.0296509i 0.00211972 0.00122382i −0.498940 0.866637i \(-0.666277\pi\)
0.501059 + 0.865413i \(0.332944\pi\)
\(588\) 0 0
\(589\) −0.359558 + 0.622773i −0.0148153 + 0.0256609i
\(590\) −0.312655 6.72498i −0.0128718 0.276863i
\(591\) 0 0
\(592\) 1.34244 + 45.9705i 0.0551741 + 1.88938i
\(593\) −44.6245 −1.83251 −0.916255 0.400596i \(-0.868803\pi\)
−0.916255 + 0.400596i \(0.868803\pi\)
\(594\) 0 0
\(595\) 6.29622 1.95427i 0.258120 0.0801171i
\(596\) 8.15914 14.6208i 0.334211 0.598893i
\(597\) 0 0
\(598\) −11.3958 + 43.8059i −0.466007 + 1.79136i
\(599\) −11.5001 + 19.9187i −0.469881 + 0.813857i −0.999407 0.0344362i \(-0.989036\pi\)
0.529526 + 0.848294i \(0.322370\pi\)
\(600\) 0 0
\(601\) 0.981232 + 1.69954i 0.0400253 + 0.0693259i 0.885344 0.464936i \(-0.153923\pi\)
−0.845319 + 0.534262i \(0.820589\pi\)
\(602\) 37.7496 10.4109i 1.53856 0.424315i
\(603\) 0 0
\(604\) 16.8105 + 28.1593i 0.684011 + 1.14579i
\(605\) −8.92325 8.25040i −0.362782 0.335426i
\(606\) 0 0
\(607\) 10.1049 17.5023i 0.410146 0.710394i −0.584759 0.811207i \(-0.698811\pi\)
0.994905 + 0.100813i \(0.0321443\pi\)
\(608\) −11.6904 + 12.5764i −0.474110 + 0.510040i
\(609\) 0 0
\(610\) −10.7477 5.55638i −0.435163 0.224971i
\(611\) −33.3195 −1.34796
\(612\) 0 0
\(613\) 24.8672i 1.00438i −0.864758 0.502189i \(-0.832528\pi\)
0.864758 0.502189i \(-0.167472\pi\)
\(614\) 0.418434 + 0.412371i 0.0168866 + 0.0166419i
\(615\) 0 0
\(616\) 6.19121 + 21.2349i 0.249451 + 0.855577i
\(617\) −16.3707 + 28.3549i −0.659059 + 1.14152i 0.321800 + 0.946808i \(0.395712\pi\)
−0.980860 + 0.194717i \(0.937621\pi\)
\(618\) 0 0
\(619\) 11.9754 6.91400i 0.481332 0.277897i −0.239640 0.970862i \(-0.577029\pi\)
0.720971 + 0.692965i \(0.243696\pi\)
\(620\) 0.788353 + 0.707845i 0.0316610 + 0.0284277i
\(621\) 0 0
\(622\) −0.775897 + 0.213982i −0.0311106 + 0.00857991i
\(623\) 13.4395 7.75930i 0.538442 0.310870i
\(624\) 0 0
\(625\) 15.7244 + 19.4356i 0.628978 + 0.777423i
\(626\) −38.4079 9.99151i −1.53509 0.399341i
\(627\) 0 0
\(628\) −10.4402 + 18.7084i −0.416609 + 0.746546i
\(629\) 10.2255i 0.407719i
\(630\) 0 0
\(631\) 0.298908i 0.0118994i 0.999982 + 0.00594968i \(0.00189385\pi\)
−0.999982 + 0.00594968i \(0.998106\pi\)
\(632\) 6.94447 28.3894i 0.276236 1.12927i
\(633\) 0 0
\(634\) −4.72598 + 18.1669i −0.187693 + 0.721501i
\(635\) 5.21710 23.0445i 0.207034 0.914492i
\(636\) 0 0
\(637\) −15.2017 + 8.77672i −0.602314 + 0.347746i
\(638\) −1.06221 3.85156i −0.0420534 0.152485i
\(639\) 0 0
\(640\) 14.5722 + 20.6797i 0.576017 + 0.817438i
\(641\) −12.2453 + 7.06982i −0.483660 + 0.279241i −0.721940 0.691955i \(-0.756750\pi\)
0.238281 + 0.971196i \(0.423416\pi\)
\(642\) 0 0
\(643\) −18.2808 + 31.6633i −0.720925 + 1.24868i 0.239704 + 0.970846i \(0.422950\pi\)
−0.960629 + 0.277833i \(0.910384\pi\)
\(644\) −48.2222 + 0.703948i −1.90022 + 0.0277394i
\(645\) 0 0
\(646\) −2.67979 + 2.71919i −0.105435 + 0.106985i
\(647\) 25.4645i 1.00111i −0.865704 0.500556i \(-0.833129\pi\)
0.865704 0.500556i \(-0.166871\pi\)
\(648\) 0 0
\(649\) 5.02220 0.197139
\(650\) −5.45327 + 30.6316i −0.213895 + 1.20147i
\(651\) 0 0
\(652\) 0.0389969 + 2.67139i 0.00152724 + 0.104620i
\(653\) 11.2123 19.4203i 0.438772 0.759976i −0.558823 0.829287i \(-0.688747\pi\)
0.997595 + 0.0693112i \(0.0220801\pi\)
\(654\) 0 0
\(655\) −26.6929 24.6801i −1.04298 0.964330i
\(656\) 9.96964 + 5.37423i 0.389249 + 0.209828i
\(657\) 0 0
\(658\) −9.43834 34.2233i −0.367945 1.33416i
\(659\) −3.28193 5.68446i −0.127846 0.221435i 0.794996 0.606615i \(-0.207473\pi\)
−0.922842 + 0.385179i \(0.874140\pi\)
\(660\) 0 0
\(661\) −9.44856 + 16.3654i −0.367506 + 0.636540i −0.989175 0.146741i \(-0.953122\pi\)
0.621669 + 0.783280i \(0.286455\pi\)
\(662\) −11.7579 3.05873i −0.456986 0.118881i
\(663\) 0 0
\(664\) −1.74687 + 7.14129i −0.0677915 + 0.277136i
\(665\) −6.66983 21.4887i −0.258645 0.833297i
\(666\) 0 0
\(667\) 8.71129 0.337303
\(668\) −6.98799 + 12.5222i −0.270373 + 0.484498i
\(669\) 0 0
\(670\) −0.931795 20.0422i −0.0359984 0.774299i
\(671\) 4.51290 7.81657i 0.174219 0.301755i
\(672\) 0 0
\(673\) 27.1258 15.6611i 1.04562 0.603690i 0.124201 0.992257i \(-0.460363\pi\)
0.921420 + 0.388567i \(0.127030\pi\)
\(674\) 0.396821 + 1.43887i 0.0152850 + 0.0554231i
\(675\) 0 0
\(676\) −10.9230 + 6.52081i −0.420115 + 0.250800i
\(677\) 20.4922 + 35.4936i 0.787580 + 1.36413i 0.927446 + 0.373958i \(0.122000\pi\)
−0.139866 + 0.990171i \(0.544667\pi\)
\(678\) 0 0
\(679\) 17.7249 + 10.2335i 0.680219 + 0.392724i
\(680\) 3.10442 + 4.69058i 0.119049 + 0.179876i
\(681\) 0 0
\(682\) −0.554790 + 0.562948i −0.0212440 + 0.0215564i
\(683\) 42.0703i 1.60978i 0.593427 + 0.804888i \(0.297775\pi\)
−0.593427 + 0.804888i \(0.702225\pi\)
\(684\) 0 0
\(685\) 28.1718 8.74417i 1.07639 0.334097i
\(686\) 10.0529 + 9.90726i 0.383823 + 0.378261i
\(687\) 0 0
\(688\) 17.5430 + 28.4348i 0.668820 + 1.08407i
\(689\) 2.94198 + 1.69855i 0.112080 + 0.0647096i
\(690\) 0 0
\(691\) −30.3277 + 17.5097i −1.15372 + 0.666101i −0.949791 0.312885i \(-0.898705\pi\)
−0.203930 + 0.978986i \(0.565371\pi\)
\(692\) 4.42247 2.64012i 0.168117 0.100362i
\(693\) 0 0
\(694\) 2.59554 + 9.41140i 0.0985255 + 0.357252i
\(695\) −9.84295 + 10.6457i −0.373364 + 0.403814i
\(696\) 0 0
\(697\) 2.18084 + 1.25911i 0.0826054 + 0.0476922i
\(698\) −11.0478 + 42.4682i −0.418164 + 1.60745i
\(699\) 0 0
\(700\) −33.0072 + 3.07576i −1.24755 + 0.116253i
\(701\) 41.5315i 1.56862i −0.620366 0.784312i \(-0.713016\pi\)
0.620366 0.784312i \(-0.286984\pi\)
\(702\) 0 0
\(703\) 34.8993 1.31625
\(704\) −15.9151 + 10.1426i −0.599824 + 0.382263i
\(705\) 0 0
\(706\) 5.46777 21.0184i 0.205782 0.791039i
\(707\) −22.2881 12.8680i −0.838229 0.483952i
\(708\) 0 0
\(709\) 5.69139 + 9.85778i 0.213745 + 0.370217i 0.952883 0.303337i \(-0.0981006\pi\)
−0.739139 + 0.673553i \(0.764767\pi\)
\(710\) −31.2131 + 20.0091i −1.17141 + 0.750929i
\(711\) 0 0
\(712\) 9.56534 + 9.15538i 0.358476 + 0.343112i
\(713\) −0.861656 1.49243i −0.0322693 0.0558920i
\(714\) 0 0
\(715\) −22.6374 5.12494i −0.846590 0.191662i
\(716\) −0.297322 20.3673i −0.0111115 0.761162i
\(717\) 0 0
\(718\) −8.57386 8.44961i −0.319974 0.315337i
\(719\) 24.0599 0.897282 0.448641 0.893712i \(-0.351908\pi\)
0.448641 + 0.893712i \(0.351908\pi\)
\(720\) 0 0
\(721\) −43.6278 −1.62478
\(722\) −9.85767 9.71482i −0.366864 0.361548i
\(723\) 0 0
\(724\) 0.121891 + 8.34985i 0.00453005 + 0.310320i
\(725\) 5.96956 0.468490i 0.221704 0.0173993i
\(726\) 0 0
\(727\) 2.85756 + 4.94944i 0.105981 + 0.183565i 0.914139 0.405402i \(-0.132868\pi\)
−0.808158 + 0.588966i \(0.799535\pi\)
\(728\) −29.8044 28.5270i −1.10462 1.05728i
\(729\) 0 0
\(730\) −10.4255 16.2633i −0.385867 0.601930i
\(731\) 3.71433 + 6.43341i 0.137380 + 0.237948i
\(732\) 0 0
\(733\) −22.3900 12.9269i −0.826994 0.477465i 0.0258286 0.999666i \(-0.491778\pi\)
−0.852822 + 0.522201i \(0.825111\pi\)
\(734\) −0.460397 + 1.76979i −0.0169936 + 0.0653242i
\(735\) 0 0
\(736\) −12.0930 39.3312i −0.445754 1.44977i
\(737\) 14.9675 0.551335
\(738\) 0 0
\(739\) 18.0774i 0.664989i 0.943105 + 0.332495i \(0.107890\pi\)
−0.943105 + 0.332495i \(0.892110\pi\)
\(740\) 10.6202 50.3098i 0.390408 1.84942i
\(741\) 0 0
\(742\) −0.911255 + 3.50292i −0.0334532 + 0.128596i
\(743\) −15.5973 9.00512i −0.572210 0.330366i 0.185821 0.982584i \(-0.440505\pi\)
−0.758032 + 0.652218i \(0.773839\pi\)
\(744\) 0 0
\(745\) −12.7084 + 13.7449i −0.465601 + 0.503573i
\(746\) 6.15788 + 22.3284i 0.225456 + 0.817500i
\(747\) 0 0
\(748\) −3.60292 + 2.15087i −0.131736 + 0.0786435i
\(749\) −0.723965 + 0.417982i −0.0264531 + 0.0152727i
\(750\) 0 0
\(751\) 35.2487 + 20.3509i 1.28624 + 0.742613i 0.977982 0.208689i \(-0.0669195\pi\)
0.308262 + 0.951302i \(0.400253\pi\)
\(752\) 25.7786 15.9042i 0.940049 0.579967i
\(753\) 0 0
\(754\) 5.30778 + 5.23086i 0.193298 + 0.190497i
\(755\) −10.8693 35.0184i −0.395573 1.27445i
\(756\) 0 0
\(757\) 35.4823i 1.28963i −0.764340 0.644813i \(-0.776935\pi\)
0.764340 0.644813i \(-0.223065\pi\)
\(758\) −11.7076 + 11.8798i −0.425240 + 0.431493i
\(759\) 0 0
\(760\) 16.0088 10.5952i 0.580699 0.384330i
\(761\) 34.0009 + 19.6304i 1.23253 + 0.711602i 0.967557 0.252654i \(-0.0813033\pi\)
0.264974 + 0.964256i \(0.414637\pi\)
\(762\) 0 0
\(763\) −0.760910 1.31794i −0.0275468 0.0477125i
\(764\) −42.9840 + 25.6606i −1.55511 + 0.928367i
\(765\) 0 0
\(766\) −4.23702 15.3634i −0.153090 0.555101i
\(767\) −8.11242 + 4.68371i −0.292923 + 0.169119i
\(768\) 0 0
\(769\) −3.27941 + 5.68011i −0.118259 + 0.204830i −0.919078 0.394076i \(-0.871065\pi\)
0.800819 + 0.598906i \(0.204398\pi\)
\(770\) −1.14849 24.7031i −0.0413886 0.890238i
\(771\) 0 0
\(772\) 18.4371 33.0386i 0.663567 1.18908i
\(773\) 34.2118 1.23051 0.615256 0.788327i \(-0.289053\pi\)
0.615256 + 0.788327i \(0.289053\pi\)
\(774\) 0 0
\(775\) −0.670727 0.976374i −0.0240932 0.0350724i
\(776\) −4.14930 + 16.9626i −0.148951 + 0.608922i
\(777\) 0 0
\(778\) 27.5910 + 7.17757i 0.989185 + 0.257328i
\(779\) 4.29729 7.44313i 0.153967 0.266678i
\(780\) 0 0
\(781\) −13.8292 23.9528i −0.494847 0.857099i
\(782\) −2.43237 8.81973i −0.0869813 0.315393i
\(783\) 0 0
\(784\) 7.57191 14.0465i 0.270425 0.501661i
\(785\) 16.2613 17.5875i 0.580392 0.627726i
\(786\) 0 0
\(787\) 8.68943 15.0505i 0.309745 0.536494i −0.668562 0.743657i \(-0.733090\pi\)
0.978306 + 0.207163i \(0.0664230\pi\)
\(788\) −0.153385 10.5072i −0.00546411 0.374305i
\(789\) 0 0
\(790\) −15.0062 + 29.0266i −0.533898 + 1.03272i
\(791\) −57.7846 −2.05458
\(792\) 0 0
\(793\) 16.8349i 0.597826i
\(794\) 5.08109 5.15581i 0.180321 0.182973i
\(795\) 0 0
\(796\) −37.6934 + 0.550249i −1.33601 + 0.0195030i
\(797\) 3.50633 6.07314i 0.124201 0.215122i −0.797220 0.603689i \(-0.793697\pi\)
0.921420 + 0.388568i \(0.127030\pi\)
\(798\) 0 0
\(799\) 5.83244 3.36736i 0.206337 0.119129i
\(800\) −10.4021 26.3020i −0.367771 0.929916i
\(801\) 0 0
\(802\) 4.16042 + 15.0856i 0.146910 + 0.532692i
\(803\) 12.4804 7.20555i 0.440423 0.254278i
\(804\) 0 0
\(805\) 52.5889 + 11.9058i 1.85352 + 0.419623i
\(806\) 0.371153 1.42673i 0.0130733 0.0502545i
\(807\) 0 0
\(808\) 5.21752 21.3295i 0.183552 0.750371i
\(809\) 38.9234i 1.36847i −0.729261 0.684236i \(-0.760136\pi\)
0.729261 0.684236i \(-0.239864\pi\)
\(810\) 0 0
\(811\) 35.7891i 1.25673i 0.777920 + 0.628363i \(0.216275\pi\)
−0.777920 + 0.628363i \(0.783725\pi\)
\(812\) −3.86922 + 6.93347i −0.135783 + 0.243317i
\(813\) 0 0
\(814\) 37.1223 + 9.65706i 1.30114 + 0.338480i
\(815\) 0.659548 2.91329i 0.0231030 0.102048i
\(816\) 0 0
\(817\) 21.9570 12.6769i 0.768177 0.443507i
\(818\) 22.0398 6.07829i 0.770604 0.212523i
\(819\) 0 0
\(820\) −9.42208 8.45988i −0.329033 0.295432i
\(821\) 27.8765 16.0945i 0.972895 0.561701i 0.0727775 0.997348i \(-0.476814\pi\)
0.900118 + 0.435647i \(0.143480\pi\)
\(822\) 0 0
\(823\) 8.65813 14.9963i 0.301804 0.522739i −0.674741 0.738055i \(-0.735745\pi\)
0.976545 + 0.215315i \(0.0690780\pi\)
\(824\) −10.4192 35.7360i −0.362969 1.24492i
\(825\) 0 0
\(826\) −7.10874 7.00572i −0.247345 0.243760i
\(827\) 15.5363i 0.540249i 0.962825 + 0.270124i \(0.0870648\pi\)
−0.962825 + 0.270124i \(0.912935\pi\)
\(828\) 0 0
\(829\) −27.4645 −0.953882 −0.476941 0.878935i \(-0.658254\pi\)
−0.476941 + 0.878935i \(0.658254\pi\)
\(830\) 3.77478 7.30157i 0.131025 0.253441i
\(831\) 0 0
\(832\) 16.2489 31.2259i 0.563330 1.08256i
\(833\) 1.77400 3.07266i 0.0614654 0.106461i
\(834\) 0 0
\(835\) 10.8843 11.7719i 0.376666 0.407385i
\(836\) 7.34082 + 12.2966i 0.253888 + 0.425287i
\(837\) 0 0
\(838\) 9.96761 2.74894i 0.344325 0.0949605i
\(839\) 6.91476 + 11.9767i 0.238724 + 0.413482i 0.960348 0.278803i \(-0.0899376\pi\)
−0.721624 + 0.692285i \(0.756604\pi\)
\(840\) 0 0
\(841\) −13.7829 + 23.8727i −0.475272 + 0.823196i
\(842\) 10.6622 40.9861i 0.367443 1.41247i
\(843\) 0 0
\(844\) 4.45744 7.98754i 0.153431 0.274943i
\(845\) 13.5836 4.21619i 0.467291 0.145041i
\(846\) 0 0
\(847\) −18.0170 −0.619070
\(848\) −3.08690 + 0.0901446i −0.106005 + 0.00309558i
\(849\) 0 0
\(850\) −2.14114 5.91306i −0.0734406 0.202816i
\(851\) −41.8169 + 72.4290i −1.43346 + 2.48283i
\(852\) 0 0
\(853\) −31.2866 + 18.0633i −1.07123 + 0.618476i −0.928518 0.371288i \(-0.878916\pi\)
−0.142714 + 0.989764i \(0.545583\pi\)
\(854\) −17.2916 + 4.76879i −0.591705 + 0.163185i
\(855\) 0 0
\(856\) −0.515270 0.493186i −0.0176116 0.0168568i
\(857\) 3.70493 + 6.41713i 0.126558 + 0.219205i 0.922341 0.386377i \(-0.126274\pi\)
−0.795783 + 0.605582i \(0.792940\pi\)
\(858\) 0 0
\(859\) −35.7586 20.6452i −1.22007 0.704407i −0.255136 0.966905i \(-0.582120\pi\)
−0.964932 + 0.262499i \(0.915453\pi\)
\(860\) −11.5928 35.5102i −0.395312 1.21089i
\(861\) 0 0
\(862\) −30.9741 30.5252i −1.05498 1.03969i
\(863\) 46.7922i 1.59282i −0.604754 0.796412i \(-0.706729\pi\)
0.604754 0.796412i \(-0.293271\pi\)
\(864\) 0 0
\(865\) −5.49970 + 1.70704i −0.186995 + 0.0580410i
\(866\) 29.1583 29.5870i 0.990838 1.00541i
\(867\) 0 0
\(868\) 1.57057 0.0229272i 0.0533085 0.000778199i
\(869\) −21.1104 12.1881i −0.716120 0.413452i
\(870\) 0 0
\(871\) −24.1772 + 13.9587i −0.819213 + 0.472973i
\(872\) 0.897815 0.938018i 0.0304039 0.0317653i
\(873\) 0 0
\(874\) −30.1014 + 8.30157i −1.01819 + 0.280805i
\(875\) 36.6777 + 5.33040i 1.23993 + 0.180200i
\(876\) 0 0
\(877\) 12.2576 + 7.07692i 0.413909 + 0.238970i 0.692468 0.721449i \(-0.256523\pi\)
−0.278559 + 0.960419i \(0.589857\pi\)
\(878\) −10.7059 2.78504i −0.361306 0.0939907i
\(879\) 0 0
\(880\) 19.9603 6.84032i 0.672862 0.230587i
\(881\) 13.5705i 0.457200i 0.973520 + 0.228600i \(0.0734148\pi\)
−0.973520 + 0.228600i \(0.926585\pi\)
\(882\) 0 0
\(883\) −46.0353 −1.54921 −0.774606 0.632444i \(-0.782052\pi\)
−0.774606 + 0.632444i \(0.782052\pi\)
\(884\) 3.81393 6.83441i 0.128276 0.229866i
\(885\) 0 0
\(886\) 36.5486 + 9.50783i 1.22788 + 0.319422i
\(887\) 17.1621 + 9.90855i 0.576247 + 0.332696i 0.759641 0.650343i \(-0.225375\pi\)
−0.183393 + 0.983040i \(0.558708\pi\)
\(888\) 0 0
\(889\) −17.5143 30.3356i −0.587409 1.01742i
\(890\) −7.98919 12.4627i −0.267798 0.417750i
\(891\) 0 0
\(892\) −40.7910 + 24.3514i −1.36578 + 0.815346i
\(893\) −11.4927 19.9059i −0.384587 0.666125i
\(894\) 0 0
\(895\) −5.02856 + 22.2117i −0.168086 + 0.742454i
\(896\) 36.6756 + 7.84436i 1.22525 + 0.262062i
\(897\) 0 0
\(898\) −23.6695 + 24.0175i −0.789860 + 0.801475i
\(899\) −0.283722 −0.00946265
\(900\) 0 0
\(901\) −0.686641 −0.0228753
\(902\) 6.63062 6.72812i 0.220776 0.224022i
\(903\) 0 0
\(904\) −13.8001 47.3320i −0.458983 1.57424i
\(905\) 2.06153 9.10597i 0.0685274 0.302693i
\(906\) 0 0
\(907\) 24.4653 + 42.3752i 0.812358 + 1.40705i 0.911209 + 0.411943i \(0.135150\pi\)
−0.0988513 + 0.995102i \(0.531517\pi\)
\(908\) 28.5587 + 47.8386i 0.947752 + 1.58758i
\(909\) 0 0
\(910\) 24.8933 + 38.8321i 0.825205 + 1.28727i
\(911\) −16.0978 27.8822i −0.533343 0.923778i −0.999242 0.0389396i \(-0.987602\pi\)
0.465898 0.884838i \(-0.345731\pi\)
\(912\) 0 0
\(913\) 5.31026 + 3.06588i 0.175744 + 0.101466i
\(914\) −21.5646 5.60985i −0.713292 0.185557i
\(915\) 0 0
\(916\) 29.2006 + 16.2953i 0.964814 + 0.538413i
\(917\) −53.8956 −1.77979
\(918\) 0 0
\(919\) 37.8553i 1.24873i 0.781133 + 0.624365i \(0.214642\pi\)
−0.781133 + 0.624365i \(0.785358\pi\)
\(920\) 2.80711 + 45.9195i 0.0925477 + 1.51392i
\(921\) 0 0
\(922\) 14.6110 + 3.80093i 0.481187 + 0.125177i
\(923\) 44.6768 + 25.7942i 1.47056 + 0.849026i
\(924\) 0 0
\(925\) −24.7605 + 51.8820i −0.814121 + 1.70587i
\(926\) 8.66098 2.38859i 0.284618 0.0784939i
\(927\) 0 0
\(928\) −6.60333 1.51347i −0.216765 0.0496822i
\(929\) −14.4535 + 8.34474i −0.474205 + 0.273782i −0.717998 0.696045i \(-0.754941\pi\)
0.243794 + 0.969827i \(0.421608\pi\)
\(930\) 0 0
\(931\) −10.4868 6.05458i −0.343693 0.198431i
\(932\) 0.0490261 + 3.35841i 0.00160590 + 0.110008i
\(933\) 0 0
\(934\) −7.70506 + 7.81836i −0.252117 + 0.255824i
\(935\) 4.48052 1.39070i 0.146529 0.0454806i
\(936\) 0 0
\(937\) 41.7514i 1.36396i −0.731372 0.681979i \(-0.761120\pi\)
0.731372 0.681979i \(-0.238880\pi\)
\(938\) −21.1859 20.8789i −0.691745 0.681721i
\(939\) 0 0
\(940\) −32.1931 + 10.5099i −1.05002 + 0.342795i
\(941\) −9.78882 5.65158i −0.319106 0.184236i 0.331888 0.943319i \(-0.392314\pi\)
−0.650994 + 0.759083i \(0.725648\pi\)
\(942\) 0 0
\(943\) 10.2982 + 17.8369i 0.335354 + 0.580851i
\(944\) 4.04076 7.49595i 0.131516 0.243972i
\(945\) 0 0
\(946\) 26.8634 7.40858i 0.873404 0.240874i
\(947\) 4.45025 2.56935i 0.144614 0.0834928i −0.425947 0.904748i \(-0.640059\pi\)
0.570561 + 0.821255i \(0.306726\pi\)
\(948\) 0 0
\(949\) −13.4398 + 23.2784i −0.436274 + 0.755649i
\(950\) −20.1810 + 7.30763i −0.654759 + 0.237091i
\(951\) 0 0
\(952\) 8.10015 + 1.98142i 0.262527 + 0.0642181i
\(953\) 22.9718 0.744131 0.372066 0.928206i \(-0.378650\pi\)
0.372066 + 0.928206i \(0.378650\pi\)
\(954\) 0 0
\(955\) 53.4541 16.5915i 1.72973 0.536887i
\(956\) −18.8997 10.5470i −0.611260 0.341113i
\(957\) 0 0
\(958\) 2.53907 9.76032i 0.0820336 0.315342i
\(959\) 21.8654 37.8720i 0.706072 1.22295i
\(960\) 0 0
\(961\) −15.4719 26.7982i −0.499095 0.864457i
\(962\) −68.9703 + 19.0211i −2.22369 + 0.613265i
\(963\) 0 0
\(964\) 18.7408 11.1879i 0.603601 0.360337i
\(965\) −28.7171 + 31.0592i −0.924437 + 0.999830i
\(966\) 0 0
\(967\) −21.0871 + 36.5239i −0.678115 + 1.17453i 0.297433 + 0.954743i \(0.403869\pi\)
−0.975548 + 0.219787i \(0.929464\pi\)
\(968\) −4.30280 14.7579i −0.138297 0.474337i
\(969\) 0 0
\(970\) 8.96618 17.3433i 0.287887 0.556860i
\(971\) 29.9678 0.961712 0.480856 0.876799i \(-0.340326\pi\)
0.480856 + 0.876799i \(0.340326\pi\)
\(972\) 0 0
\(973\) 21.4947i 0.689090i
\(974\) 15.2188 + 14.9982i 0.487641 + 0.480574i
\(975\) 0 0
\(976\) −8.03573 13.0248i −0.257217 0.416915i
\(977\) −18.5590 + 32.1452i −0.593756 + 1.02842i 0.399965 + 0.916530i \(0.369022\pi\)
−0.993721 + 0.111885i \(0.964311\pi\)
\(978\) 0 0
\(979\) 9.56383 5.52168i 0.305661 0.176474i
\(980\) −11.9194 + 13.2750i −0.380750 + 0.424056i
\(981\) 0 0
\(982\) −40.1402 + 11.0701i −1.28092 + 0.353262i
\(983\) 24.8903 14.3704i 0.793876 0.458345i −0.0474493 0.998874i \(-0.515109\pi\)
0.841325 + 0.540529i \(0.181776\pi\)
\(984\) 0 0
\(985\) −2.59417 + 11.4587i −0.0826572 + 0.365105i
\(986\) −1.45775 0.379221i −0.0464242 0.0120769i
\(987\) 0 0
\(988\) −23.3255 13.0168i −0.742084 0.414119i
\(989\) 60.7584i 1.93201i
\(990\) 0 0
\(991\) 5.20653i 0.165391i 0.996575 + 0.0826954i \(0.0263529\pi\)
−0.996575 + 0.0826954i \(0.973647\pi\)
\(992\) 0.393862 + 1.28099i 0.0125051 + 0.0406716i
\(993\) 0 0
\(994\) −13.8383 + 53.1953i −0.438925 + 1.68725i
\(995\) 41.1067 + 9.30626i 1.30317 + 0.295028i
\(996\) 0 0
\(997\) −18.1724 + 10.4918i −0.575525 + 0.332279i −0.759353 0.650679i \(-0.774484\pi\)
0.183828 + 0.982958i \(0.441151\pi\)
\(998\) −7.84924 28.4612i −0.248463 0.900924i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.6 48
3.2 odd 2 180.2.n.d.59.19 yes 48
4.3 odd 2 inner 540.2.n.d.179.10 48
5.4 even 2 inner 540.2.n.d.179.19 48
9.2 odd 6 inner 540.2.n.d.359.15 48
9.7 even 3 180.2.n.d.119.10 yes 48
12.11 even 2 180.2.n.d.59.15 yes 48
15.2 even 4 900.2.r.g.851.7 48
15.8 even 4 900.2.r.g.851.18 48
15.14 odd 2 180.2.n.d.59.6 48
20.19 odd 2 inner 540.2.n.d.179.15 48
36.7 odd 6 180.2.n.d.119.6 yes 48
36.11 even 6 inner 540.2.n.d.359.19 48
45.7 odd 12 900.2.r.g.551.3 48
45.29 odd 6 inner 540.2.n.d.359.10 48
45.34 even 6 180.2.n.d.119.15 yes 48
45.43 odd 12 900.2.r.g.551.22 48
60.23 odd 4 900.2.r.g.851.22 48
60.47 odd 4 900.2.r.g.851.3 48
60.59 even 2 180.2.n.d.59.10 yes 48
180.7 even 12 900.2.r.g.551.7 48
180.43 even 12 900.2.r.g.551.18 48
180.79 odd 6 180.2.n.d.119.19 yes 48
180.119 even 6 inner 540.2.n.d.359.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.6 48 15.14 odd 2
180.2.n.d.59.10 yes 48 60.59 even 2
180.2.n.d.59.15 yes 48 12.11 even 2
180.2.n.d.59.19 yes 48 3.2 odd 2
180.2.n.d.119.6 yes 48 36.7 odd 6
180.2.n.d.119.10 yes 48 9.7 even 3
180.2.n.d.119.15 yes 48 45.34 even 6
180.2.n.d.119.19 yes 48 180.79 odd 6
540.2.n.d.179.6 48 1.1 even 1 trivial
540.2.n.d.179.10 48 4.3 odd 2 inner
540.2.n.d.179.15 48 20.19 odd 2 inner
540.2.n.d.179.19 48 5.4 even 2 inner
540.2.n.d.359.6 48 180.119 even 6 inner
540.2.n.d.359.10 48 45.29 odd 6 inner
540.2.n.d.359.15 48 9.2 odd 6 inner
540.2.n.d.359.19 48 36.11 even 6 inner
900.2.r.g.551.3 48 45.7 odd 12
900.2.r.g.551.7 48 180.7 even 12
900.2.r.g.551.18 48 180.43 even 12
900.2.r.g.551.22 48 45.43 odd 12
900.2.r.g.851.3 48 60.47 odd 4
900.2.r.g.851.7 48 15.2 even 4
900.2.r.g.851.18 48 15.8 even 4
900.2.r.g.851.22 48 60.23 odd 4