Properties

Label 900.2.r.g.551.7
Level $900$
Weight $2$
Character 900.551
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.7
Character \(\chi\) \(=\) 900.551
Dual form 900.2.r.g.851.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.992675 - 1.00727i) q^{2} +(1.14213 - 1.30213i) q^{3} +(-0.0291929 + 1.99979i) q^{4} +(-2.44536 + 0.142161i) q^{6} +(2.87089 + 1.65751i) q^{7} +(2.04331 - 1.95573i) q^{8} +(-0.391092 - 2.97440i) q^{9} +(1.17952 - 2.04298i) q^{11} +(2.57064 + 2.32202i) q^{12} +(2.20004 + 3.81058i) q^{13} +(-1.18030 - 4.53714i) q^{14} +(-3.99830 - 0.116759i) q^{16} -0.889368i q^{17} +(-2.60780 + 3.34655i) q^{18} +3.03537i q^{19} +(5.43722 - 1.84519i) q^{21} +(-3.22872 + 0.839925i) q^{22} +(3.63703 + 6.29952i) q^{23} +(-0.212904 - 4.89435i) q^{24} +(1.65437 - 5.99870i) q^{26} +(-4.31973 - 2.88789i) q^{27} +(-3.39848 + 5.69278i) q^{28} +(-1.03714 - 0.598791i) q^{29} +(0.205172 - 0.118456i) q^{31} +(3.85140 + 4.14327i) q^{32} +(-1.31308 - 3.86923i) q^{33} +(-0.895835 + 0.882853i) q^{34} +(5.95958 - 0.695270i) q^{36} +11.4975 q^{37} +(3.05745 - 3.01314i) q^{38} +(7.47460 + 1.48743i) q^{39} +(2.45213 - 1.41574i) q^{41} +(-7.25600 - 3.64508i) q^{42} +(-7.23369 - 4.17637i) q^{43} +(4.05110 + 2.41842i) q^{44} +(2.73494 - 9.91686i) q^{46} +(3.78624 - 6.55796i) q^{47} +(-4.71860 + 5.07295i) q^{48} +(1.99467 + 3.45488i) q^{49} +(-1.15807 - 1.01577i) q^{51} +(-7.68457 + 4.28837i) q^{52} -0.772055i q^{53} +(1.37920 + 7.21788i) q^{54} +(9.10776 - 2.22789i) q^{56} +(3.95246 + 3.46678i) q^{57} +(0.426394 + 1.63908i) q^{58} +(-1.06446 - 1.84370i) q^{59} +(1.91303 - 3.31346i) q^{61} +(-0.322986 - 0.0890754i) q^{62} +(3.80731 - 9.18741i) q^{63} +(0.350216 - 7.99233i) q^{64} +(-2.59391 + 5.16352i) q^{66} +(-5.49472 + 3.17238i) q^{67} +(1.77855 + 0.0259632i) q^{68} +(12.3568 + 2.45896i) q^{69} -11.7244 q^{71} +(-6.61625 - 5.31274i) q^{72} +6.10889 q^{73} +(-11.4133 - 11.5811i) q^{74} +(-6.07010 - 0.0886114i) q^{76} +(6.77253 - 3.91012i) q^{77} +(-5.92160 - 9.00548i) q^{78} +(-8.94873 - 5.16655i) q^{79} +(-8.69409 + 2.32653i) q^{81} +(-3.86020 - 1.06459i) q^{82} +(-1.29963 + 2.25103i) q^{83} +(3.53126 + 10.9271i) q^{84} +(2.97396 + 11.4321i) q^{86} +(-1.96425 + 0.666593i) q^{87} +(-1.58541 - 6.48127i) q^{88} -4.68130i q^{89} +14.5863i q^{91} +(-12.7039 + 7.08939i) q^{92} +(0.0800869 - 0.402452i) q^{93} +(-10.3642 + 2.69615i) q^{94} +(9.79387 - 0.282883i) q^{96} +(-3.08700 + 5.34684i) q^{97} +(1.49994 - 5.43875i) q^{98} +(-6.53795 - 2.70936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.992675 1.00727i −0.701927 0.712249i
\(3\) 1.14213 1.30213i 0.659407 0.751786i
\(4\) −0.0291929 + 1.99979i −0.0145965 + 0.999893i
\(5\) 0 0
\(6\) −2.44536 + 0.142161i −0.998314 + 0.0580370i
\(7\) 2.87089 + 1.65751i 1.08509 + 0.626480i 0.932266 0.361773i \(-0.117828\pi\)
0.152828 + 0.988253i \(0.451162\pi\)
\(8\) 2.04331 1.95573i 0.722418 0.691456i
\(9\) −0.391092 2.97440i −0.130364 0.991466i
\(10\) 0 0
\(11\) 1.17952 2.04298i 0.355638 0.615983i −0.631589 0.775303i \(-0.717597\pi\)
0.987227 + 0.159320i \(0.0509303\pi\)
\(12\) 2.57064 + 2.32202i 0.742081 + 0.670310i
\(13\) 2.20004 + 3.81058i 0.610181 + 1.05686i 0.991210 + 0.132301i \(0.0422366\pi\)
−0.381029 + 0.924563i \(0.624430\pi\)
\(14\) −1.18030 4.53714i −0.315448 1.21260i
\(15\) 0 0
\(16\) −3.99830 0.116759i −0.999574 0.0291898i
\(17\) 0.889368i 0.215703i −0.994167 0.107852i \(-0.965603\pi\)
0.994167 0.107852i \(-0.0343972\pi\)
\(18\) −2.60780 + 3.34655i −0.614664 + 0.788789i
\(19\) 3.03537i 0.696363i 0.937427 + 0.348181i \(0.113201\pi\)
−0.937427 + 0.348181i \(0.886799\pi\)
\(20\) 0 0
\(21\) 5.43722 1.84519i 1.18650 0.402654i
\(22\) −3.22872 + 0.839925i −0.688365 + 0.179073i
\(23\) 3.63703 + 6.29952i 0.758374 + 1.31354i 0.943680 + 0.330861i \(0.107339\pi\)
−0.185306 + 0.982681i \(0.559328\pi\)
\(24\) −0.212904 4.89435i −0.0434589 0.999055i
\(25\) 0 0
\(26\) 1.65437 5.99870i 0.324448 1.17644i
\(27\) −4.31973 2.88789i −0.831333 0.555774i
\(28\) −3.39848 + 5.69278i −0.642251 + 1.07583i
\(29\) −1.03714 0.598791i −0.192592 0.111193i 0.400604 0.916251i \(-0.368800\pi\)
−0.593195 + 0.805059i \(0.702134\pi\)
\(30\) 0 0
\(31\) 0.205172 0.118456i 0.0368499 0.0212753i −0.481462 0.876467i \(-0.659894\pi\)
0.518312 + 0.855192i \(0.326561\pi\)
\(32\) 3.85140 + 4.14327i 0.680838 + 0.732434i
\(33\) −1.31308 3.86923i −0.228577 0.673547i
\(34\) −0.895835 + 0.882853i −0.153634 + 0.151408i
\(35\) 0 0
\(36\) 5.95958 0.695270i 0.993263 0.115878i
\(37\) 11.4975 1.89018 0.945091 0.326807i \(-0.105973\pi\)
0.945091 + 0.326807i \(0.105973\pi\)
\(38\) 3.05745 3.01314i 0.495983 0.488796i
\(39\) 7.47460 + 1.48743i 1.19689 + 0.238179i
\(40\) 0 0
\(41\) 2.45213 1.41574i 0.382958 0.221101i −0.296146 0.955143i \(-0.595702\pi\)
0.679105 + 0.734042i \(0.262368\pi\)
\(42\) −7.25600 3.64508i −1.11962 0.562448i
\(43\) −7.23369 4.17637i −1.10313 0.636891i −0.166087 0.986111i \(-0.553113\pi\)
−0.937041 + 0.349220i \(0.886447\pi\)
\(44\) 4.05110 + 2.41842i 0.610726 + 0.364591i
\(45\) 0 0
\(46\) 2.73494 9.91686i 0.403245 1.46216i
\(47\) 3.78624 6.55796i 0.552280 0.956577i −0.445829 0.895118i \(-0.647091\pi\)
0.998110 0.0614594i \(-0.0195755\pi\)
\(48\) −4.71860 + 5.07295i −0.681071 + 0.732218i
\(49\) 1.99467 + 3.45488i 0.284954 + 0.493554i
\(50\) 0 0
\(51\) −1.15807 1.01577i −0.162163 0.142236i
\(52\) −7.68457 + 4.28837i −1.06566 + 0.594689i
\(53\) 0.772055i 0.106050i −0.998593 0.0530249i \(-0.983114\pi\)
0.998593 0.0530249i \(-0.0168863\pi\)
\(54\) 1.37920 + 7.21788i 0.187686 + 0.982229i
\(55\) 0 0
\(56\) 9.10776 2.22789i 1.21708 0.297715i
\(57\) 3.95246 + 3.46678i 0.523516 + 0.459187i
\(58\) 0.426394 + 1.63908i 0.0559883 + 0.215222i
\(59\) −1.06446 1.84370i −0.138581 0.240029i 0.788379 0.615190i \(-0.210921\pi\)
−0.926960 + 0.375161i \(0.877587\pi\)
\(60\) 0 0
\(61\) 1.91303 3.31346i 0.244938 0.424245i −0.717176 0.696892i \(-0.754566\pi\)
0.962114 + 0.272647i \(0.0878990\pi\)
\(62\) −0.322986 0.0890754i −0.0410193 0.0113126i
\(63\) 3.80731 9.18741i 0.479676 1.15751i
\(64\) 0.350216 7.99233i 0.0437769 0.999041i
\(65\) 0 0
\(66\) −2.59391 + 5.16352i −0.319289 + 0.635585i
\(67\) −5.49472 + 3.17238i −0.671287 + 0.387567i −0.796564 0.604554i \(-0.793351\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(68\) 1.77855 + 0.0259632i 0.215680 + 0.00314851i
\(69\) 12.3568 + 2.45896i 1.48758 + 0.296024i
\(70\) 0 0
\(71\) −11.7244 −1.39143 −0.695717 0.718316i \(-0.744913\pi\)
−0.695717 + 0.718316i \(0.744913\pi\)
\(72\) −6.61625 5.31274i −0.779733 0.626112i
\(73\) 6.10889 0.714992 0.357496 0.933915i \(-0.383631\pi\)
0.357496 + 0.933915i \(0.383631\pi\)
\(74\) −11.4133 11.5811i −1.32677 1.34628i
\(75\) 0 0
\(76\) −6.07010 0.0886114i −0.696288 0.0101644i
\(77\) 6.77253 3.91012i 0.771802 0.445600i
\(78\) −5.92160 9.00548i −0.670490 1.01967i
\(79\) −8.94873 5.16655i −1.00681 0.581283i −0.0965546 0.995328i \(-0.530782\pi\)
−0.910256 + 0.414045i \(0.864116\pi\)
\(80\) 0 0
\(81\) −8.69409 + 2.32653i −0.966010 + 0.258503i
\(82\) −3.86020 1.06459i −0.426288 0.117565i
\(83\) −1.29963 + 2.25103i −0.142653 + 0.247083i −0.928495 0.371345i \(-0.878897\pi\)
0.785842 + 0.618428i \(0.212230\pi\)
\(84\) 3.53126 + 10.9271i 0.385292 + 1.19225i
\(85\) 0 0
\(86\) 2.97396 + 11.4321i 0.320690 + 1.23275i
\(87\) −1.96425 + 0.666593i −0.210589 + 0.0714663i
\(88\) −1.58541 6.48127i −0.169006 0.690906i
\(89\) 4.68130i 0.496217i −0.968732 0.248108i \(-0.920191\pi\)
0.968732 0.248108i \(-0.0798089\pi\)
\(90\) 0 0
\(91\) 14.5863i 1.52906i
\(92\) −12.7039 + 7.08939i −1.32447 + 0.739120i
\(93\) 0.0800869 0.402452i 0.00830463 0.0417324i
\(94\) −10.3642 + 2.69615i −1.06898 + 0.278087i
\(95\) 0 0
\(96\) 9.79387 0.282883i 0.999583 0.0288716i
\(97\) −3.08700 + 5.34684i −0.313438 + 0.542890i −0.979104 0.203360i \(-0.934814\pi\)
0.665667 + 0.746249i \(0.268147\pi\)
\(98\) 1.49994 5.43875i 0.151517 0.549397i
\(99\) −6.53795 2.70936i −0.657089 0.272301i
\(100\) 0 0
\(101\) −6.72336 3.88174i −0.669000 0.386247i 0.126698 0.991941i \(-0.459562\pi\)
−0.795697 + 0.605694i \(0.792895\pi\)
\(102\) 0.126433 + 2.17482i 0.0125188 + 0.215340i
\(103\) −11.3975 + 6.58033i −1.12302 + 0.648379i −0.942171 0.335131i \(-0.891219\pi\)
−0.180853 + 0.983510i \(0.557886\pi\)
\(104\) 11.9478 + 3.48350i 1.17158 + 0.341585i
\(105\) 0 0
\(106\) −0.777669 + 0.766400i −0.0755339 + 0.0744393i
\(107\) −0.252175 −0.0243786 −0.0121893 0.999926i \(-0.503880\pi\)
−0.0121893 + 0.999926i \(0.503880\pi\)
\(108\) 5.90127 8.55424i 0.567850 0.823132i
\(109\) −0.459068 −0.0439708 −0.0219854 0.999758i \(-0.506999\pi\)
−0.0219854 + 0.999758i \(0.506999\pi\)
\(110\) 0 0
\(111\) 13.1316 14.9713i 1.24640 1.42101i
\(112\) −11.2851 6.96242i −1.06635 0.657886i
\(113\) 15.0958 8.71557i 1.42009 0.819892i 0.423788 0.905761i \(-0.360700\pi\)
0.996306 + 0.0858696i \(0.0273669\pi\)
\(114\) −0.431512 7.42259i −0.0404148 0.695189i
\(115\) 0 0
\(116\) 1.22773 2.05657i 0.113992 0.190948i
\(117\) 10.4738 8.03408i 0.968300 0.742751i
\(118\) −0.800444 + 2.90240i −0.0736868 + 0.267187i
\(119\) 1.47414 2.55328i 0.135134 0.234059i
\(120\) 0 0
\(121\) 2.71748 + 4.70681i 0.247043 + 0.427891i
\(122\) −5.23657 + 1.36225i −0.474097 + 0.123332i
\(123\) 0.957167 4.80995i 0.0863048 0.433698i
\(124\) 0.230897 + 0.413758i 0.0207352 + 0.0371565i
\(125\) 0 0
\(126\) −13.0336 + 5.28512i −1.16113 + 0.470836i
\(127\) 10.5666i 0.937635i −0.883295 0.468817i \(-0.844680\pi\)
0.883295 0.468817i \(-0.155320\pi\)
\(128\) −8.39810 + 7.58102i −0.742294 + 0.670074i
\(129\) −13.7000 + 4.64927i −1.20622 + 0.409345i
\(130\) 0 0
\(131\) −8.12900 14.0798i −0.710234 1.23016i −0.964769 0.263098i \(-0.915256\pi\)
0.254535 0.967064i \(-0.418078\pi\)
\(132\) 7.77598 2.51292i 0.676812 0.218721i
\(133\) −5.03116 + 8.71423i −0.436257 + 0.755619i
\(134\) 8.64991 + 2.38554i 0.747239 + 0.206079i
\(135\) 0 0
\(136\) −1.73937 1.81725i −0.149149 0.155828i
\(137\) 11.4244 + 6.59587i 0.976051 + 0.563523i 0.901076 0.433662i \(-0.142779\pi\)
0.0749753 + 0.997185i \(0.476112\pi\)
\(138\) −9.78940 14.8876i −0.833329 1.26731i
\(139\) 5.61535 3.24202i 0.476288 0.274985i −0.242580 0.970131i \(-0.577994\pi\)
0.718868 + 0.695146i \(0.244660\pi\)
\(140\) 0 0
\(141\) −4.21496 12.4202i −0.354964 1.04597i
\(142\) 11.6385 + 11.8097i 0.976685 + 0.991047i
\(143\) 10.3799 0.868014
\(144\) 1.21641 + 11.9382i 0.101368 + 0.994849i
\(145\) 0 0
\(146\) −6.06415 6.15332i −0.501872 0.509252i
\(147\) 6.77688 + 1.34858i 0.558947 + 0.111229i
\(148\) −0.335646 + 22.9926i −0.0275900 + 1.88998i
\(149\) −7.25009 + 4.18584i −0.593950 + 0.342917i −0.766658 0.642056i \(-0.778082\pi\)
0.172708 + 0.984973i \(0.444748\pi\)
\(150\) 0 0
\(151\) 14.2008 + 8.19886i 1.15565 + 0.667214i 0.950257 0.311466i \(-0.100820\pi\)
0.205391 + 0.978680i \(0.434153\pi\)
\(152\) 5.93638 + 6.20220i 0.481504 + 0.503065i
\(153\) −2.64533 + 0.347825i −0.213863 + 0.0281200i
\(154\) −10.6615 2.94030i −0.859127 0.236936i
\(155\) 0 0
\(156\) −3.19274 + 14.9042i −0.255624 + 1.19329i
\(157\) −5.35608 9.27700i −0.427462 0.740386i 0.569185 0.822209i \(-0.307259\pi\)
−0.996647 + 0.0818239i \(0.973925\pi\)
\(158\) 3.67906 + 14.1425i 0.292690 + 1.12512i
\(159\) −1.00532 0.881785i −0.0797268 0.0699301i
\(160\) 0 0
\(161\) 24.1137i 1.90042i
\(162\) 10.9739 + 6.44783i 0.862187 + 0.506589i
\(163\) 1.33584i 0.104631i 0.998631 + 0.0523153i \(0.0166601\pi\)
−0.998631 + 0.0523153i \(0.983340\pi\)
\(164\) 2.75959 + 4.94507i 0.215488 + 0.386145i
\(165\) 0 0
\(166\) 3.55752 0.925458i 0.276117 0.0718295i
\(167\) 3.58501 + 6.20942i 0.277417 + 0.480500i 0.970742 0.240125i \(-0.0771884\pi\)
−0.693325 + 0.720625i \(0.743855\pi\)
\(168\) 7.50121 14.4040i 0.578731 1.11130i
\(169\) −3.18034 + 5.50851i −0.244641 + 0.423731i
\(170\) 0 0
\(171\) 9.02841 1.18711i 0.690420 0.0907806i
\(172\) 8.56303 14.3439i 0.652925 1.09371i
\(173\) 2.23027 + 1.28765i 0.169564 + 0.0978979i 0.582380 0.812916i \(-0.302121\pi\)
−0.412816 + 0.910814i \(0.635455\pi\)
\(174\) 2.62130 + 1.31682i 0.198720 + 0.0998279i
\(175\) 0 0
\(176\) −4.95460 + 8.03074i −0.373467 + 0.605340i
\(177\) −3.61649 0.719672i −0.271832 0.0540939i
\(178\) −4.71534 + 4.64701i −0.353430 + 0.348308i
\(179\) −10.1847 −0.761243 −0.380622 0.924731i \(-0.624290\pi\)
−0.380622 + 0.924731i \(0.624290\pi\)
\(180\) 0 0
\(181\) 4.17537 0.310353 0.155176 0.987887i \(-0.450405\pi\)
0.155176 + 0.987887i \(0.450405\pi\)
\(182\) 14.6924 14.4795i 1.08907 1.07329i
\(183\) −2.12964 6.27541i −0.157428 0.463891i
\(184\) 19.7518 + 5.75880i 1.45612 + 0.424545i
\(185\) 0 0
\(186\) −0.484879 + 0.318835i −0.0355531 + 0.0233781i
\(187\) −1.81696 1.04902i −0.132870 0.0767123i
\(188\) 13.0040 + 7.76312i 0.948414 + 0.566184i
\(189\) −7.61478 15.4508i −0.553894 1.12388i
\(190\) 0 0
\(191\) −12.5152 + 21.6770i −0.905570 + 1.56849i −0.0854186 + 0.996345i \(0.527223\pi\)
−0.820151 + 0.572147i \(0.806111\pi\)
\(192\) −10.0071 9.58428i −0.722198 0.691686i
\(193\) −9.45871 16.3830i −0.680853 1.17927i −0.974721 0.223426i \(-0.928276\pi\)
0.293868 0.955846i \(-0.405057\pi\)
\(194\) 8.45011 2.19823i 0.606683 0.157824i
\(195\) 0 0
\(196\) −6.96725 + 3.88807i −0.497661 + 0.277719i
\(197\) 5.25418i 0.374345i −0.982327 0.187172i \(-0.940068\pi\)
0.982327 0.187172i \(-0.0599323\pi\)
\(198\) 3.76100 + 9.27501i 0.267282 + 0.659146i
\(199\) 18.8487i 1.33615i 0.744095 + 0.668074i \(0.232881\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(200\) 0 0
\(201\) −2.14481 + 10.7781i −0.151284 + 0.760229i
\(202\) 2.76415 + 10.6256i 0.194485 + 0.747612i
\(203\) −1.98500 3.43813i −0.139320 0.241309i
\(204\) 2.06513 2.28625i 0.144588 0.160069i
\(205\) 0 0
\(206\) 17.9421 + 4.94821i 1.25009 + 0.344758i
\(207\) 17.3149 13.2817i 1.20347 0.923140i
\(208\) −8.35148 15.4927i −0.579071 1.07423i
\(209\) 6.20122 + 3.58028i 0.428948 + 0.247653i
\(210\) 0 0
\(211\) −3.96081 + 2.28678i −0.272674 + 0.157428i −0.630102 0.776512i \(-0.716987\pi\)
0.357428 + 0.933941i \(0.383654\pi\)
\(212\) 1.54395 + 0.0225385i 0.106039 + 0.00154795i
\(213\) −13.3908 + 15.2667i −0.917521 + 1.04606i
\(214\) 0.250327 + 0.254008i 0.0171120 + 0.0173636i
\(215\) 0 0
\(216\) −14.4745 + 2.54740i −0.984864 + 0.173329i
\(217\) 0.785367 0.0533142
\(218\) 0.455706 + 0.462407i 0.0308643 + 0.0313181i
\(219\) 6.97713 7.95458i 0.471471 0.537521i
\(220\) 0 0
\(221\) 3.38900 1.95664i 0.227969 0.131618i
\(222\) −28.1156 + 1.63450i −1.88700 + 0.109700i
\(223\) 20.5711 + 11.8767i 1.37754 + 0.795323i 0.991863 0.127310i \(-0.0406344\pi\)
0.385677 + 0.922634i \(0.373968\pi\)
\(224\) 4.18943 + 18.2786i 0.279918 + 1.22129i
\(225\) 0 0
\(226\) −23.7642 6.55386i −1.58077 0.435956i
\(227\) −13.9287 + 24.1252i −0.924478 + 1.60124i −0.132081 + 0.991239i \(0.542166\pi\)
−0.792398 + 0.610005i \(0.791168\pi\)
\(228\) −7.04821 + 7.80286i −0.466779 + 0.516757i
\(229\) −8.35991 14.4798i −0.552439 0.956852i −0.998098 0.0616492i \(-0.980364\pi\)
0.445659 0.895203i \(-0.352969\pi\)
\(230\) 0 0
\(231\) 2.64360 13.2846i 0.173936 0.874061i
\(232\) −3.29027 + 0.804848i −0.216017 + 0.0528409i
\(233\) 1.67938i 0.110020i −0.998486 0.0550101i \(-0.982481\pi\)
0.998486 0.0550101i \(-0.0175191\pi\)
\(234\) −18.4895 2.57470i −1.20870 0.168313i
\(235\) 0 0
\(236\) 3.71808 2.07487i 0.242027 0.135063i
\(237\) −16.9481 + 5.75157i −1.10090 + 0.373604i
\(238\) −4.03518 + 1.04972i −0.261562 + 0.0680432i
\(239\) −5.41085 9.37186i −0.349999 0.606215i 0.636250 0.771483i \(-0.280485\pi\)
−0.986249 + 0.165267i \(0.947151\pi\)
\(240\) 0 0
\(241\) −5.45657 + 9.45105i −0.351488 + 0.608796i −0.986510 0.163698i \(-0.947658\pi\)
0.635022 + 0.772494i \(0.280991\pi\)
\(242\) 2.04346 7.40957i 0.131359 0.476305i
\(243\) −6.90031 + 13.9780i −0.442655 + 0.896692i
\(244\) 6.57037 + 3.92238i 0.420625 + 0.251104i
\(245\) 0 0
\(246\) −5.79508 + 3.81059i −0.369481 + 0.242954i
\(247\) −11.5665 + 6.67794i −0.735961 + 0.424907i
\(248\) 0.187561 0.643303i 0.0119101 0.0408498i
\(249\) 1.44679 + 4.26326i 0.0916867 + 0.270173i
\(250\) 0 0
\(251\) −5.05766 −0.319237 −0.159618 0.987179i \(-0.551026\pi\)
−0.159618 + 0.987179i \(0.551026\pi\)
\(252\) 18.2617 + 7.88202i 1.15038 + 0.496520i
\(253\) 17.1598 1.07883
\(254\) −10.6434 + 10.4892i −0.667829 + 0.658151i
\(255\) 0 0
\(256\) 15.9727 + 0.933676i 0.998296 + 0.0583548i
\(257\) −11.5968 + 6.69541i −0.723388 + 0.417649i −0.815999 0.578054i \(-0.803812\pi\)
0.0926101 + 0.995702i \(0.470479\pi\)
\(258\) 18.2827 + 9.18439i 1.13823 + 0.571795i
\(259\) 33.0081 + 19.0573i 2.05103 + 1.18416i
\(260\) 0 0
\(261\) −1.37543 + 3.31904i −0.0851369 + 0.205444i
\(262\) −6.11278 + 22.1648i −0.377649 + 1.36935i
\(263\) 5.44564 9.43213i 0.335793 0.581610i −0.647844 0.761773i \(-0.724329\pi\)
0.983637 + 0.180163i \(0.0576626\pi\)
\(264\) −10.2502 5.33801i −0.630857 0.328532i
\(265\) 0 0
\(266\) 13.7719 3.58265i 0.844410 0.219666i
\(267\) −6.09567 5.34664i −0.373049 0.327209i
\(268\) −6.18367 11.0809i −0.377728 0.676872i
\(269\) 21.5020i 1.31100i 0.755195 + 0.655500i \(0.227542\pi\)
−0.755195 + 0.655500i \(0.772458\pi\)
\(270\) 0 0
\(271\) 18.9445i 1.15080i 0.817873 + 0.575399i \(0.195153\pi\)
−0.817873 + 0.575399i \(0.804847\pi\)
\(272\) −0.103842 + 3.55595i −0.00629634 + 0.215611i
\(273\) 18.9933 + 16.6594i 1.14953 + 1.00828i
\(274\) −4.69686 18.0550i −0.283748 1.09074i
\(275\) 0 0
\(276\) −5.27813 + 24.6391i −0.317706 + 1.48310i
\(277\) −9.33092 + 16.1616i −0.560641 + 0.971058i 0.436800 + 0.899559i \(0.356112\pi\)
−0.997441 + 0.0714994i \(0.977222\pi\)
\(278\) −8.83982 2.43791i −0.530177 0.146216i
\(279\) −0.432576 0.563935i −0.0258977 0.0337619i
\(280\) 0 0
\(281\) −5.84683 3.37567i −0.348792 0.201375i 0.315361 0.948972i \(-0.397874\pi\)
−0.664153 + 0.747596i \(0.731208\pi\)
\(282\) −8.32644 + 16.5748i −0.495832 + 0.987018i
\(283\) −4.56374 + 2.63488i −0.271286 + 0.156627i −0.629472 0.777023i \(-0.716729\pi\)
0.358186 + 0.933650i \(0.383395\pi\)
\(284\) 0.342270 23.4464i 0.0203100 1.39129i
\(285\) 0 0
\(286\) −10.3039 10.4554i −0.609283 0.618242i
\(287\) 9.38639 0.554061
\(288\) 10.8175 13.0760i 0.637427 0.770511i
\(289\) 16.2090 0.953472
\(290\) 0 0
\(291\) 3.43655 + 10.1265i 0.201454 + 0.593623i
\(292\) −0.178336 + 12.2165i −0.0104364 + 0.714916i
\(293\) −19.3041 + 11.1453i −1.12776 + 0.651113i −0.943371 0.331741i \(-0.892364\pi\)
−0.184390 + 0.982853i \(0.559031\pi\)
\(294\) −5.36885 8.16486i −0.313118 0.476184i
\(295\) 0 0
\(296\) 23.4930 22.4861i 1.36550 1.30698i
\(297\) −10.9951 + 5.41884i −0.638001 + 0.314433i
\(298\) 11.4133 + 3.14763i 0.661153 + 0.182337i
\(299\) −16.0032 + 27.7184i −0.925490 + 1.60300i
\(300\) 0 0
\(301\) −13.8448 23.9798i −0.797999 1.38217i
\(302\) −5.83834 22.4429i −0.335959 1.29144i
\(303\) −12.7335 + 4.32127i −0.731518 + 0.248250i
\(304\) 0.354408 12.1363i 0.0203267 0.696066i
\(305\) 0 0
\(306\) 2.97631 + 2.31929i 0.170144 + 0.132585i
\(307\) 0.415414i 0.0237089i 0.999930 + 0.0118545i \(0.00377348\pi\)
−0.999930 + 0.0118545i \(0.996227\pi\)
\(308\) 7.62170 + 13.6578i 0.434287 + 0.778224i
\(309\) −4.44890 + 22.3566i −0.253089 + 1.27182i
\(310\) 0 0
\(311\) −0.284562 0.492876i −0.0161360 0.0279484i 0.857845 0.513909i \(-0.171803\pi\)
−0.873981 + 0.485961i \(0.838470\pi\)
\(312\) 18.1819 11.5790i 1.02935 0.655535i
\(313\) −14.0312 + 24.3028i −0.793091 + 1.37367i 0.130954 + 0.991388i \(0.458196\pi\)
−0.924044 + 0.382285i \(0.875137\pi\)
\(314\) −4.02762 + 14.6041i −0.227292 + 0.824156i
\(315\) 0 0
\(316\) 10.5932 17.7447i 0.595917 0.998219i
\(317\) −11.4952 6.63676i −0.645635 0.372758i 0.141147 0.989989i \(-0.454921\pi\)
−0.786782 + 0.617231i \(0.788254\pi\)
\(318\) 0.109756 + 1.88795i 0.00615481 + 0.105871i
\(319\) −2.44664 + 1.41257i −0.136986 + 0.0790887i
\(320\) 0 0
\(321\) −0.288015 + 0.328364i −0.0160754 + 0.0183275i
\(322\) 24.2890 23.9370i 1.35357 1.33396i
\(323\) 2.69956 0.150208
\(324\) −4.39875 17.4543i −0.244375 0.969681i
\(325\) 0 0
\(326\) 1.34555 1.32605i 0.0745231 0.0734431i
\(327\) −0.524314 + 0.597767i −0.0289947 + 0.0330566i
\(328\) 2.24165 7.68850i 0.123774 0.424526i
\(329\) 21.7398 12.5515i 1.19855 0.691985i
\(330\) 0 0
\(331\) 7.43989 + 4.29542i 0.408933 + 0.236098i 0.690331 0.723493i \(-0.257465\pi\)
−0.281398 + 0.959591i \(0.590798\pi\)
\(332\) −4.46364 2.66471i −0.244974 0.146245i
\(333\) −4.49659 34.1982i −0.246412 1.87405i
\(334\) 2.69583 9.77502i 0.147509 0.534865i
\(335\) 0 0
\(336\) −21.9550 + 6.74277i −1.19775 + 0.367848i
\(337\) 0.527708 + 0.914017i 0.0287461 + 0.0497897i 0.880041 0.474899i \(-0.157515\pi\)
−0.851294 + 0.524688i \(0.824182\pi\)
\(338\) 8.70561 2.26469i 0.473523 0.123183i
\(339\) 5.89251 29.6110i 0.320037 1.60825i
\(340\) 0 0
\(341\) 0.558884i 0.0302652i
\(342\) −10.1580 7.91565i −0.549283 0.428029i
\(343\) 9.98036i 0.538889i
\(344\) −22.9485 + 5.61355i −1.23730 + 0.302662i
\(345\) 0 0
\(346\) −0.916922 3.52470i −0.0492940 0.189489i
\(347\) −3.45165 5.97844i −0.185294 0.320939i 0.758381 0.651811i \(-0.225991\pi\)
−0.943676 + 0.330872i \(0.892657\pi\)
\(348\) −1.27570 3.94754i −0.0683848 0.211610i
\(349\) 15.5145 26.8719i 0.830473 1.43842i −0.0671899 0.997740i \(-0.521403\pi\)
0.897663 0.440682i \(-0.145263\pi\)
\(350\) 0 0
\(351\) 1.50094 22.8142i 0.0801142 1.21773i
\(352\) 13.0074 2.98128i 0.693299 0.158903i
\(353\) −13.2995 7.67847i −0.707861 0.408684i 0.102408 0.994743i \(-0.467345\pi\)
−0.810269 + 0.586059i \(0.800679\pi\)
\(354\) 2.86509 + 4.35719i 0.152278 + 0.231582i
\(355\) 0 0
\(356\) 9.36161 + 0.136661i 0.496164 + 0.00724301i
\(357\) −1.64105 4.83568i −0.0868537 0.255932i
\(358\) 10.1101 + 10.2588i 0.534337 + 0.542194i
\(359\) 8.51196 0.449244 0.224622 0.974446i \(-0.427885\pi\)
0.224622 + 0.974446i \(0.427885\pi\)
\(360\) 0 0
\(361\) 9.78650 0.515079
\(362\) −4.14478 4.20573i −0.217845 0.221048i
\(363\) 9.23258 + 1.83726i 0.484585 + 0.0964311i
\(364\) −29.1696 0.425818i −1.52890 0.0223189i
\(365\) 0 0
\(366\) −4.20700 + 8.37456i −0.219903 + 0.437746i
\(367\) 1.11984 + 0.646542i 0.0584553 + 0.0337492i 0.528943 0.848657i \(-0.322589\pi\)
−0.470488 + 0.882407i \(0.655922\pi\)
\(368\) −13.8064 25.6120i −0.719708 1.33512i
\(369\) −5.16998 6.73993i −0.269138 0.350867i
\(370\) 0 0
\(371\) 1.27969 2.21648i 0.0664381 0.115074i
\(372\) 0.802481 + 0.171906i 0.0416067 + 0.00891289i
\(373\) −8.18898 14.1837i −0.424010 0.734406i 0.572318 0.820032i \(-0.306044\pi\)
−0.996327 + 0.0856259i \(0.972711\pi\)
\(374\) 0.747002 + 2.87152i 0.0386265 + 0.148483i
\(375\) 0 0
\(376\) −5.08917 20.8048i −0.262454 1.07293i
\(377\) 5.26946i 0.271391i
\(378\) −8.00416 + 23.0078i −0.411689 + 1.18339i
\(379\) 11.7940i 0.605818i −0.953020 0.302909i \(-0.902042\pi\)
0.953020 0.302909i \(-0.0979578\pi\)
\(380\) 0 0
\(381\) −13.7591 12.0684i −0.704901 0.618283i
\(382\) 34.2582 8.91198i 1.75280 0.455977i
\(383\) −5.63455 9.75933i −0.287912 0.498678i 0.685399 0.728168i \(-0.259628\pi\)
−0.973311 + 0.229489i \(0.926294\pi\)
\(384\) 0.279794 + 19.5939i 0.0142782 + 0.999898i
\(385\) 0 0
\(386\) −7.11268 + 25.7905i −0.362026 + 1.31270i
\(387\) −9.59316 + 23.1492i −0.487648 + 1.17674i
\(388\) −10.6024 6.32944i −0.538257 0.321328i
\(389\) −17.4583 10.0796i −0.885172 0.511054i −0.0128115 0.999918i \(-0.504078\pi\)
−0.872360 + 0.488864i \(0.837411\pi\)
\(390\) 0 0
\(391\) 5.60259 3.23466i 0.283335 0.163584i
\(392\) 10.8326 + 3.15833i 0.547127 + 0.159520i
\(393\) −27.6182 5.49594i −1.39315 0.277234i
\(394\) −5.29239 + 5.21569i −0.266627 + 0.262763i
\(395\) 0 0
\(396\) 5.60901 12.9954i 0.281863 0.653044i
\(397\) −5.11859 −0.256895 −0.128447 0.991716i \(-0.540999\pi\)
−0.128447 + 0.991716i \(0.540999\pi\)
\(398\) 18.9858 18.7106i 0.951670 0.937879i
\(399\) 5.60084 + 16.5040i 0.280393 + 0.826233i
\(400\) 0 0
\(401\) 9.58291 5.53269i 0.478548 0.276290i −0.241263 0.970460i \(-0.577562\pi\)
0.719811 + 0.694170i \(0.244228\pi\)
\(402\) 12.9856 8.53874i 0.647662 0.425874i
\(403\) 0.902771 + 0.521215i 0.0449702 + 0.0259636i
\(404\) 7.95892 13.3320i 0.395971 0.663291i
\(405\) 0 0
\(406\) −1.49267 + 5.41238i −0.0740798 + 0.268612i
\(407\) 13.5615 23.4893i 0.672221 1.16432i
\(408\) −4.35288 + 0.189350i −0.215500 + 0.00937423i
\(409\) 8.08315 + 14.0004i 0.399686 + 0.692276i 0.993687 0.112188i \(-0.0357858\pi\)
−0.594001 + 0.804464i \(0.702452\pi\)
\(410\) 0 0
\(411\) 21.6368 7.34273i 1.06726 0.362190i
\(412\) −12.8265 22.9846i −0.631917 1.13237i
\(413\) 7.05742i 0.347273i
\(414\) −30.5663 4.25640i −1.50225 0.209191i
\(415\) 0 0
\(416\) −7.31504 + 23.7914i −0.358650 + 1.16647i
\(417\) 2.19190 11.0147i 0.107338 0.539394i
\(418\) −2.54949 9.80037i −0.124699 0.479352i
\(419\) −3.65564 6.33176i −0.178590 0.309327i 0.762808 0.646625i \(-0.223820\pi\)
−0.941398 + 0.337298i \(0.890487\pi\)
\(420\) 0 0
\(421\) 14.9731 25.9341i 0.729742 1.26395i −0.227250 0.973836i \(-0.572973\pi\)
0.956992 0.290114i \(-0.0936932\pi\)
\(422\) 6.23521 + 1.71959i 0.303525 + 0.0837083i
\(423\) −20.9868 8.69702i −1.02041 0.422864i
\(424\) −1.50993 1.57755i −0.0733288 0.0766124i
\(425\) 0 0
\(426\) 28.6705 1.66676i 1.38909 0.0807546i
\(427\) 10.9842 6.34172i 0.531562 0.306897i
\(428\) 0.00736171 0.504295i 0.000355842 0.0243760i
\(429\) 11.8552 13.5160i 0.572375 0.652561i
\(430\) 0 0
\(431\) −30.7505 −1.48120 −0.740599 0.671947i \(-0.765458\pi\)
−0.740599 + 0.671947i \(0.765458\pi\)
\(432\) 16.9344 + 12.0510i 0.814756 + 0.579804i
\(433\) 29.3734 1.41160 0.705798 0.708413i \(-0.250589\pi\)
0.705798 + 0.708413i \(0.250589\pi\)
\(434\) −0.779614 0.791078i −0.0374227 0.0379730i
\(435\) 0 0
\(436\) 0.0134016 0.918039i 0.000641818 0.0439661i
\(437\) −19.1214 + 11.0398i −0.914701 + 0.528103i
\(438\) −14.9384 + 0.868446i −0.713787 + 0.0414960i
\(439\) −6.77418 3.91108i −0.323314 0.186665i 0.329555 0.944136i \(-0.393101\pi\)
−0.652869 + 0.757471i \(0.726435\pi\)
\(440\) 0 0
\(441\) 9.49608 7.28413i 0.452194 0.346863i
\(442\) −5.33505 1.47134i −0.253763 0.0699844i
\(443\) −13.3520 + 23.1263i −0.634371 + 1.09876i 0.352277 + 0.935896i \(0.385408\pi\)
−0.986648 + 0.162867i \(0.947926\pi\)
\(444\) 29.5560 + 26.6975i 1.40267 + 1.26701i
\(445\) 0 0
\(446\) −8.45731 32.5104i −0.400465 1.53941i
\(447\) −2.83001 + 14.2213i −0.133855 + 0.672646i
\(448\) 14.2528 22.3646i 0.673381 1.05663i
\(449\) 23.8441i 1.12527i 0.826704 + 0.562637i \(0.190213\pi\)
−0.826704 + 0.562637i \(0.809787\pi\)
\(450\) 0 0
\(451\) 6.67955i 0.314528i
\(452\) 16.9886 + 30.4428i 0.799076 + 1.43191i
\(453\) 26.8952 9.12722i 1.26364 0.428834i
\(454\) 38.1272 9.91849i 1.78940 0.465498i
\(455\) 0 0
\(456\) 14.8562 0.646244i 0.695705 0.0302632i
\(457\) 7.87798 13.6451i 0.368516 0.638289i −0.620817 0.783955i \(-0.713199\pi\)
0.989334 + 0.145666i \(0.0465325\pi\)
\(458\) −6.28641 + 22.7944i −0.293745 + 1.06511i
\(459\) −2.56839 + 3.84183i −0.119882 + 0.179321i
\(460\) 0 0
\(461\) 9.24515 + 5.33769i 0.430590 + 0.248601i 0.699598 0.714537i \(-0.253363\pi\)
−0.269008 + 0.963138i \(0.586696\pi\)
\(462\) −16.0054 + 10.5245i −0.744640 + 0.489642i
\(463\) 5.50175 3.17644i 0.255688 0.147622i −0.366678 0.930348i \(-0.619505\pi\)
0.622366 + 0.782726i \(0.286172\pi\)
\(464\) 4.07687 + 2.51524i 0.189264 + 0.116767i
\(465\) 0 0
\(466\) −1.69160 + 1.66708i −0.0783617 + 0.0772261i
\(467\) −7.76191 −0.359179 −0.179589 0.983742i \(-0.557477\pi\)
−0.179589 + 0.983742i \(0.557477\pi\)
\(468\) 15.7607 + 21.1798i 0.728538 + 0.979038i
\(469\) −21.0330 −0.971213
\(470\) 0 0
\(471\) −18.1972 3.62120i −0.838483 0.166856i
\(472\) −5.78081 1.68545i −0.266083 0.0775790i
\(473\) −17.0645 + 9.85221i −0.784628 + 0.453005i
\(474\) 22.6174 + 11.3619i 1.03885 + 0.521871i
\(475\) 0 0
\(476\) 5.06298 + 3.02249i 0.232061 + 0.138536i
\(477\) −2.29640 + 0.301945i −0.105145 + 0.0138251i
\(478\) −4.06880 + 14.7534i −0.186103 + 0.674805i
\(479\) 3.56565 6.17588i 0.162919 0.282183i −0.772996 0.634411i \(-0.781243\pi\)
0.935914 + 0.352228i \(0.114576\pi\)
\(480\) 0 0
\(481\) 25.2950 + 43.8122i 1.15335 + 1.99767i
\(482\) 14.9364 3.88558i 0.680333 0.176983i
\(483\) 31.3992 + 27.5409i 1.42871 + 1.25315i
\(484\) −9.49194 + 5.29697i −0.431452 + 0.240771i
\(485\) 0 0
\(486\) 20.9295 6.92516i 0.949379 0.314132i
\(487\) 15.1089i 0.684649i 0.939582 + 0.342325i \(0.111214\pi\)
−0.939582 + 0.342325i \(0.888786\pi\)
\(488\) −2.57134 10.5118i −0.116399 0.475846i
\(489\) 1.73943 + 1.52569i 0.0786599 + 0.0689942i
\(490\) 0 0
\(491\) −14.7215 25.4984i −0.664372 1.15073i −0.979455 0.201662i \(-0.935366\pi\)
0.315083 0.949064i \(-0.397968\pi\)
\(492\) 9.59093 + 2.05455i 0.432392 + 0.0926261i
\(493\) −0.532546 + 0.922396i −0.0239847 + 0.0415426i
\(494\) 18.2083 + 5.02162i 0.819230 + 0.225933i
\(495\) 0 0
\(496\) −0.834168 + 0.449666i −0.0374552 + 0.0201906i
\(497\) −33.6595 19.4333i −1.50984 0.871705i
\(498\) 2.85807 5.68934i 0.128073 0.254946i
\(499\) −18.0795 + 10.4382i −0.809351 + 0.467279i −0.846730 0.532022i \(-0.821432\pi\)
0.0373795 + 0.999301i \(0.488099\pi\)
\(500\) 0 0
\(501\) 12.1800 + 2.42379i 0.544163 + 0.108287i
\(502\) 5.02061 + 5.09444i 0.224081 + 0.227376i
\(503\) −22.6713 −1.01086 −0.505431 0.862867i \(-0.668667\pi\)
−0.505431 + 0.862867i \(0.668667\pi\)
\(504\) −10.1886 26.2188i −0.453837 1.16788i
\(505\) 0 0
\(506\) −17.0341 17.2846i −0.757257 0.768392i
\(507\) 3.54045 + 10.4326i 0.157237 + 0.463330i
\(508\) 21.1310 + 0.308470i 0.937535 + 0.0136862i
\(509\) 23.5593 13.6020i 1.04425 0.602896i 0.123213 0.992380i \(-0.460680\pi\)
0.921033 + 0.389484i \(0.127347\pi\)
\(510\) 0 0
\(511\) 17.5380 + 10.1255i 0.775834 + 0.447928i
\(512\) −14.9153 17.0157i −0.659168 0.751996i
\(513\) 8.76582 13.1120i 0.387020 0.578909i
\(514\) 18.2560 + 5.03476i 0.805236 + 0.222074i
\(515\) 0 0
\(516\) −8.89760 27.5328i −0.391695 1.21206i
\(517\) −8.93188 15.4705i −0.392824 0.680390i
\(518\) −13.5705 52.1658i −0.596254 2.29204i
\(519\) 4.22393 1.43345i 0.185410 0.0629213i
\(520\) 0 0
\(521\) 2.18176i 0.0955847i 0.998857 + 0.0477924i \(0.0152186\pi\)
−0.998857 + 0.0477924i \(0.984781\pi\)
\(522\) 4.70853 1.90930i 0.206087 0.0835678i
\(523\) 28.8185i 1.26014i −0.776537 0.630071i \(-0.783026\pi\)
0.776537 0.630071i \(-0.216974\pi\)
\(524\) 28.3940 15.8452i 1.24040 0.692203i
\(525\) 0 0
\(526\) −14.9065 + 3.87779i −0.649953 + 0.169080i
\(527\) −0.105351 0.182473i −0.00458916 0.00794865i
\(528\) 4.79829 + 15.6237i 0.208819 + 0.679932i
\(529\) −14.9560 + 25.9046i −0.650261 + 1.12629i
\(530\) 0 0
\(531\) −5.06760 + 3.88719i −0.219915 + 0.168690i
\(532\) −17.2797 10.3156i −0.749171 0.447240i
\(533\) 10.7896 + 6.22935i 0.467348 + 0.269823i
\(534\) 0.665498 + 11.4475i 0.0287989 + 0.495381i
\(535\) 0 0
\(536\) −5.02308 + 17.2283i −0.216964 + 0.744151i
\(537\) −11.6323 + 13.2619i −0.501969 + 0.572292i
\(538\) 21.6584 21.3445i 0.933759 0.920227i
\(539\) 9.41102 0.405361
\(540\) 0 0
\(541\) 3.32257 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(542\) 19.0823 18.8058i 0.819655 0.807777i
\(543\) 4.76880 5.43688i 0.204649 0.233319i
\(544\) 3.68489 3.42531i 0.157989 0.146859i
\(545\) 0 0
\(546\) −2.07361 35.6689i −0.0887422 1.52649i
\(547\) 24.0231 + 13.8697i 1.02715 + 0.593027i 0.916168 0.400795i \(-0.131266\pi\)
0.110986 + 0.993822i \(0.464599\pi\)
\(548\) −13.5238 + 22.6538i −0.577710 + 0.967721i
\(549\) −10.6037 4.39424i −0.452556 0.187541i
\(550\) 0 0
\(551\) 1.81756 3.14810i 0.0774305 0.134114i
\(552\) 30.0577 19.1421i 1.27934 0.814742i
\(553\) −17.1272 29.6652i −0.728323 1.26149i
\(554\) 25.5417 6.64447i 1.08516 0.282296i
\(555\) 0 0
\(556\) 6.31943 + 11.3241i 0.268003 + 0.480251i
\(557\) 30.0401i 1.27284i 0.771344 + 0.636419i \(0.219585\pi\)
−0.771344 + 0.636419i \(0.780415\pi\)
\(558\) −0.138628 + 0.995526i −0.00586861 + 0.0421440i
\(559\) 36.7527i 1.55447i
\(560\) 0 0
\(561\) −3.44117 + 1.16781i −0.145286 + 0.0493048i
\(562\) 2.40378 + 9.24028i 0.101398 + 0.389778i
\(563\) −0.883109 1.52959i −0.0372186 0.0644645i 0.846816 0.531886i \(-0.178516\pi\)
−0.884035 + 0.467421i \(0.845183\pi\)
\(564\) 24.9608 8.06644i 1.05104 0.339658i
\(565\) 0 0
\(566\) 7.18435 + 1.98135i 0.301981 + 0.0832824i
\(567\) −28.8160 7.73134i −1.21016 0.324686i
\(568\) −23.9566 + 22.9298i −1.00520 + 0.962115i
\(569\) −31.9951 18.4724i −1.34131 0.774403i −0.354306 0.935129i \(-0.615283\pi\)
−0.986999 + 0.160726i \(0.948616\pi\)
\(570\) 0 0
\(571\) −26.5164 + 15.3092i −1.10968 + 0.640672i −0.938745 0.344612i \(-0.888011\pi\)
−0.170930 + 0.985283i \(0.554677\pi\)
\(572\) −0.303021 + 20.7577i −0.0126699 + 0.867922i
\(573\) 13.9323 + 41.0543i 0.582031 + 1.71507i
\(574\) −9.31764 9.45465i −0.388911 0.394629i
\(575\) 0 0
\(576\) −23.9093 + 2.08406i −0.996223 + 0.0868357i
\(577\) −23.6405 −0.984168 −0.492084 0.870548i \(-0.663765\pi\)
−0.492084 + 0.870548i \(0.663765\pi\)
\(578\) −16.0903 16.3269i −0.669268 0.679109i
\(579\) −32.1358 6.39495i −1.33552 0.265765i
\(580\) 0 0
\(581\) −7.46221 + 4.30831i −0.309585 + 0.178739i
\(582\) 6.78872 13.5138i 0.281402 0.560166i
\(583\) −1.57730 0.910652i −0.0653249 0.0377154i
\(584\) 12.4824 11.9474i 0.516523 0.494385i
\(585\) 0 0
\(586\) 30.3890 + 8.38091i 1.25536 + 0.346212i
\(587\) −0.0296509 + 0.0513568i −0.00122382 + 0.00211972i −0.866637 0.498940i \(-0.833723\pi\)
0.865413 + 0.501059i \(0.167056\pi\)
\(588\) −2.89471 + 13.5129i −0.119376 + 0.557264i
\(589\) 0.359558 + 0.622773i 0.0148153 + 0.0256609i
\(590\) 0 0
\(591\) −6.84163 6.00094i −0.281427 0.246846i
\(592\) −45.9705 1.34244i −1.88938 0.0551741i
\(593\) 44.6245i 1.83251i 0.400596 + 0.916255i \(0.368803\pi\)
−0.400596 + 0.916255i \(0.631197\pi\)
\(594\) 16.3728 + 5.69592i 0.671785 + 0.233707i
\(595\) 0 0
\(596\) −8.15914 14.6208i −0.334211 0.598893i
\(597\) 24.5435 + 21.5276i 1.00450 + 0.881066i
\(598\) 43.8059 11.3958i 1.79136 0.466007i
\(599\) −11.5001 19.9187i −0.469881 0.813857i 0.529526 0.848294i \(-0.322370\pi\)
−0.999407 + 0.0344362i \(0.989036\pi\)
\(600\) 0 0
\(601\) 0.981232 1.69954i 0.0400253 0.0693259i −0.845319 0.534262i \(-0.820589\pi\)
0.885344 + 0.464936i \(0.153923\pi\)
\(602\) −10.4109 + 37.7496i −0.424315 + 1.53856i
\(603\) 11.5849 + 15.1028i 0.471772 + 0.615033i
\(604\) −16.8105 + 28.1593i −0.684011 + 1.14579i
\(605\) 0 0
\(606\) 16.9929 + 8.53645i 0.690289 + 0.346769i
\(607\) 17.5023 10.1049i 0.710394 0.410146i −0.100813 0.994905i \(-0.532144\pi\)
0.811207 + 0.584759i \(0.198811\pi\)
\(608\) −12.5764 + 11.6904i −0.510040 + 0.474110i
\(609\) −6.74402 1.34204i −0.273282 0.0543823i
\(610\) 0 0
\(611\) 33.3195 1.34796
\(612\) −0.618350 5.30026i −0.0249953 0.214250i
\(613\) −24.8672 −1.00438 −0.502189 0.864758i \(-0.667472\pi\)
−0.502189 + 0.864758i \(0.667472\pi\)
\(614\) 0.418434 0.412371i 0.0168866 0.0166419i
\(615\) 0 0
\(616\) 6.19121 21.2349i 0.249451 0.855577i
\(617\) 28.3549 16.3707i 1.14152 0.659059i 0.194717 0.980860i \(-0.437621\pi\)
0.946808 + 0.321800i \(0.104288\pi\)
\(618\) 26.9354 17.7115i 1.08350 0.712463i
\(619\) −11.9754 6.91400i −0.481332 0.277897i 0.239640 0.970862i \(-0.422971\pi\)
−0.720971 + 0.692965i \(0.756304\pi\)
\(620\) 0 0
\(621\) 2.48130 37.7156i 0.0995713 1.51348i
\(622\) −0.213982 + 0.775897i −0.00857991 + 0.0311106i
\(623\) 7.75930 13.4395i 0.310870 0.538442i
\(624\) −29.7120 6.81989i −1.18943 0.273014i
\(625\) 0 0
\(626\) 38.4079 9.99151i 1.53509 0.399341i
\(627\) 11.7446 3.98568i 0.469033 0.159173i
\(628\) 18.7084 10.4402i 0.746546 0.416609i
\(629\) 10.2255i 0.407719i
\(630\) 0 0
\(631\) 0.298908i 0.0118994i −0.999982 0.00594968i \(-0.998106\pi\)
0.999982 0.00594968i \(-0.00189385\pi\)
\(632\) −28.3894 + 6.94447i −1.12927 + 0.276236i
\(633\) −1.54607 + 7.76929i −0.0614507 + 0.308802i
\(634\) 4.72598 + 18.1669i 0.187693 + 0.721501i
\(635\) 0 0
\(636\) 1.79273 1.98468i 0.0710864 0.0786976i
\(637\) −8.77672 + 15.2017i −0.347746 + 0.602314i
\(638\) 3.85156 + 1.06221i 0.152485 + 0.0420534i
\(639\) 4.58533 + 34.8731i 0.181393 + 1.37956i
\(640\) 0 0
\(641\) 12.2453 + 7.06982i 0.483660 + 0.279241i 0.721940 0.691955i \(-0.243250\pi\)
−0.238281 + 0.971196i \(0.576584\pi\)
\(642\) 0.616658 0.0358494i 0.0243375 0.00141486i
\(643\) 31.6633 18.2808i 1.24868 0.720925i 0.277833 0.960629i \(-0.410384\pi\)
0.970846 + 0.239704i \(0.0770505\pi\)
\(644\) −48.2222 0.703948i −1.90022 0.0277394i
\(645\) 0 0
\(646\) −2.67979 2.71919i −0.105435 0.106985i
\(647\) −25.4645 −1.00111 −0.500556 0.865704i \(-0.666871\pi\)
−0.500556 + 0.865704i \(0.666871\pi\)
\(648\) −13.2146 + 21.7571i −0.519120 + 0.854701i
\(649\) −5.02220 −0.197139
\(650\) 0 0
\(651\) 0.896989 1.02265i 0.0351558 0.0400809i
\(652\) −2.67139 0.0389969i −0.104620 0.00152724i
\(653\) 19.4203 11.2123i 0.759976 0.438772i −0.0693112 0.997595i \(-0.522080\pi\)
0.829287 + 0.558823i \(0.188747\pi\)
\(654\) 1.12259 0.0652616i 0.0438967 0.00255193i
\(655\) 0 0
\(656\) −9.96964 + 5.37423i −0.389249 + 0.209828i
\(657\) −2.38914 18.1703i −0.0932092 0.708890i
\(658\) −34.2233 9.43834i −1.33416 0.367945i
\(659\) −3.28193 + 5.68446i −0.127846 + 0.221435i −0.922842 0.385179i \(-0.874140\pi\)
0.794996 + 0.606615i \(0.207473\pi\)
\(660\) 0 0
\(661\) −9.44856 16.3654i −0.367506 0.636540i 0.621669 0.783280i \(-0.286455\pi\)
−0.989175 + 0.146741i \(0.953122\pi\)
\(662\) −3.05873 11.7579i −0.118881 0.456986i
\(663\) 1.32287 6.64766i 0.0513759 0.258174i
\(664\) 1.74687 + 7.14129i 0.0677915 + 0.277136i
\(665\) 0 0
\(666\) −29.9833 + 38.4770i −1.16183 + 1.49095i
\(667\) 8.71129i 0.337303i
\(668\) −12.5222 + 6.98799i −0.484498 + 0.270373i
\(669\) 38.9598 13.2215i 1.50627 0.511173i
\(670\) 0 0
\(671\) −4.51290 7.81657i −0.174219 0.301755i
\(672\) 28.5860 + 15.4213i 1.10273 + 0.594890i
\(673\) −15.6611 + 27.1258i −0.603690 + 1.04562i 0.388567 + 0.921420i \(0.372970\pi\)
−0.992257 + 0.124201i \(0.960363\pi\)
\(674\) 0.396821 1.43887i 0.0152850 0.0554231i
\(675\) 0 0
\(676\) −10.9230 6.52081i −0.420115 0.250800i
\(677\) 35.4936 + 20.4922i 1.36413 + 0.787580i 0.990171 0.139866i \(-0.0446670\pi\)
0.373958 + 0.927446i \(0.378000\pi\)
\(678\) −35.6757 + 23.4587i −1.37012 + 0.900928i
\(679\) −17.7249 + 10.2335i −0.680219 + 0.392724i
\(680\) 0 0
\(681\) 15.5058 + 45.6910i 0.594185 + 1.75088i
\(682\) −0.562948 + 0.554790i −0.0215564 + 0.0212440i
\(683\) −42.0703 −1.60978 −0.804888 0.593427i \(-0.797775\pi\)
−0.804888 + 0.593427i \(0.797775\pi\)
\(684\) 2.11040 + 18.0896i 0.0806933 + 0.691671i
\(685\) 0 0
\(686\) −10.0529 + 9.90726i −0.383823 + 0.378261i
\(687\) −28.4027 5.65206i −1.08363 0.215639i
\(688\) 28.4348 + 17.5430i 1.08407 + 0.668820i
\(689\) 2.94198 1.69855i 0.112080 0.0647096i
\(690\) 0 0
\(691\) −30.3277 17.5097i −1.15372 0.666101i −0.203930 0.978986i \(-0.565371\pi\)
−0.949791 + 0.312885i \(0.898705\pi\)
\(692\) −2.64012 + 4.42247i −0.100362 + 0.168117i
\(693\) −14.2789 18.6150i −0.542412 0.707125i
\(694\) −2.59554 + 9.41140i −0.0985255 + 0.357252i
\(695\) 0 0
\(696\) −2.70988 + 5.20360i −0.102718 + 0.197242i
\(697\) −1.25911 2.18084i −0.0476922 0.0826054i
\(698\) −42.4682 + 11.0478i −1.60745 + 0.418164i
\(699\) −2.18678 1.91807i −0.0827116 0.0725481i
\(700\) 0 0
\(701\) 41.5315i 1.56862i −0.620366 0.784312i \(-0.713016\pi\)
0.620366 0.784312i \(-0.286984\pi\)
\(702\) −24.4700 + 21.1352i −0.923560 + 0.797696i
\(703\) 34.8993i 1.31625i
\(704\) −15.9151 10.1426i −0.599824 0.382263i
\(705\) 0 0
\(706\) 5.46777 + 21.0184i 0.205782 + 0.791039i
\(707\) −12.8680 22.2881i −0.483952 0.838229i
\(708\) 1.54477 7.21120i 0.0580559 0.271013i
\(709\) −5.69139 + 9.85778i −0.213745 + 0.370217i −0.952883 0.303337i \(-0.901899\pi\)
0.739139 + 0.673553i \(0.235233\pi\)
\(710\) 0 0
\(711\) −11.8676 + 28.6377i −0.445070 + 1.07400i
\(712\) −9.15538 9.56534i −0.343112 0.358476i
\(713\) 1.49243 + 0.861656i 0.0558920 + 0.0322693i
\(714\) −3.24182 + 6.45325i −0.121322 + 0.241507i
\(715\) 0 0
\(716\) 0.297322 20.3673i 0.0111115 0.761162i
\(717\) −18.3833 3.65822i −0.686536 0.136619i
\(718\) −8.44961 8.57386i −0.315337 0.319974i
\(719\) 24.0599 0.897282 0.448641 0.893712i \(-0.351908\pi\)
0.448641 + 0.893712i \(0.351908\pi\)
\(720\) 0 0
\(721\) −43.6278 −1.62478
\(722\) −9.71482 9.85767i −0.361548 0.366864i
\(723\) 6.07442 + 17.8995i 0.225910 + 0.665689i
\(724\) −0.121891 + 8.34985i −0.00453005 + 0.310320i
\(725\) 0 0
\(726\) −7.31433 11.1235i −0.271460 0.412833i
\(727\) −4.94944 2.85756i −0.183565 0.105981i 0.405402 0.914139i \(-0.367132\pi\)
−0.588966 + 0.808158i \(0.700465\pi\)
\(728\) 28.5270 + 29.8044i 1.05728 + 1.10462i
\(729\) 10.3202 + 24.9498i 0.382230 + 0.924067i
\(730\) 0 0
\(731\) −3.71433 + 6.43341i −0.137380 + 0.237948i
\(732\) 12.6116 4.07563i 0.466140 0.150640i
\(733\) −12.9269 22.3900i −0.477465 0.826994i 0.522201 0.852822i \(-0.325111\pi\)
−0.999666 + 0.0258286i \(0.991778\pi\)
\(734\) −0.460397 1.76979i −0.0169936 0.0653242i
\(735\) 0 0
\(736\) −12.0930 + 39.3312i −0.445754 + 1.44977i
\(737\) 14.9675i 0.551335i
\(738\) −1.65683 + 11.8981i −0.0609888 + 0.437976i
\(739\) 18.0774i 0.664989i 0.943105 + 0.332495i \(0.107890\pi\)
−0.943105 + 0.332495i \(0.892110\pi\)
\(740\) 0 0
\(741\) −4.51489 + 22.6882i −0.165859 + 0.833472i
\(742\) −3.50292 + 0.911255i −0.128596 + 0.0334532i
\(743\) 9.00512 + 15.5973i 0.330366 + 0.572210i 0.982584 0.185821i \(-0.0594946\pi\)
−0.652218 + 0.758032i \(0.726161\pi\)
\(744\) −0.623447 0.978963i −0.0228567 0.0358905i
\(745\) 0 0
\(746\) −6.15788 + 22.3284i −0.225456 + 0.817500i
\(747\) 7.20374 + 2.98527i 0.263571 + 0.109225i
\(748\) 2.15087 3.60292i 0.0786435 0.131736i
\(749\) −0.723965 0.417982i −0.0264531 0.0152727i
\(750\) 0 0
\(751\) 35.2487 20.3509i 1.28624 0.742613i 0.308262 0.951302i \(-0.400253\pi\)
0.977982 + 0.208689i \(0.0669195\pi\)
\(752\) −15.9042 + 25.7786i −0.579967 + 0.940049i
\(753\) −5.77649 + 6.58574i −0.210507 + 0.239998i
\(754\) −5.30778 + 5.23086i −0.193298 + 0.190497i
\(755\) 0 0
\(756\) 31.1206 14.7769i 1.13185 0.537430i
\(757\) 35.4823 1.28963 0.644813 0.764340i \(-0.276935\pi\)
0.644813 + 0.764340i \(0.276935\pi\)
\(758\) −11.8798 + 11.7076i −0.431493 + 0.425240i
\(759\) 19.5986 22.3443i 0.711386 0.811046i
\(760\) 0 0
\(761\) −34.0009 + 19.6304i −1.23253 + 0.711602i −0.967557 0.252654i \(-0.918697\pi\)
−0.264974 + 0.964256i \(0.585363\pi\)
\(762\) 1.50216 + 25.8392i 0.0544175 + 0.936054i
\(763\) −1.31794 0.760910i −0.0477125 0.0275468i
\(764\) −42.9840 25.6606i −1.55511 0.928367i
\(765\) 0 0
\(766\) −4.23702 + 15.3634i −0.153090 + 0.555101i
\(767\) 4.68371 8.11242i 0.169119 0.292923i
\(768\) 19.4587 19.7322i 0.702154 0.712025i
\(769\) 3.27941 + 5.68011i 0.118259 + 0.204830i 0.919078 0.394076i \(-0.128935\pi\)
−0.800819 + 0.598906i \(0.795602\pi\)
\(770\) 0 0
\(771\) −4.52671 + 22.7476i −0.163025 + 0.819234i
\(772\) 33.0386 18.4371i 1.18908 0.663567i
\(773\) 34.2118i 1.23051i −0.788327 0.615256i \(-0.789053\pi\)
0.788327 0.615256i \(-0.210947\pi\)
\(774\) 32.8405 13.3167i 1.18043 0.478660i
\(775\) 0 0
\(776\) 4.14930 + 16.9626i 0.148951 + 0.608922i
\(777\) 62.5146 21.2151i 2.24270 0.761089i
\(778\) 7.17757 + 27.5910i 0.257328 + 0.989185i
\(779\) 4.29729 + 7.44313i 0.153967 + 0.266678i
\(780\) 0 0
\(781\) −13.8292 + 23.9528i −0.494847 + 0.857099i
\(782\) −8.81973 2.43237i −0.315393 0.0869813i
\(783\) 2.75092 + 5.58176i 0.0983097 + 0.199476i
\(784\) −7.57191 14.0465i −0.270425 0.501661i
\(785\) 0 0
\(786\) 21.8800 + 33.2747i 0.780432 + 1.18687i
\(787\) 15.0505 8.68943i 0.536494 0.309745i −0.207163 0.978306i \(-0.566423\pi\)
0.743657 + 0.668562i \(0.233090\pi\)
\(788\) 10.5072 + 0.153385i 0.374305 + 0.00546411i
\(789\) −6.06225 17.8636i −0.215822 0.635962i
\(790\) 0 0
\(791\) 57.7846 2.05458
\(792\) −18.6578 + 7.25043i −0.662977 + 0.257633i
\(793\) 16.8349 0.597826
\(794\) 5.08109 + 5.15581i 0.180321 + 0.182973i
\(795\) 0 0
\(796\) −37.6934 0.550249i −1.33601 0.0195030i
\(797\) −6.07314 + 3.50633i −0.215122 + 0.124201i −0.603689 0.797220i \(-0.706303\pi\)
0.388568 + 0.921420i \(0.372970\pi\)
\(798\) 11.0642 22.0247i 0.391668 0.779665i
\(799\) −5.83244 3.36736i −0.206337 0.119129i
\(800\) 0 0
\(801\) −13.9241 + 1.83082i −0.491982 + 0.0646889i
\(802\) −15.0856 4.16042i −0.532692 0.146910i
\(803\) 7.20555 12.4804i 0.254278 0.440423i
\(804\) −21.4913 4.60381i −0.757939 0.162364i
\(805\) 0 0
\(806\) −0.371153 1.42673i −0.0130733 0.0502545i
\(807\) 27.9984 + 24.5580i 0.985592 + 0.864483i
\(808\) −21.3295 + 5.21752i −0.750371 + 0.183552i
\(809\) 38.9234i 1.36847i 0.729261 + 0.684236i \(0.239864\pi\)
−0.729261 + 0.684236i \(0.760136\pi\)
\(810\) 0 0
\(811\) 35.7891i 1.25673i −0.777920 0.628363i \(-0.783725\pi\)
0.777920 0.628363i \(-0.216275\pi\)
\(812\) 6.93347 3.86922i 0.243317 0.135783i
\(813\) 24.6683 + 21.6371i 0.865154 + 0.758845i
\(814\) −37.1223 + 9.65706i −1.30114 + 0.338480i
\(815\) 0 0
\(816\) 4.51172 + 4.19657i 0.157942 + 0.146909i
\(817\) 12.6769 21.9570i 0.443507 0.768177i
\(818\) 6.07829 22.0398i 0.212523 0.770604i
\(819\) 43.3856 5.70460i 1.51601 0.199335i
\(820\) 0 0
\(821\) −27.8765 16.0945i −0.972895 0.561701i −0.0727775 0.997348i \(-0.523186\pi\)
−0.900118 + 0.435647i \(0.856520\pi\)
\(822\) −28.8744 14.5052i −1.00711 0.505926i
\(823\) −14.9963 + 8.65813i −0.522739 + 0.301804i −0.738055 0.674741i \(-0.764255\pi\)
0.215315 + 0.976545i \(0.430922\pi\)
\(824\) −10.4192 + 35.7360i −0.362969 + 1.24492i
\(825\) 0 0
\(826\) −7.10874 + 7.00572i −0.247345 + 0.243760i
\(827\) 15.5363 0.540249 0.270124 0.962825i \(-0.412935\pi\)
0.270124 + 0.962825i \(0.412935\pi\)
\(828\) 26.0551 + 35.0138i 0.905476 + 1.21681i
\(829\) 27.4645 0.953882 0.476941 0.878935i \(-0.341746\pi\)
0.476941 + 0.878935i \(0.341746\pi\)
\(830\) 0 0
\(831\) 10.3875 + 30.6087i 0.360337 + 1.06180i
\(832\) 31.2259 16.2489i 1.08256 0.563330i
\(833\) 3.07266 1.77400i 0.106461 0.0614654i
\(834\) −13.2707 + 8.72620i −0.459526 + 0.302164i
\(835\) 0 0
\(836\) −7.34082 + 12.2966i −0.253888 + 0.425287i
\(837\) −1.22837 0.0808146i −0.0424588 0.00279336i
\(838\) −2.74894 + 9.96761i −0.0949605 + 0.344325i
\(839\) 6.91476 11.9767i 0.238724 0.413482i −0.721624 0.692285i \(-0.756604\pi\)
0.960348 + 0.278803i \(0.0899376\pi\)
\(840\) 0 0
\(841\) −13.7829 23.8727i −0.475272 0.823196i
\(842\) −40.9861 + 10.6622i −1.41247 + 0.367443i
\(843\) −11.0734 + 3.75790i −0.381387 + 0.129429i
\(844\) −4.45744 7.98754i −0.153431 0.274943i
\(845\) 0 0
\(846\) 12.0728 + 29.7727i 0.415070 + 1.02361i
\(847\) 18.0170i 0.619070i
\(848\) −0.0901446 + 3.08690i −0.00309558 + 0.106005i
\(849\) −1.78142 + 8.95196i −0.0611380 + 0.307230i
\(850\) 0 0
\(851\) 41.8169 + 72.4290i 1.43346 + 2.48283i
\(852\) −30.1393 27.2244i −1.03256 0.932692i
\(853\) 18.0633 31.2866i 0.618476 1.07123i −0.371288 0.928518i \(-0.621084\pi\)
0.989764 0.142714i \(-0.0455829\pi\)
\(854\) −17.2916 4.76879i −0.591705 0.163185i
\(855\) 0 0
\(856\) −0.515270 + 0.493186i −0.0176116 + 0.0168568i
\(857\) 6.41713 + 3.70493i 0.219205 + 0.126558i 0.605582 0.795783i \(-0.292940\pi\)
−0.386377 + 0.922341i \(0.626274\pi\)
\(858\) −25.3827 + 1.47562i −0.866551 + 0.0503769i
\(859\) 35.7586 20.6452i 1.22007 0.704407i 0.255136 0.966905i \(-0.417880\pi\)
0.964932 + 0.262499i \(0.0845465\pi\)
\(860\) 0 0
\(861\) 10.7205 12.2223i 0.365352 0.416535i
\(862\) 30.5252 + 30.9741i 1.03969 + 1.05498i
\(863\) 46.7922 1.59282 0.796412 0.604754i \(-0.206729\pi\)
0.796412 + 0.604754i \(0.206729\pi\)
\(864\) −4.67171 29.0203i −0.158935 0.987289i
\(865\) 0 0
\(866\) −29.1583 29.5870i −0.990838 1.00541i
\(867\) 18.5128 21.1063i 0.628726 0.716807i
\(868\) −0.0229272 + 1.57057i −0.000778199 + 0.0533085i
\(869\) −21.1104 + 12.1881i −0.716120 + 0.413452i
\(870\) 0 0
\(871\) −24.1772 13.9587i −0.819213 0.472973i
\(872\) −0.938018 + 0.897815i −0.0317653 + 0.0304039i
\(873\) 17.1109 + 7.09086i 0.579118 + 0.239989i
\(874\) 30.1014 + 8.30157i 1.01819 + 0.280805i
\(875\) 0 0
\(876\) 15.7038 + 14.1850i 0.530582 + 0.479267i
\(877\) −7.07692 12.2576i −0.238970 0.413909i 0.721449 0.692468i \(-0.243477\pi\)
−0.960419 + 0.278559i \(0.910143\pi\)
\(878\) 2.78504 + 10.7059i 0.0939907 + 0.361306i
\(879\) −7.53520 + 37.8658i −0.254156 + 1.27718i
\(880\) 0 0
\(881\) 13.5705i 0.457200i 0.973520 + 0.228600i \(0.0734148\pi\)
−0.973520 + 0.228600i \(0.926585\pi\)
\(882\) −16.7636 2.33436i −0.564461 0.0786020i
\(883\) 46.0353i 1.54921i −0.632444 0.774606i \(-0.717948\pi\)
0.632444 0.774606i \(-0.282052\pi\)
\(884\) 3.81393 + 6.83441i 0.128276 + 0.229866i
\(885\) 0 0
\(886\) 36.5486 9.50783i 1.22788 0.319422i
\(887\) 9.90855 + 17.1621i 0.332696 + 0.576247i 0.983040 0.183393i \(-0.0587082\pi\)
−0.650343 + 0.759641i \(0.725375\pi\)
\(888\) −2.44787 56.2729i −0.0821453 1.88840i
\(889\) 17.5143 30.3356i 0.587409 1.01742i
\(890\) 0 0
\(891\) −5.50178 + 20.5061i −0.184316 + 0.686980i
\(892\) −24.3514 + 40.7910i −0.815346 + 1.36578i
\(893\) 19.9059 + 11.4927i 0.666125 + 0.384587i
\(894\) 17.1340 11.2666i 0.573047 0.376811i
\(895\) 0 0
\(896\) −36.6756 + 7.84436i −1.22525 + 0.262062i
\(897\) 17.8153 + 52.4962i 0.594835 + 1.75280i
\(898\) 24.0175 23.6695i 0.801475 0.789860i
\(899\) −0.283722 −0.00946265
\(900\) 0 0
\(901\) −0.686641 −0.0228753
\(902\) −6.72812 + 6.63062i −0.224022 + 0.220776i
\(903\) −47.0374 9.36031i −1.56531 0.311492i
\(904\) 13.8001 47.3320i 0.458983 1.57424i
\(905\) 0 0
\(906\) −35.8917 18.0304i −1.19242 0.599019i
\(907\) −42.3752 24.4653i −1.40705 0.812358i −0.411943 0.911209i \(-0.635150\pi\)
−0.995102 + 0.0988513i \(0.968483\pi\)
\(908\) −47.8386 28.5587i −1.58758 0.947752i
\(909\) −8.91637 + 21.5161i −0.295737 + 0.713643i
\(910\) 0 0
\(911\) 16.0978 27.8822i 0.533343 0.923778i −0.465898 0.884838i \(-0.654269\pi\)
0.999242 0.0389396i \(-0.0123980\pi\)
\(912\) −15.3983 14.3227i −0.509889 0.474272i
\(913\) 3.06588 + 5.31026i 0.101466 + 0.175744i
\(914\) −21.5646 + 5.60985i −0.713292 + 0.185557i
\(915\) 0 0
\(916\) 29.2006 16.2953i 0.964814 0.538413i
\(917\) 53.8956i 1.77979i
\(918\) 6.41935 1.22662i 0.211870 0.0404845i
\(919\) 37.8553i 1.24873i 0.781133 + 0.624365i \(0.214642\pi\)
−0.781133 + 0.624365i \(0.785358\pi\)
\(920\) 0 0
\(921\) 0.540923 + 0.474455i 0.0178240 + 0.0156338i
\(922\) −3.80093 14.6110i −0.125177 0.481187i
\(923\) −25.7942 44.6768i −0.849026 1.47056i
\(924\) 26.4892 + 5.67445i 0.871429 + 0.186676i
\(925\) 0 0
\(926\) −8.66098 2.38859i −0.284618 0.0784939i
\(927\) 24.0300 + 31.3271i 0.789248 + 1.02892i
\(928\) −1.51347 6.60333i −0.0496822 0.216765i
\(929\) −14.4535 8.34474i −0.474205 0.273782i 0.243794 0.969827i \(-0.421608\pi\)
−0.717998 + 0.696045i \(0.754941\pi\)
\(930\) 0 0
\(931\) −10.4868 + 6.05458i −0.343693 + 0.198431i
\(932\) 3.35841 + 0.0490261i 0.110008 + 0.00160590i
\(933\) −0.966795 0.192390i −0.0316514 0.00629855i
\(934\) 7.70506 + 7.81836i 0.252117 + 0.255824i
\(935\) 0 0
\(936\) 5.68861 36.9000i 0.185938 1.20611i
\(937\) 41.7514 1.36396 0.681979 0.731372i \(-0.261120\pi\)
0.681979 + 0.731372i \(0.261120\pi\)
\(938\) 20.8789 + 21.1859i 0.681721 + 0.691745i
\(939\) 15.6200 + 46.0273i 0.509739 + 1.50204i
\(940\) 0 0
\(941\) 9.78882 5.65158i 0.319106 0.184236i −0.331888 0.943319i \(-0.607686\pi\)
0.650994 + 0.759083i \(0.274352\pi\)
\(942\) 14.4164 + 21.9242i 0.469711 + 0.714329i
\(943\) 17.8369 + 10.2982i 0.580851 + 0.335354i
\(944\) 4.04076 + 7.49595i 0.131516 + 0.243972i
\(945\) 0 0
\(946\) 26.8634 + 7.40858i 0.873404 + 0.240874i
\(947\) −2.56935 + 4.45025i −0.0834928 + 0.144614i −0.904748 0.425947i \(-0.859941\pi\)
0.821255 + 0.570561i \(0.193274\pi\)
\(948\) −11.0071 34.0605i −0.357495 1.10623i
\(949\) 13.4398 + 23.2784i 0.436274 + 0.755649i
\(950\) 0 0
\(951\) −21.7709 + 7.38824i −0.705970 + 0.239580i
\(952\) −1.98142 8.10015i −0.0642181 0.262527i
\(953\) 22.9718i 0.744131i −0.928206 0.372066i \(-0.878650\pi\)
0.928206 0.372066i \(-0.121350\pi\)
\(954\) 2.58372 + 2.01336i 0.0836510 + 0.0651851i
\(955\) 0 0
\(956\) 18.8997 10.5470i 0.611260 0.341113i
\(957\) −0.955025 + 4.79919i −0.0308716 + 0.155136i
\(958\) −9.76032 + 2.53907i −0.315342 + 0.0820336i
\(959\) 21.8654 + 37.8720i 0.706072 + 1.22295i
\(960\) 0 0
\(961\) −15.4719 + 26.7982i −0.499095 + 0.864457i
\(962\) 19.0211 68.9703i 0.613265 2.22369i
\(963\) 0.0986235 + 0.750067i 0.00317810 + 0.0241706i
\(964\) −18.7408 11.1879i −0.603601 0.360337i
\(965\) 0 0
\(966\) −3.42802 58.9666i −0.110295 1.89722i
\(967\) −36.5239 + 21.0871i −1.17453 + 0.678115i −0.954743 0.297433i \(-0.903869\pi\)
−0.219787 + 0.975548i \(0.570536\pi\)
\(968\) 14.7579 + 4.30280i 0.474337 + 0.138297i
\(969\) 3.08324 3.51519i 0.0990481 0.112924i
\(970\) 0 0
\(971\) −29.9678 −0.961712 −0.480856 0.876799i \(-0.659674\pi\)
−0.480856 + 0.876799i \(0.659674\pi\)
\(972\) −27.7517 14.2072i −0.890135 0.455697i
\(973\) 21.4947 0.689090
\(974\) 15.2188 14.9982i 0.487641 0.480574i
\(975\) 0 0
\(976\) −8.03573 + 13.0248i −0.257217 + 0.416915i
\(977\) 32.1452 18.5590i 1.02842 0.593756i 0.111885 0.993721i \(-0.464311\pi\)
0.916530 + 0.399965i \(0.130978\pi\)
\(978\) −0.189904 3.26660i −0.00607245 0.104454i
\(979\) −9.56383 5.52168i −0.305661 0.176474i
\(980\) 0 0
\(981\) 0.179538 + 1.36545i 0.00573221 + 0.0435955i
\(982\) −11.0701 + 40.1402i −0.353262 + 1.28092i
\(983\) 14.3704 24.8903i 0.458345 0.793876i −0.540529 0.841325i \(-0.681776\pi\)
0.998874 + 0.0474493i \(0.0151093\pi\)
\(984\) −7.45119 11.7002i −0.237535 0.372988i
\(985\) 0 0
\(986\) 1.45775 0.379221i 0.0464242 0.0120769i
\(987\) 8.48593 42.6434i 0.270110 1.35735i
\(988\) −13.0168 23.3255i −0.414119 0.742084i
\(989\) 60.7584i 1.93201i
\(990\) 0 0
\(991\) 5.20653i 0.165391i −0.996575 0.0826954i \(-0.973647\pi\)
0.996575 0.0826954i \(-0.0263529\pi\)
\(992\) 1.28099 + 0.393862i 0.0406716 + 0.0125051i
\(993\) 14.0905 4.78180i 0.447149 0.151746i
\(994\) 13.8383 + 53.1953i 0.438925 + 1.68725i
\(995\) 0 0
\(996\) −8.56784 + 2.76882i −0.271483 + 0.0877334i
\(997\) −10.4918 + 18.1724i −0.332279 + 0.575525i −0.982958 0.183828i \(-0.941151\pi\)
0.650679 + 0.759353i \(0.274484\pi\)
\(998\) 28.4612 + 7.84924i 0.900924 + 0.248463i
\(999\) −49.6663 33.2036i −1.57137 1.05051i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.551.7 48
4.3 odd 2 inner 900.2.r.g.551.3 48
5.2 odd 4 180.2.n.d.119.19 yes 48
5.3 odd 4 180.2.n.d.119.6 yes 48
5.4 even 2 inner 900.2.r.g.551.18 48
9.5 odd 6 inner 900.2.r.g.851.3 48
15.2 even 4 540.2.n.d.359.6 48
15.8 even 4 540.2.n.d.359.19 48
20.3 even 4 180.2.n.d.119.10 yes 48
20.7 even 4 180.2.n.d.119.15 yes 48
20.19 odd 2 inner 900.2.r.g.551.22 48
36.23 even 6 inner 900.2.r.g.851.7 48
45.13 odd 12 540.2.n.d.179.10 48
45.14 odd 6 inner 900.2.r.g.851.22 48
45.22 odd 12 540.2.n.d.179.15 48
45.23 even 12 180.2.n.d.59.15 yes 48
45.32 even 12 180.2.n.d.59.10 yes 48
60.23 odd 4 540.2.n.d.359.15 48
60.47 odd 4 540.2.n.d.359.10 48
180.23 odd 12 180.2.n.d.59.19 yes 48
180.59 even 6 inner 900.2.r.g.851.18 48
180.67 even 12 540.2.n.d.179.19 48
180.103 even 12 540.2.n.d.179.6 48
180.167 odd 12 180.2.n.d.59.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.6 48 180.167 odd 12
180.2.n.d.59.10 yes 48 45.32 even 12
180.2.n.d.59.15 yes 48 45.23 even 12
180.2.n.d.59.19 yes 48 180.23 odd 12
180.2.n.d.119.6 yes 48 5.3 odd 4
180.2.n.d.119.10 yes 48 20.3 even 4
180.2.n.d.119.15 yes 48 20.7 even 4
180.2.n.d.119.19 yes 48 5.2 odd 4
540.2.n.d.179.6 48 180.103 even 12
540.2.n.d.179.10 48 45.13 odd 12
540.2.n.d.179.15 48 45.22 odd 12
540.2.n.d.179.19 48 180.67 even 12
540.2.n.d.359.6 48 15.2 even 4
540.2.n.d.359.10 48 60.47 odd 4
540.2.n.d.359.15 48 60.23 odd 4
540.2.n.d.359.19 48 15.8 even 4
900.2.r.g.551.3 48 4.3 odd 2 inner
900.2.r.g.551.7 48 1.1 even 1 trivial
900.2.r.g.551.18 48 5.4 even 2 inner
900.2.r.g.551.22 48 20.19 odd 2 inner
900.2.r.g.851.3 48 9.5 odd 6 inner
900.2.r.g.851.7 48 36.23 even 6 inner
900.2.r.g.851.18 48 180.59 even 6 inner
900.2.r.g.851.22 48 45.14 odd 6 inner