Properties

Label 540.2.n.d
Level $540$
Weight $2$
Character orbit 540.n
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
179.1 −1.41350 + 0.0449209i 0 1.99596 0.126991i −0.0361315 + 2.23578i 0 −1.44473 2.50234i −2.81559 + 0.269163i 0 −0.0493612 3.16189i
179.2 −1.38574 + 0.282343i 0 1.84056 0.782509i 1.62334 1.53778i 0 −0.550457 0.953419i −2.32961 + 1.60403i 0 −1.81534 + 2.58931i
179.3 −1.38444 0.288666i 0 1.83334 + 0.799280i −0.989764 2.00509i 0 −0.573658 0.993605i −2.30743 1.63578i 0 0.791468 + 3.06163i
179.4 −1.25828 0.645549i 0 1.16653 + 1.62456i 0.0966770 + 2.23398i 0 1.60868 + 2.78632i −0.419091 2.79721i 0 1.32049 2.87338i
179.5 −1.24631 0.668359i 0 1.10659 + 1.66597i 2.11186 + 0.734875i 0 −0.667441 1.15604i −0.265693 2.81592i 0 −2.14088 2.32737i
179.6 −1.00727 0.992675i 0 0.0291929 + 1.99979i 0.493735 2.18088i 0 −1.65751 2.87089i 1.95573 2.04331i 0 −2.66223 + 1.70662i
179.7 −0.937387 + 1.05892i 0 −0.242609 1.98523i −0.520093 + 2.17474i 0 −0.550457 0.953419i 2.32961 + 1.60403i 0 −1.81534 2.58931i
179.8 −0.745653 + 1.20167i 0 −0.888004 1.79205i 1.91817 1.14918i 0 −1.44473 2.50234i 2.81559 + 0.269163i 0 −0.0493612 + 3.16189i
179.9 −0.442228 + 1.34329i 0 −1.60887 1.18808i −2.23134 + 0.145382i 0 −0.573658 0.993605i 2.30743 1.63578i 0 0.791468 3.06163i
179.10 −0.356046 1.36866i 0 −1.74646 + 0.974612i 0.493735 2.18088i 0 1.65751 + 2.87089i 1.95573 + 2.04331i 0 −3.16067 + 0.100737i
179.11 −0.0700780 + 1.41248i 0 −1.99018 0.197967i 1.98302 1.03326i 0 1.60868 + 2.78632i 0.419091 2.79721i 0 1.32049 + 2.87338i
179.12 −0.0443404 + 1.41352i 0 −1.99607 0.125352i 1.69235 + 1.46149i 0 −0.667441 1.15604i 0.265693 2.81592i 0 −2.14088 + 2.32737i
179.13 0.0443404 1.41352i 0 −1.99607 0.125352i 2.11186 + 0.734875i 0 0.667441 + 1.15604i −0.265693 + 2.81592i 0 1.13240 2.95257i
179.14 0.0700780 1.41248i 0 −1.99018 0.197967i 0.0966770 + 2.23398i 0 −1.60868 2.78632i −0.419091 + 2.79721i 0 3.16221 + 0.0199985i
179.15 0.356046 + 1.36866i 0 −1.74646 + 0.974612i −1.64183 + 1.51803i 0 −1.65751 2.87089i −1.95573 2.04331i 0 −2.66223 1.70662i
179.16 0.442228 1.34329i 0 −1.60887 1.18808i −0.989764 2.00509i 0 0.573658 + 0.993605i −2.30743 + 1.63578i 0 −3.13112 + 0.442837i
179.17 0.745653 1.20167i 0 −0.888004 1.79205i −0.0361315 + 2.23578i 0 1.44473 + 2.50234i −2.81559 0.269163i 0 2.65972 + 1.71053i
179.18 0.937387 1.05892i 0 −0.242609 1.98523i 1.62334 1.53778i 0 0.550457 + 0.953419i −2.32961 1.60403i 0 −0.106691 3.16048i
179.19 1.00727 + 0.992675i 0 0.0291929 + 1.99979i −1.64183 + 1.51803i 0 1.65751 + 2.87089i −1.95573 + 2.04331i 0 −3.16067 0.100737i
179.20 1.24631 + 0.668359i 0 1.10659 + 1.66597i 1.69235 + 1.46149i 0 0.667441 + 1.15604i 0.265693 + 2.81592i 0 1.13240 + 2.95257i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 179.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
9.d odd 6 1 inner
20.d odd 2 1 inner
36.h even 6 1 inner
45.h odd 6 1 inner
180.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 540.2.n.d 48
3.b odd 2 1 180.2.n.d 48
4.b odd 2 1 inner 540.2.n.d 48
5.b even 2 1 inner 540.2.n.d 48
9.c even 3 1 180.2.n.d 48
9.d odd 6 1 inner 540.2.n.d 48
12.b even 2 1 180.2.n.d 48
15.d odd 2 1 180.2.n.d 48
15.e even 4 2 900.2.r.g 48
20.d odd 2 1 inner 540.2.n.d 48
36.f odd 6 1 180.2.n.d 48
36.h even 6 1 inner 540.2.n.d 48
45.h odd 6 1 inner 540.2.n.d 48
45.j even 6 1 180.2.n.d 48
45.k odd 12 2 900.2.r.g 48
60.h even 2 1 180.2.n.d 48
60.l odd 4 2 900.2.r.g 48
180.n even 6 1 inner 540.2.n.d 48
180.p odd 6 1 180.2.n.d 48
180.x even 12 2 900.2.r.g 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.2.n.d 48 3.b odd 2 1
180.2.n.d 48 9.c even 3 1
180.2.n.d 48 12.b even 2 1
180.2.n.d 48 15.d odd 2 1
180.2.n.d 48 36.f odd 6 1
180.2.n.d 48 45.j even 6 1
180.2.n.d 48 60.h even 2 1
180.2.n.d 48 180.p odd 6 1
540.2.n.d 48 1.a even 1 1 trivial
540.2.n.d 48 4.b odd 2 1 inner
540.2.n.d 48 5.b even 2 1 inner
540.2.n.d 48 9.d odd 6 1 inner
540.2.n.d 48 20.d odd 2 1 inner
540.2.n.d 48 36.h even 6 1 inner
540.2.n.d 48 45.h odd 6 1 inner
540.2.n.d 48 180.n even 6 1 inner
900.2.r.g 48 15.e even 4 2
900.2.r.g 48 45.k odd 12 2
900.2.r.g 48 60.l odd 4 2
900.2.r.g 48 180.x even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{24} + 34 T_{7}^{22} + 730 T_{7}^{20} + 9700 T_{7}^{18} + 94189 T_{7}^{16} + 620404 T_{7}^{14} + \cdots + 7290000 \) acting on \(S_{2}^{\mathrm{new}}(540, [\chi])\). Copy content Toggle raw display