Properties

Label 540.2.n.d.179.10
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.10
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.356046 - 1.36866i) q^{2} +(-1.74646 + 0.974612i) q^{4} +(0.493735 - 2.18088i) q^{5} +(1.65751 + 2.87089i) q^{7} +(1.95573 + 2.04331i) q^{8} +(-3.16067 + 0.100737i) q^{10} +(1.17952 + 2.04298i) q^{11} +(3.81058 + 2.20004i) q^{13} +(3.33912 - 3.29074i) q^{14} +(2.10026 - 3.40425i) q^{16} -0.889368 q^{17} -3.03537i q^{19} +(1.26322 + 4.29002i) q^{20} +(2.37619 - 2.34176i) q^{22} +(6.29952 + 3.63703i) q^{23} +(-4.51245 - 2.15355i) q^{25} +(1.65437 - 5.99870i) q^{26} +(-5.69278 - 3.39848i) q^{28} +(-1.03714 + 0.598791i) q^{29} +(-0.205172 - 0.118456i) q^{31} +(-5.40705 - 1.66248i) q^{32} +(0.316656 + 1.21724i) q^{34} +(7.07943 - 2.19737i) q^{35} -11.4975i q^{37} +(-4.15440 + 1.08073i) q^{38} +(5.42182 - 3.25636i) q^{40} +(-2.45213 - 1.41574i) q^{41} +(4.17637 + 7.23369i) q^{43} +(-4.05110 - 2.41842i) q^{44} +(2.73494 - 9.91686i) q^{46} +(6.55796 - 3.78624i) q^{47} +(-1.99467 + 3.45488i) q^{49} +(-1.34084 + 6.94278i) q^{50} +(-8.79922 - 0.128451i) q^{52} +0.772055 q^{53} +(5.03787 - 1.56369i) q^{55} +(-2.62447 + 9.00150i) q^{56} +(1.18881 + 1.20629i) q^{58} +(1.06446 - 1.84370i) q^{59} +(1.91303 + 3.31346i) q^{61} +(-0.0890754 + 0.322986i) q^{62} +(-0.350216 + 7.99233i) q^{64} +(6.67943 - 7.22417i) q^{65} +(3.17238 - 5.49472i) q^{67} +(1.55325 - 0.866788i) q^{68} +(-5.52805 - 8.90697i) q^{70} -11.7244 q^{71} +6.10889i q^{73} +(-15.7362 + 4.09365i) q^{74} +(2.95831 + 5.30117i) q^{76} +(-3.91012 + 6.77253i) q^{77} +(-8.94873 + 5.16655i) q^{79} +(-6.38727 - 6.26121i) q^{80} +(-1.06459 + 3.86020i) q^{82} +(2.25103 - 1.29963i) q^{83} +(-0.439112 + 1.93960i) q^{85} +(8.41349 - 8.29156i) q^{86} +(-1.86763 + 6.40565i) q^{88} +4.68130i q^{89} +14.5863i q^{91} +(-14.5466 - 0.212351i) q^{92} +(-7.51702 - 7.62755i) q^{94} +(-6.61978 - 1.49867i) q^{95} +(-5.34684 + 3.08700i) q^{97} +(5.43875 + 1.49994i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.356046 1.36866i −0.251762 0.967789i
\(3\) 0 0
\(4\) −1.74646 + 0.974612i −0.873231 + 0.487306i
\(5\) 0.493735 2.18088i 0.220805 0.975318i
\(6\) 0 0
\(7\) 1.65751 + 2.87089i 0.626480 + 1.08509i 0.988253 + 0.152828i \(0.0488382\pi\)
−0.361773 + 0.932266i \(0.617828\pi\)
\(8\) 1.95573 + 2.04331i 0.691456 + 0.722418i
\(9\) 0 0
\(10\) −3.16067 + 0.100737i −0.999492 + 0.0318558i
\(11\) 1.17952 + 2.04298i 0.355638 + 0.615983i 0.987227 0.159320i \(-0.0509303\pi\)
−0.631589 + 0.775303i \(0.717597\pi\)
\(12\) 0 0
\(13\) 3.81058 + 2.20004i 1.05686 + 0.610181i 0.924563 0.381029i \(-0.124430\pi\)
0.132301 + 0.991210i \(0.457763\pi\)
\(14\) 3.33912 3.29074i 0.892419 0.879486i
\(15\) 0 0
\(16\) 2.10026 3.40425i 0.525066 0.851061i
\(17\) −0.889368 −0.215703 −0.107852 0.994167i \(-0.534397\pi\)
−0.107852 + 0.994167i \(0.534397\pi\)
\(18\) 0 0
\(19\) 3.03537i 0.696363i −0.937427 0.348181i \(-0.886799\pi\)
0.937427 0.348181i \(-0.113201\pi\)
\(20\) 1.26322 + 4.29002i 0.282464 + 0.959278i
\(21\) 0 0
\(22\) 2.37619 2.34176i 0.506605 0.499264i
\(23\) 6.29952 + 3.63703i 1.31354 + 0.758374i 0.982681 0.185306i \(-0.0593276\pi\)
0.330861 + 0.943680i \(0.392661\pi\)
\(24\) 0 0
\(25\) −4.51245 2.15355i −0.902490 0.430710i
\(26\) 1.65437 5.99870i 0.324448 1.17644i
\(27\) 0 0
\(28\) −5.69278 3.39848i −1.07583 0.642251i
\(29\) −1.03714 + 0.598791i −0.192592 + 0.111193i −0.593195 0.805059i \(-0.702134\pi\)
0.400604 + 0.916251i \(0.368800\pi\)
\(30\) 0 0
\(31\) −0.205172 0.118456i −0.0368499 0.0212753i 0.481462 0.876467i \(-0.340106\pi\)
−0.518312 + 0.855192i \(0.673439\pi\)
\(32\) −5.40705 1.66248i −0.955840 0.293888i
\(33\) 0 0
\(34\) 0.316656 + 1.21724i 0.0543060 + 0.208755i
\(35\) 7.07943 2.19737i 1.19664 0.371423i
\(36\) 0 0
\(37\) 11.4975i 1.89018i −0.326807 0.945091i \(-0.605973\pi\)
0.326807 0.945091i \(-0.394027\pi\)
\(38\) −4.15440 + 1.08073i −0.673932 + 0.175318i
\(39\) 0 0
\(40\) 5.42182 3.25636i 0.857265 0.514876i
\(41\) −2.45213 1.41574i −0.382958 0.221101i 0.296146 0.955143i \(-0.404298\pi\)
−0.679105 + 0.734042i \(0.737632\pi\)
\(42\) 0 0
\(43\) 4.17637 + 7.23369i 0.636891 + 1.10313i 0.986111 + 0.166087i \(0.0531132\pi\)
−0.349220 + 0.937041i \(0.613553\pi\)
\(44\) −4.05110 2.41842i −0.610726 0.364591i
\(45\) 0 0
\(46\) 2.73494 9.91686i 0.403245 1.46216i
\(47\) 6.55796 3.78624i 0.956577 0.552280i 0.0614594 0.998110i \(-0.480425\pi\)
0.895118 + 0.445829i \(0.147091\pi\)
\(48\) 0 0
\(49\) −1.99467 + 3.45488i −0.284954 + 0.493554i
\(50\) −1.34084 + 6.94278i −0.189623 + 0.981857i
\(51\) 0 0
\(52\) −8.79922 0.128451i −1.22023 0.0178130i
\(53\) 0.772055 0.106050 0.0530249 0.998593i \(-0.483114\pi\)
0.0530249 + 0.998593i \(0.483114\pi\)
\(54\) 0 0
\(55\) 5.03787 1.56369i 0.679306 0.210848i
\(56\) −2.62447 + 9.00150i −0.350709 + 1.20288i
\(57\) 0 0
\(58\) 1.18881 + 1.20629i 0.156098 + 0.158394i
\(59\) 1.06446 1.84370i 0.138581 0.240029i −0.788379 0.615190i \(-0.789079\pi\)
0.926960 + 0.375161i \(0.122413\pi\)
\(60\) 0 0
\(61\) 1.91303 + 3.31346i 0.244938 + 0.424245i 0.962114 0.272647i \(-0.0878990\pi\)
−0.717176 + 0.696892i \(0.754566\pi\)
\(62\) −0.0890754 + 0.322986i −0.0113126 + 0.0410193i
\(63\) 0 0
\(64\) −0.350216 + 7.99233i −0.0437769 + 0.999041i
\(65\) 6.67943 7.22417i 0.828481 0.896048i
\(66\) 0 0
\(67\) 3.17238 5.49472i 0.387567 0.671287i −0.604554 0.796564i \(-0.706649\pi\)
0.992122 + 0.125277i \(0.0399821\pi\)
\(68\) 1.55325 0.866788i 0.188359 0.105113i
\(69\) 0 0
\(70\) −5.52805 8.90697i −0.660728 1.06459i
\(71\) −11.7244 −1.39143 −0.695717 0.718316i \(-0.744913\pi\)
−0.695717 + 0.718316i \(0.744913\pi\)
\(72\) 0 0
\(73\) 6.10889i 0.714992i 0.933915 + 0.357496i \(0.116369\pi\)
−0.933915 + 0.357496i \(0.883631\pi\)
\(74\) −15.7362 + 4.09365i −1.82930 + 0.475877i
\(75\) 0 0
\(76\) 2.95831 + 5.30117i 0.339342 + 0.608086i
\(77\) −3.91012 + 6.77253i −0.445600 + 0.771802i
\(78\) 0 0
\(79\) −8.94873 + 5.16655i −1.00681 + 0.581283i −0.910256 0.414045i \(-0.864116\pi\)
−0.0965546 + 0.995328i \(0.530782\pi\)
\(80\) −6.38727 6.26121i −0.714118 0.700025i
\(81\) 0 0
\(82\) −1.06459 + 3.86020i −0.117565 + 0.426288i
\(83\) 2.25103 1.29963i 0.247083 0.142653i −0.371345 0.928495i \(-0.621103\pi\)
0.618428 + 0.785842i \(0.287770\pi\)
\(84\) 0 0
\(85\) −0.439112 + 1.93960i −0.0476284 + 0.210379i
\(86\) 8.41349 8.29156i 0.907250 0.894102i
\(87\) 0 0
\(88\) −1.86763 + 6.40565i −0.199089 + 0.682845i
\(89\) 4.68130i 0.496217i 0.968732 + 0.248108i \(0.0798089\pi\)
−0.968732 + 0.248108i \(0.920191\pi\)
\(90\) 0 0
\(91\) 14.5863i 1.52906i
\(92\) −14.5466 0.212351i −1.51659 0.0221391i
\(93\) 0 0
\(94\) −7.51702 7.62755i −0.775321 0.786722i
\(95\) −6.61978 1.49867i −0.679175 0.153760i
\(96\) 0 0
\(97\) −5.34684 + 3.08700i −0.542890 + 0.313438i −0.746249 0.665667i \(-0.768147\pi\)
0.203360 + 0.979104i \(0.434814\pi\)
\(98\) 5.43875 + 1.49994i 0.549397 + 0.151517i
\(99\) 0 0
\(100\) 9.97970 0.636793i 0.997970 0.0636793i
\(101\) 6.72336 3.88174i 0.669000 0.386247i −0.126698 0.991941i \(-0.540438\pi\)
0.795697 + 0.605694i \(0.207105\pi\)
\(102\) 0 0
\(103\) −6.58033 + 11.3975i −0.648379 + 1.12302i 0.335131 + 0.942171i \(0.391219\pi\)
−0.983510 + 0.180853i \(0.942114\pi\)
\(104\) 2.95712 + 12.0889i 0.289969 + 1.18541i
\(105\) 0 0
\(106\) −0.274887 1.05668i −0.0266994 0.102634i
\(107\) 0.252175i 0.0243786i 0.999926 + 0.0121893i \(0.00388008\pi\)
−0.999926 + 0.0121893i \(0.996120\pi\)
\(108\) 0 0
\(109\) 0.459068 0.0439708 0.0219854 0.999758i \(-0.493001\pi\)
0.0219854 + 0.999758i \(0.493001\pi\)
\(110\) −3.93387 6.33838i −0.375080 0.604341i
\(111\) 0 0
\(112\) 13.2544 + 0.387059i 1.25243 + 0.0365736i
\(113\) 8.71557 15.0958i 0.819892 1.42009i −0.0858696 0.996306i \(-0.527367\pi\)
0.905761 0.423788i \(-0.139300\pi\)
\(114\) 0 0
\(115\) 11.0422 11.9428i 1.02969 1.11367i
\(116\) 1.22773 2.05657i 0.113992 0.190948i
\(117\) 0 0
\(118\) −2.90240 0.800444i −0.267187 0.0736868i
\(119\) −1.47414 2.55328i −0.135134 0.234059i
\(120\) 0 0
\(121\) 2.71748 4.70681i 0.247043 0.427891i
\(122\) 3.85388 3.79803i 0.348914 0.343857i
\(123\) 0 0
\(124\) 0.473773 + 0.00691615i 0.0425461 + 0.000621089i
\(125\) −6.92458 + 8.77782i −0.619354 + 0.785112i
\(126\) 0 0
\(127\) −10.5666 −0.937635 −0.468817 0.883295i \(-0.655320\pi\)
−0.468817 + 0.883295i \(0.655320\pi\)
\(128\) 11.0635 2.36631i 0.977883 0.209154i
\(129\) 0 0
\(130\) −12.2656 6.56974i −1.07577 0.576204i
\(131\) −8.12900 + 14.0798i −0.710234 + 1.23016i 0.254535 + 0.967064i \(0.418078\pi\)
−0.964769 + 0.263098i \(0.915256\pi\)
\(132\) 0 0
\(133\) 8.71423 5.03116i 0.755619 0.436257i
\(134\) −8.64991 2.38554i −0.747239 0.206079i
\(135\) 0 0
\(136\) −1.73937 1.81725i −0.149149 0.155828i
\(137\) 6.59587 + 11.4244i 0.563523 + 0.976051i 0.997185 + 0.0749753i \(0.0238878\pi\)
−0.433662 + 0.901076i \(0.642779\pi\)
\(138\) 0 0
\(139\) 5.61535 + 3.24202i 0.476288 + 0.274985i 0.718868 0.695146i \(-0.244660\pi\)
−0.242580 + 0.970131i \(0.577994\pi\)
\(140\) −10.2224 + 10.7373i −0.863949 + 0.907469i
\(141\) 0 0
\(142\) 4.17443 + 16.0468i 0.350311 + 1.34661i
\(143\) 10.3799i 0.868014i
\(144\) 0 0
\(145\) 0.793820 + 2.55751i 0.0659232 + 0.212390i
\(146\) 8.36100 2.17505i 0.691961 0.180008i
\(147\) 0 0
\(148\) 11.2056 + 20.0800i 0.921097 + 1.65057i
\(149\) −7.25009 4.18584i −0.593950 0.342917i 0.172708 0.984973i \(-0.444748\pi\)
−0.766658 + 0.642056i \(0.778082\pi\)
\(150\) 0 0
\(151\) −14.2008 + 8.19886i −1.15565 + 0.667214i −0.950257 0.311466i \(-0.899180\pi\)
−0.205391 + 0.978680i \(0.565847\pi\)
\(152\) 6.20220 5.93638i 0.503065 0.481504i
\(153\) 0 0
\(154\) 10.6615 + 2.94030i 0.859127 + 0.236936i
\(155\) −0.359638 + 0.388968i −0.0288868 + 0.0312427i
\(156\) 0 0
\(157\) 9.27700 + 5.35608i 0.740386 + 0.427462i 0.822209 0.569185i \(-0.192741\pi\)
−0.0818239 + 0.996647i \(0.526075\pi\)
\(158\) 10.2574 + 10.4082i 0.816036 + 0.828036i
\(159\) 0 0
\(160\) −6.29531 + 10.9713i −0.497688 + 0.867356i
\(161\) 24.1137i 1.90042i
\(162\) 0 0
\(163\) −1.33584 −0.104631 −0.0523153 0.998631i \(-0.516660\pi\)
−0.0523153 + 0.998631i \(0.516660\pi\)
\(164\) 5.66235 + 0.0826590i 0.442155 + 0.00645459i
\(165\) 0 0
\(166\) −2.58023 2.61817i −0.200265 0.203209i
\(167\) −6.20942 3.58501i −0.480500 0.277417i 0.240125 0.970742i \(-0.422812\pi\)
−0.720625 + 0.693325i \(0.756145\pi\)
\(168\) 0 0
\(169\) 3.18034 + 5.50851i 0.244641 + 0.423731i
\(170\) 2.81100 0.0895921i 0.215594 0.00687140i
\(171\) 0 0
\(172\) −14.3439 8.56303i −1.09371 0.652925i
\(173\) −1.28765 2.23027i −0.0978979 0.169564i 0.812916 0.582380i \(-0.197879\pi\)
−0.910814 + 0.412816i \(0.864545\pi\)
\(174\) 0 0
\(175\) −1.29682 16.5243i −0.0980307 1.24912i
\(176\) 9.43212 + 0.275439i 0.710973 + 0.0207620i
\(177\) 0 0
\(178\) 6.40711 1.66676i 0.480233 0.124929i
\(179\) 10.1847 0.761243 0.380622 0.924731i \(-0.375710\pi\)
0.380622 + 0.924731i \(0.375710\pi\)
\(180\) 0 0
\(181\) 4.17537 0.310353 0.155176 0.987887i \(-0.450405\pi\)
0.155176 + 0.987887i \(0.450405\pi\)
\(182\) 19.9637 5.19340i 1.47981 0.384961i
\(183\) 0 0
\(184\) 4.88861 + 19.9849i 0.360393 + 1.47331i
\(185\) −25.0747 5.67673i −1.84353 0.417362i
\(186\) 0 0
\(187\) −1.04902 1.81696i −0.0767123 0.132870i
\(188\) −7.76312 + 13.0040i −0.566184 + 0.948414i
\(189\) 0 0
\(190\) 0.305774 + 9.59382i 0.0221832 + 0.696009i
\(191\) −12.5152 21.6770i −0.905570 1.56849i −0.820151 0.572147i \(-0.806111\pi\)
−0.0854186 0.996345i \(-0.527223\pi\)
\(192\) 0 0
\(193\) −16.3830 9.45871i −1.17927 0.680853i −0.223426 0.974721i \(-0.571724\pi\)
−0.955846 + 0.293868i \(0.905057\pi\)
\(194\) 6.12878 + 6.21890i 0.440021 + 0.446491i
\(195\) 0 0
\(196\) 0.116461 7.97785i 0.00831863 0.569846i
\(197\) −5.25418 −0.374345 −0.187172 0.982327i \(-0.559932\pi\)
−0.187172 + 0.982327i \(0.559932\pi\)
\(198\) 0 0
\(199\) 18.8487i 1.33615i −0.744095 0.668074i \(-0.767119\pi\)
0.744095 0.668074i \(-0.232881\pi\)
\(200\) −4.42478 13.4321i −0.312880 0.949793i
\(201\) 0 0
\(202\) −7.70660 7.81993i −0.542235 0.550208i
\(203\) −3.43813 1.98500i −0.241309 0.139320i
\(204\) 0 0
\(205\) −4.29825 + 4.64879i −0.300203 + 0.324686i
\(206\) 17.9421 + 4.94821i 1.25009 + 0.344758i
\(207\) 0 0
\(208\) 15.4927 8.35148i 1.07423 0.579071i
\(209\) 6.20122 3.58028i 0.428948 0.247653i
\(210\) 0 0
\(211\) 3.96081 + 2.28678i 0.272674 + 0.157428i 0.630102 0.776512i \(-0.283013\pi\)
−0.357428 + 0.933941i \(0.616346\pi\)
\(212\) −1.34837 + 0.752454i −0.0926061 + 0.0516787i
\(213\) 0 0
\(214\) 0.345141 0.0897857i 0.0235934 0.00613762i
\(215\) 17.8378 5.53663i 1.21653 0.377595i
\(216\) 0 0
\(217\) 0.785367i 0.0533142i
\(218\) −0.163449 0.628309i −0.0110702 0.0425544i
\(219\) 0 0
\(220\) −7.27446 + 7.64089i −0.490444 + 0.515149i
\(221\) −3.38900 1.95664i −0.227969 0.131618i
\(222\) 0 0
\(223\) −11.8767 20.5711i −0.795323 1.37754i −0.922634 0.385677i \(-0.873968\pi\)
0.127310 0.991863i \(-0.459366\pi\)
\(224\) −4.18943 18.2786i −0.279918 1.22129i
\(225\) 0 0
\(226\) −23.7642 6.55386i −1.58077 0.435956i
\(227\) −24.1252 + 13.9287i −1.60124 + 0.924478i −0.610005 + 0.792398i \(0.708832\pi\)
−0.991239 + 0.132081i \(0.957834\pi\)
\(228\) 0 0
\(229\) 8.35991 14.4798i 0.552439 0.956852i −0.445659 0.895203i \(-0.647031\pi\)
0.998098 0.0616492i \(-0.0196360\pi\)
\(230\) −20.2771 10.8609i −1.33703 0.716145i
\(231\) 0 0
\(232\) −3.25188 0.948115i −0.213496 0.0622468i
\(233\) 1.67938 0.110020 0.0550101 0.998486i \(-0.482481\pi\)
0.0550101 + 0.998486i \(0.482481\pi\)
\(234\) 0 0
\(235\) −5.01943 16.1715i −0.327432 1.05491i
\(236\) −0.0621495 + 4.25739i −0.00404559 + 0.277133i
\(237\) 0 0
\(238\) −2.96971 + 2.92667i −0.192498 + 0.189708i
\(239\) 5.41085 9.37186i 0.349999 0.606215i −0.636250 0.771483i \(-0.719515\pi\)
0.986249 + 0.165267i \(0.0528487\pi\)
\(240\) 0 0
\(241\) −5.45657 9.45105i −0.351488 0.608796i 0.635022 0.772494i \(-0.280991\pi\)
−0.986510 + 0.163698i \(0.947658\pi\)
\(242\) −7.40957 2.04346i −0.476305 0.131359i
\(243\) 0 0
\(244\) −6.57037 3.92238i −0.420625 0.251104i
\(245\) 6.54982 + 6.05593i 0.418453 + 0.386899i
\(246\) 0 0
\(247\) 6.67794 11.5665i 0.424907 0.735961i
\(248\) −0.159219 0.650897i −0.0101104 0.0413320i
\(249\) 0 0
\(250\) 14.4793 + 6.35210i 0.915753 + 0.401742i
\(251\) −5.05766 −0.319237 −0.159618 0.987179i \(-0.551026\pi\)
−0.159618 + 0.987179i \(0.551026\pi\)
\(252\) 0 0
\(253\) 17.1598i 1.07883i
\(254\) 3.76220 + 14.4621i 0.236061 + 0.907433i
\(255\) 0 0
\(256\) −7.17778 14.2996i −0.448611 0.893727i
\(257\) 6.69541 11.5968i 0.417649 0.723388i −0.578054 0.815999i \(-0.696188\pi\)
0.995702 + 0.0926101i \(0.0295210\pi\)
\(258\) 0 0
\(259\) 33.0081 19.0573i 2.05103 1.18416i
\(260\) −4.62462 + 19.1266i −0.286807 + 1.18618i
\(261\) 0 0
\(262\) 22.1648 + 6.11278i 1.36935 + 0.377649i
\(263\) −9.43213 + 5.44564i −0.581610 + 0.335793i −0.761773 0.647844i \(-0.775671\pi\)
0.180163 + 0.983637i \(0.442337\pi\)
\(264\) 0 0
\(265\) 0.381190 1.68376i 0.0234163 0.103432i
\(266\) −9.98862 10.1355i −0.612441 0.621447i
\(267\) 0 0
\(268\) −0.185222 + 12.6882i −0.0113142 + 0.775052i
\(269\) 21.5020i 1.31100i −0.755195 0.655500i \(-0.772458\pi\)
0.755195 0.655500i \(-0.227542\pi\)
\(270\) 0 0
\(271\) 18.9445i 1.15080i 0.817873 + 0.575399i \(0.195153\pi\)
−0.817873 + 0.575399i \(0.804847\pi\)
\(272\) −1.86791 + 3.02763i −0.113258 + 0.183577i
\(273\) 0 0
\(274\) 13.2877 13.0951i 0.802737 0.791105i
\(275\) −0.922846 11.7590i −0.0556497 0.709096i
\(276\) 0 0
\(277\) −16.1616 + 9.33092i −0.971058 + 0.560641i −0.899559 0.436800i \(-0.856112\pi\)
−0.0714994 + 0.997441i \(0.522778\pi\)
\(278\) 2.43791 8.83982i 0.146216 0.530177i
\(279\) 0 0
\(280\) 18.3354 + 10.1680i 1.09575 + 0.607654i
\(281\) 5.84683 3.37567i 0.348792 0.201375i −0.315361 0.948972i \(-0.602126\pi\)
0.664153 + 0.747596i \(0.268792\pi\)
\(282\) 0 0
\(283\) −2.63488 + 4.56374i −0.156627 + 0.271286i −0.933650 0.358186i \(-0.883395\pi\)
0.777023 + 0.629472i \(0.216729\pi\)
\(284\) 20.4763 11.4268i 1.21504 0.678054i
\(285\) 0 0
\(286\) 14.2066 3.69573i 0.840054 0.218533i
\(287\) 9.38639i 0.554061i
\(288\) 0 0
\(289\) −16.2090 −0.953472
\(290\) 3.21773 1.99706i 0.188952 0.117272i
\(291\) 0 0
\(292\) −5.95380 10.6690i −0.348420 0.624353i
\(293\) −11.1453 + 19.3041i −0.651113 + 1.12776i 0.331741 + 0.943371i \(0.392364\pi\)
−0.982853 + 0.184390i \(0.940969\pi\)
\(294\) 0 0
\(295\) −3.49532 3.23176i −0.203506 0.188160i
\(296\) 23.4930 22.4861i 1.36550 1.30698i
\(297\) 0 0
\(298\) −3.14763 + 11.4133i −0.182337 + 0.661153i
\(299\) 16.0032 + 27.7184i 0.925490 + 1.60300i
\(300\) 0 0
\(301\) −13.8448 + 23.9798i −0.797999 + 1.38217i
\(302\) 16.2776 + 16.5170i 0.936671 + 0.950444i
\(303\) 0 0
\(304\) −10.3332 6.37509i −0.592647 0.365636i
\(305\) 8.17078 2.53611i 0.467857 0.145217i
\(306\) 0 0
\(307\) 0.415414 0.0237089 0.0118545 0.999930i \(-0.496227\pi\)
0.0118545 + 0.999930i \(0.496227\pi\)
\(308\) 0.228296 15.6388i 0.0130084 0.891105i
\(309\) 0 0
\(310\) 0.660413 + 0.353732i 0.0375090 + 0.0200906i
\(311\) −0.284562 + 0.492876i −0.0161360 + 0.0279484i −0.873981 0.485961i \(-0.838470\pi\)
0.857845 + 0.513909i \(0.171803\pi\)
\(312\) 0 0
\(313\) 24.3028 14.0312i 1.37367 0.793091i 0.382285 0.924044i \(-0.375137\pi\)
0.991388 + 0.130954i \(0.0418039\pi\)
\(314\) 4.02762 14.6041i 0.227292 0.824156i
\(315\) 0 0
\(316\) 10.5932 17.7447i 0.595917 0.998219i
\(317\) −6.63676 11.4952i −0.372758 0.645635i 0.617231 0.786782i \(-0.288254\pi\)
−0.989989 + 0.141147i \(0.954921\pi\)
\(318\) 0 0
\(319\) −2.44664 1.41257i −0.136986 0.0790887i
\(320\) 17.2574 + 4.70987i 0.964717 + 0.263290i
\(321\) 0 0
\(322\) 33.0034 8.58557i 1.83921 0.478455i
\(323\) 2.69956i 0.150208i
\(324\) 0 0
\(325\) −12.4572 18.1338i −0.690999 1.00588i
\(326\) 0.475619 + 1.82830i 0.0263421 + 0.101260i
\(327\) 0 0
\(328\) −1.90292 7.77926i −0.105071 0.429538i
\(329\) 21.7398 + 12.5515i 1.19855 + 0.691985i
\(330\) 0 0
\(331\) −7.43989 + 4.29542i −0.408933 + 0.236098i −0.690331 0.723493i \(-0.742535\pi\)
0.281398 + 0.959591i \(0.409202\pi\)
\(332\) −2.66471 + 4.46364i −0.146245 + 0.244974i
\(333\) 0 0
\(334\) −2.69583 + 9.77502i −0.147509 + 0.534865i
\(335\) −10.4170 9.63150i −0.569141 0.526225i
\(336\) 0 0
\(337\) −0.914017 0.527708i −0.0497897 0.0287461i 0.474899 0.880041i \(-0.342485\pi\)
−0.524688 + 0.851294i \(0.675818\pi\)
\(338\) 6.40693 6.31409i 0.348491 0.343441i
\(339\) 0 0
\(340\) −1.12347 3.81541i −0.0609285 0.206919i
\(341\) 0.558884i 0.0302652i
\(342\) 0 0
\(343\) 9.98036 0.538889
\(344\) −6.61279 + 22.6808i −0.356538 + 1.22287i
\(345\) 0 0
\(346\) −2.59402 + 2.55643i −0.139455 + 0.137434i
\(347\) 5.97844 + 3.45165i 0.320939 + 0.185294i 0.651811 0.758381i \(-0.274009\pi\)
−0.330872 + 0.943676i \(0.607343\pi\)
\(348\) 0 0
\(349\) −15.5145 26.8719i −0.830473 1.43842i −0.897663 0.440682i \(-0.854737\pi\)
0.0671899 0.997740i \(-0.478597\pi\)
\(350\) −22.1544 + 7.65831i −1.18420 + 0.409354i
\(351\) 0 0
\(352\) −2.98128 13.0074i −0.158903 0.693299i
\(353\) 7.67847 + 13.2995i 0.408684 + 0.707861i 0.994743 0.102408i \(-0.0326546\pi\)
−0.586059 + 0.810269i \(0.699321\pi\)
\(354\) 0 0
\(355\) −5.78876 + 25.5695i −0.307235 + 1.35709i
\(356\) −4.56245 8.17572i −0.241809 0.433312i
\(357\) 0 0
\(358\) −3.62623 13.9394i −0.191652 0.736723i
\(359\) −8.51196 −0.449244 −0.224622 0.974446i \(-0.572115\pi\)
−0.224622 + 0.974446i \(0.572115\pi\)
\(360\) 0 0
\(361\) 9.78650 0.515079
\(362\) −1.48662 5.71466i −0.0781352 0.300356i
\(363\) 0 0
\(364\) −14.2160 25.4745i −0.745122 1.33523i
\(365\) 13.3227 + 3.01617i 0.697344 + 0.157874i
\(366\) 0 0
\(367\) 0.646542 + 1.11984i 0.0337492 + 0.0584553i 0.882407 0.470488i \(-0.155922\pi\)
−0.848657 + 0.528943i \(0.822589\pi\)
\(368\) 25.6120 13.8064i 1.33512 0.719708i
\(369\) 0 0
\(370\) 1.15823 + 36.3399i 0.0602133 + 1.88922i
\(371\) 1.27969 + 2.21648i 0.0664381 + 0.115074i
\(372\) 0 0
\(373\) −14.1837 8.18898i −0.734406 0.424010i 0.0856259 0.996327i \(-0.472711\pi\)
−0.820032 + 0.572318i \(0.806044\pi\)
\(374\) −2.11331 + 2.08268i −0.109276 + 0.107693i
\(375\) 0 0
\(376\) 20.5621 + 5.99506i 1.06041 + 0.309172i
\(377\) −5.26946 −0.271391
\(378\) 0 0
\(379\) 11.7940i 0.605818i 0.953020 + 0.302909i \(0.0979578\pi\)
−0.953020 + 0.302909i \(0.902042\pi\)
\(380\) 13.0218 3.83434i 0.668005 0.196698i
\(381\) 0 0
\(382\) −25.2125 + 24.8471i −1.28998 + 1.27129i
\(383\) −9.75933 5.63455i −0.498678 0.287912i 0.229489 0.973311i \(-0.426294\pi\)
−0.728168 + 0.685399i \(0.759628\pi\)
\(384\) 0 0
\(385\) 12.8395 + 11.8713i 0.654361 + 0.605019i
\(386\) −7.11268 + 25.7905i −0.362026 + 1.31270i
\(387\) 0 0
\(388\) 6.32944 10.6024i 0.321328 0.538257i
\(389\) −17.4583 + 10.0796i −0.885172 + 0.511054i −0.872360 0.488864i \(-0.837411\pi\)
−0.0128115 + 0.999918i \(0.504078\pi\)
\(390\) 0 0
\(391\) −5.60259 3.23466i −0.283335 0.163584i
\(392\) −10.9604 + 2.68108i −0.553585 + 0.135415i
\(393\) 0 0
\(394\) 1.87073 + 7.19119i 0.0942460 + 0.362287i
\(395\) 6.84932 + 22.0670i 0.344627 + 1.11031i
\(396\) 0 0
\(397\) 5.11859i 0.256895i 0.991716 + 0.128447i \(0.0409993\pi\)
−0.991716 + 0.128447i \(0.959001\pi\)
\(398\) −25.7975 + 6.71100i −1.29311 + 0.336392i
\(399\) 0 0
\(400\) −16.8086 + 10.8385i −0.840428 + 0.541924i
\(401\) −9.58291 5.53269i −0.478548 0.276290i 0.241263 0.970460i \(-0.422438\pi\)
−0.719811 + 0.694170i \(0.755772\pi\)
\(402\) 0 0
\(403\) −0.521215 0.902771i −0.0259636 0.0449702i
\(404\) −7.95892 + 13.3320i −0.395971 + 0.663291i
\(405\) 0 0
\(406\) −1.49267 + 5.41238i −0.0740798 + 0.268612i
\(407\) 23.4893 13.5615i 1.16432 0.672221i
\(408\) 0 0
\(409\) −8.08315 + 14.0004i −0.399686 + 0.692276i −0.993687 0.112188i \(-0.964214\pi\)
0.594001 + 0.804464i \(0.297548\pi\)
\(410\) 7.89300 + 4.22766i 0.389807 + 0.208789i
\(411\) 0 0
\(412\) 0.384198 26.3185i 0.0189281 1.29662i
\(413\) 7.05742 0.347273
\(414\) 0 0
\(415\) −1.72293 5.55090i −0.0845753 0.272483i
\(416\) −16.9465 18.2307i −0.830868 0.893835i
\(417\) 0 0
\(418\) −7.10810 7.21263i −0.347669 0.352781i
\(419\) 3.65564 6.33176i 0.178590 0.309327i −0.762808 0.646625i \(-0.776180\pi\)
0.941398 + 0.337298i \(0.109513\pi\)
\(420\) 0 0
\(421\) 14.9731 + 25.9341i 0.729742 + 1.26395i 0.956992 + 0.290114i \(0.0936932\pi\)
−0.227250 + 0.973836i \(0.572973\pi\)
\(422\) 1.71959 6.23521i 0.0837083 0.303525i
\(423\) 0 0
\(424\) 1.50993 + 1.57755i 0.0733288 + 0.0766124i
\(425\) 4.01323 + 1.91530i 0.194670 + 0.0929056i
\(426\) 0 0
\(427\) −6.34172 + 10.9842i −0.306897 + 0.531562i
\(428\) −0.245772 0.440413i −0.0118798 0.0212882i
\(429\) 0 0
\(430\) −13.9289 22.4426i −0.671709 1.08228i
\(431\) −30.7505 −1.48120 −0.740599 0.671947i \(-0.765458\pi\)
−0.740599 + 0.671947i \(0.765458\pi\)
\(432\) 0 0
\(433\) 29.3734i 1.41160i 0.708413 + 0.705798i \(0.249411\pi\)
−0.708413 + 0.705798i \(0.750589\pi\)
\(434\) −1.07490 + 0.279627i −0.0515969 + 0.0134225i
\(435\) 0 0
\(436\) −0.801746 + 0.447413i −0.0383967 + 0.0214272i
\(437\) 11.0398 19.1214i 0.528103 0.914701i
\(438\) 0 0
\(439\) −6.77418 + 3.91108i −0.323314 + 0.186665i −0.652869 0.757471i \(-0.726435\pi\)
0.329555 + 0.944136i \(0.393101\pi\)
\(440\) 13.0478 + 7.23575i 0.622031 + 0.344951i
\(441\) 0 0
\(442\) −1.47134 + 5.33505i −0.0699844 + 0.253763i
\(443\) 23.1263 13.3520i 1.09876 0.634371i 0.162867 0.986648i \(-0.447926\pi\)
0.935896 + 0.352277i \(0.114592\pi\)
\(444\) 0 0
\(445\) 10.2093 + 2.31132i 0.483969 + 0.109567i
\(446\) −23.9261 + 23.5794i −1.13294 + 1.11652i
\(447\) 0 0
\(448\) −23.5256 + 12.2419i −1.11148 + 0.578377i
\(449\) 23.8441i 1.12527i −0.826704 0.562637i \(-0.809787\pi\)
0.826704 0.562637i \(-0.190213\pi\)
\(450\) 0 0
\(451\) 6.67955i 0.314528i
\(452\) −0.508866 + 34.8586i −0.0239350 + 1.63961i
\(453\) 0 0
\(454\) 27.6533 + 28.0599i 1.29783 + 1.31692i
\(455\) 31.8110 + 7.20178i 1.49132 + 0.337625i
\(456\) 0 0
\(457\) 13.6451 7.87798i 0.638289 0.368516i −0.145666 0.989334i \(-0.546532\pi\)
0.783955 + 0.620817i \(0.213199\pi\)
\(458\) −22.7944 6.28641i −1.06511 0.293745i
\(459\) 0 0
\(460\) −7.64526 + 31.6195i −0.356462 + 1.47426i
\(461\) −9.24515 + 5.33769i −0.430590 + 0.248601i −0.699598 0.714537i \(-0.746637\pi\)
0.269008 + 0.963138i \(0.413304\pi\)
\(462\) 0 0
\(463\) 3.17644 5.50175i 0.147622 0.255688i −0.782726 0.622366i \(-0.786172\pi\)
0.930348 + 0.366678i \(0.119505\pi\)
\(464\) −0.139829 + 4.78829i −0.00649139 + 0.222291i
\(465\) 0 0
\(466\) −0.597938 2.29851i −0.0276989 0.106476i
\(467\) 7.76191i 0.359179i 0.983742 + 0.179589i \(0.0574769\pi\)
−0.983742 + 0.179589i \(0.942523\pi\)
\(468\) 0 0
\(469\) 21.0330 0.971213
\(470\) −20.3462 + 12.6277i −0.938498 + 0.582472i
\(471\) 0 0
\(472\) 5.84905 1.43076i 0.269224 0.0658563i
\(473\) −9.85221 + 17.0645i −0.453005 + 0.784628i
\(474\) 0 0
\(475\) −6.53683 + 13.6970i −0.299930 + 0.628461i
\(476\) 5.06298 + 3.02249i 0.232061 + 0.138536i
\(477\) 0 0
\(478\) −14.7534 4.06880i −0.674805 0.186103i
\(479\) −3.56565 6.17588i −0.162919 0.282183i 0.772996 0.634411i \(-0.218757\pi\)
−0.935914 + 0.352228i \(0.885424\pi\)
\(480\) 0 0
\(481\) 25.2950 43.8122i 1.15335 1.99767i
\(482\) −10.9925 + 10.8332i −0.500694 + 0.493439i
\(483\) 0 0
\(484\) −0.158662 + 10.8687i −0.00721192 + 0.494034i
\(485\) 4.09245 + 13.1850i 0.185829 + 0.598699i
\(486\) 0 0
\(487\) 15.1089 0.684649 0.342325 0.939582i \(-0.388786\pi\)
0.342325 + 0.939582i \(0.388786\pi\)
\(488\) −3.02905 + 10.3891i −0.137119 + 0.470295i
\(489\) 0 0
\(490\) 5.95648 11.1207i 0.269086 0.502381i
\(491\) −14.7215 + 25.4984i −0.664372 + 1.15073i 0.315083 + 0.949064i \(0.397968\pi\)
−0.979455 + 0.201662i \(0.935366\pi\)
\(492\) 0 0
\(493\) 0.922396 0.532546i 0.0415426 0.0239847i
\(494\) −18.2083 5.02162i −0.819230 0.225933i
\(495\) 0 0
\(496\) −0.834168 + 0.449666i −0.0374552 + 0.0201906i
\(497\) −19.4333 33.6595i −0.871705 1.50984i
\(498\) 0 0
\(499\) −18.0795 10.4382i −0.809351 0.467279i 0.0373795 0.999301i \(-0.488099\pi\)
−0.846730 + 0.532022i \(0.821432\pi\)
\(500\) 3.53856 22.0789i 0.158249 0.987399i
\(501\) 0 0
\(502\) 1.80076 + 6.92222i 0.0803718 + 0.308954i
\(503\) 22.6713i 1.01086i −0.862867 0.505431i \(-0.831333\pi\)
0.862867 0.505431i \(-0.168667\pi\)
\(504\) 0 0
\(505\) −5.14603 16.5794i −0.228995 0.737773i
\(506\) 23.4859 6.10967i 1.04408 0.271608i
\(507\) 0 0
\(508\) 18.4542 10.2983i 0.818772 0.456915i
\(509\) 23.5593 + 13.6020i 1.04425 + 0.602896i 0.921033 0.389484i \(-0.127347\pi\)
0.123213 + 0.992380i \(0.460680\pi\)
\(510\) 0 0
\(511\) −17.5380 + 10.1255i −0.775834 + 0.447928i
\(512\) −17.0157 + 14.9153i −0.751996 + 0.659168i
\(513\) 0 0
\(514\) −18.2560 5.03476i −0.805236 0.222074i
\(515\) 21.6075 + 19.9782i 0.952141 + 0.880345i
\(516\) 0 0
\(517\) 15.4705 + 8.93188i 0.680390 + 0.392824i
\(518\) −37.8353 38.3917i −1.66239 1.68683i
\(519\) 0 0
\(520\) 27.8244 0.480414i 1.22018 0.0210675i
\(521\) 2.18176i 0.0955847i 0.998857 + 0.0477924i \(0.0152186\pi\)
−0.998857 + 0.0477924i \(0.984781\pi\)
\(522\) 0 0
\(523\) 28.8185 1.26014 0.630071 0.776537i \(-0.283026\pi\)
0.630071 + 0.776537i \(0.283026\pi\)
\(524\) 0.474619 32.5126i 0.0207338 1.42032i
\(525\) 0 0
\(526\) 10.8115 + 10.9705i 0.471404 + 0.478336i
\(527\) 0.182473 + 0.105351i 0.00794865 + 0.00458916i
\(528\) 0 0
\(529\) 14.9560 + 25.9046i 0.650261 + 1.12629i
\(530\) −2.44021 + 0.0777744i −0.105996 + 0.00337830i
\(531\) 0 0
\(532\) −10.3156 + 17.2797i −0.447240 + 0.749171i
\(533\) −6.22935 10.7896i −0.269823 0.467348i
\(534\) 0 0
\(535\) 0.549962 + 0.124507i 0.0237769 + 0.00538292i
\(536\) 17.4317 4.26406i 0.752936 0.184179i
\(537\) 0 0
\(538\) −29.4290 + 7.65570i −1.26877 + 0.330061i
\(539\) −9.41102 −0.405361
\(540\) 0 0
\(541\) 3.32257 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(542\) 25.9286 6.74512i 1.11373 0.289728i
\(543\) 0 0
\(544\) 4.80885 + 1.47856i 0.206178 + 0.0633926i
\(545\) 0.226658 1.00117i 0.00970897 0.0428855i
\(546\) 0 0
\(547\) 13.8697 + 24.0231i 0.593027 + 1.02715i 0.993822 + 0.110986i \(0.0354008\pi\)
−0.400795 + 0.916168i \(0.631266\pi\)
\(548\) −22.6538 13.5238i −0.967721 0.577710i
\(549\) 0 0
\(550\) −15.7655 + 5.44981i −0.672244 + 0.232381i
\(551\) 1.81756 + 3.14810i 0.0774305 + 0.134114i
\(552\) 0 0
\(553\) −29.6652 17.1272i −1.26149 0.728323i
\(554\) 18.5251 + 18.7975i 0.787058 + 0.798631i
\(555\) 0 0
\(556\) −12.9667 0.189288i −0.549911 0.00802761i
\(557\) 30.0401 1.27284 0.636419 0.771344i \(-0.280415\pi\)
0.636419 + 0.771344i \(0.280415\pi\)
\(558\) 0 0
\(559\) 36.7527i 1.55447i
\(560\) 7.38830 28.7152i 0.312213 1.21344i
\(561\) 0 0
\(562\) −6.70188 6.80043i −0.282702 0.286859i
\(563\) −1.52959 0.883109i −0.0644645 0.0372186i 0.467421 0.884035i \(-0.345183\pi\)
−0.531886 + 0.846816i \(0.678516\pi\)
\(564\) 0 0
\(565\) −28.6189 26.4609i −1.20401 1.11322i
\(566\) 7.18435 + 1.98135i 0.301981 + 0.0832824i
\(567\) 0 0
\(568\) −22.9298 23.9566i −0.962115 1.00520i
\(569\) −31.9951 + 18.4724i −1.34131 + 0.774403i −0.986999 0.160726i \(-0.948616\pi\)
−0.354306 + 0.935129i \(0.615283\pi\)
\(570\) 0 0
\(571\) 26.5164 + 15.3092i 1.10968 + 0.640672i 0.938745 0.344612i \(-0.111989\pi\)
0.170930 + 0.985283i \(0.445323\pi\)
\(572\) −10.1164 18.1282i −0.422988 0.757977i
\(573\) 0 0
\(574\) −12.8468 + 3.34199i −0.536214 + 0.139492i
\(575\) −20.5938 29.9783i −0.858819 1.25018i
\(576\) 0 0
\(577\) 23.6405i 0.984168i 0.870548 + 0.492084i \(0.163765\pi\)
−0.870548 + 0.492084i \(0.836235\pi\)
\(578\) 5.77116 + 22.1847i 0.240048 + 0.922760i
\(579\) 0 0
\(580\) −3.87896 3.69294i −0.161065 0.153341i
\(581\) 7.46221 + 4.30831i 0.309585 + 0.178739i
\(582\) 0 0
\(583\) 0.910652 + 1.57730i 0.0377154 + 0.0653249i
\(584\) −12.4824 + 11.9474i −0.516523 + 0.494385i
\(585\) 0 0
\(586\) 30.3890 + 8.38091i 1.25536 + 0.346212i
\(587\) −0.0513568 + 0.0296509i −0.00211972 + 0.00122382i −0.501059 0.865413i \(-0.667056\pi\)
0.498940 + 0.866637i \(0.333723\pi\)
\(588\) 0 0
\(589\) −0.359558 + 0.622773i −0.0148153 + 0.0256609i
\(590\) −3.17868 + 5.93456i −0.130864 + 0.244322i
\(591\) 0 0
\(592\) −39.1404 24.1478i −1.60866 0.992471i
\(593\) −44.6245 −1.83251 −0.916255 0.400596i \(-0.868803\pi\)
−0.916255 + 0.400596i \(0.868803\pi\)
\(594\) 0 0
\(595\) −6.29622 + 1.95427i −0.258120 + 0.0801171i
\(596\) 16.7416 + 0.244394i 0.685762 + 0.0100108i
\(597\) 0 0
\(598\) 32.2392 31.7720i 1.31836 1.29925i
\(599\) 11.5001 19.9187i 0.469881 0.813857i −0.529526 0.848294i \(-0.677630\pi\)
0.999407 + 0.0344362i \(0.0109636\pi\)
\(600\) 0 0
\(601\) 0.981232 + 1.69954i 0.0400253 + 0.0693259i 0.885344 0.464936i \(-0.153923\pi\)
−0.845319 + 0.534262i \(0.820589\pi\)
\(602\) 37.7496 + 10.4109i 1.53856 + 0.424315i
\(603\) 0 0
\(604\) 16.8105 28.1593i 0.684011 1.14579i
\(605\) −8.92325 8.25040i −0.362782 0.335426i
\(606\) 0 0
\(607\) −10.1049 + 17.5023i −0.410146 + 0.710394i −0.994905 0.100813i \(-0.967856\pi\)
0.584759 + 0.811207i \(0.301189\pi\)
\(608\) −5.04625 + 16.4124i −0.204653 + 0.665611i
\(609\) 0 0
\(610\) −6.38024 10.2801i −0.258328 0.416227i
\(611\) 33.3195 1.34796
\(612\) 0 0
\(613\) 24.8672i 1.00438i −0.864758 0.502189i \(-0.832528\pi\)
0.864758 0.502189i \(-0.167472\pi\)
\(614\) −0.147906 0.568560i −0.00596901 0.0229452i
\(615\) 0 0
\(616\) −21.4855 + 5.25568i −0.865677 + 0.211757i
\(617\) −16.3707 + 28.3549i −0.659059 + 1.14152i 0.321800 + 0.946808i \(0.395712\pi\)
−0.980860 + 0.194717i \(0.937621\pi\)
\(618\) 0 0
\(619\) −11.9754 + 6.91400i −0.481332 + 0.277897i −0.720971 0.692965i \(-0.756304\pi\)
0.239640 + 0.970862i \(0.422971\pi\)
\(620\) 0.249002 1.02983i 0.0100001 0.0413588i
\(621\) 0 0
\(622\) 0.775897 + 0.213982i 0.0311106 + 0.00857991i
\(623\) −13.4395 + 7.75930i −0.538442 + 0.310870i
\(624\) 0 0
\(625\) 15.7244 + 19.4356i 0.628978 + 0.777423i
\(626\) −27.8569 28.2665i −1.11338 1.12976i
\(627\) 0 0
\(628\) −21.4220 0.312719i −0.854833 0.0124789i
\(629\) 10.2255i 0.407719i
\(630\) 0 0
\(631\) 0.298908i 0.0118994i −0.999982 0.00594968i \(-0.998106\pi\)
0.999982 0.00594968i \(-0.00189385\pi\)
\(632\) −28.0582 8.18062i −1.11609 0.325407i
\(633\) 0 0
\(634\) −13.3700 + 13.1763i −0.530992 + 0.523297i
\(635\) −5.21710 + 23.0445i −0.207034 + 0.914492i
\(636\) 0 0
\(637\) −15.2017 + 8.77672i −0.602314 + 0.347746i
\(638\) −1.06221 + 3.85156i −0.0420534 + 0.152485i
\(639\) 0 0
\(640\) 0.301795 25.2964i 0.0119295 0.999929i
\(641\) −12.2453 + 7.06982i −0.483660 + 0.279241i −0.721940 0.691955i \(-0.756750\pi\)
0.238281 + 0.971196i \(0.423416\pi\)
\(642\) 0 0
\(643\) 18.2808 31.6633i 0.720925 1.24868i −0.239704 0.970846i \(-0.577050\pi\)
0.960629 0.277833i \(-0.0896162\pi\)
\(644\) −23.5015 42.1136i −0.926087 1.65951i
\(645\) 0 0
\(646\) 3.69479 0.961168i 0.145369 0.0378167i
\(647\) 25.4645i 1.00111i 0.865704 + 0.500556i \(0.166871\pi\)
−0.865704 + 0.500556i \(0.833129\pi\)
\(648\) 0 0
\(649\) 5.02220 0.197139
\(650\) −20.3838 + 23.5061i −0.799516 + 0.921985i
\(651\) 0 0
\(652\) 2.33299 1.30192i 0.0913668 0.0509871i
\(653\) 11.2123 19.4203i 0.438772 0.759976i −0.558823 0.829287i \(-0.688747\pi\)
0.997595 + 0.0693112i \(0.0220801\pi\)
\(654\) 0 0
\(655\) 26.6929 + 24.6801i 1.04298 + 0.964330i
\(656\) −9.96964 + 5.37423i −0.389249 + 0.209828i
\(657\) 0 0
\(658\) 9.43834 34.2233i 0.367945 1.33416i
\(659\) 3.28193 + 5.68446i 0.127846 + 0.221435i 0.922842 0.385179i \(-0.125860\pi\)
−0.794996 + 0.606615i \(0.792527\pi\)
\(660\) 0 0
\(661\) −9.44856 + 16.3654i −0.367506 + 0.636540i −0.989175 0.146741i \(-0.953122\pi\)
0.621669 + 0.783280i \(0.286455\pi\)
\(662\) 8.52792 + 8.65332i 0.331447 + 0.336321i
\(663\) 0 0
\(664\) 7.05797 + 2.05781i 0.273902 + 0.0798587i
\(665\) −6.66983 21.4887i −0.258645 0.833297i
\(666\) 0 0
\(667\) −8.71129 −0.337303
\(668\) 14.3385 + 0.209314i 0.554774 + 0.00809860i
\(669\) 0 0
\(670\) −9.47332 + 17.6866i −0.365986 + 0.683292i
\(671\) −4.51290 + 7.81657i −0.174219 + 0.301755i
\(672\) 0 0
\(673\) 27.1258 15.6611i 1.04562 0.603690i 0.124201 0.992257i \(-0.460363\pi\)
0.921420 + 0.388567i \(0.127030\pi\)
\(674\) −0.396821 + 1.43887i −0.0152850 + 0.0554231i
\(675\) 0 0
\(676\) −10.9230 6.52081i −0.420115 0.250800i
\(677\) 20.4922 + 35.4936i 0.787580 + 1.36413i 0.927446 + 0.373958i \(0.122000\pi\)
−0.139866 + 0.990171i \(0.544667\pi\)
\(678\) 0 0
\(679\) −17.7249 10.2335i −0.680219 0.392724i
\(680\) −4.82199 + 2.89610i −0.184915 + 0.111060i
\(681\) 0 0
\(682\) −0.764922 + 0.198988i −0.0292904 + 0.00761965i
\(683\) 42.0703i 1.60978i −0.593427 0.804888i \(-0.702225\pi\)
0.593427 0.804888i \(-0.297775\pi\)
\(684\) 0 0
\(685\) 28.1718 8.74417i 1.07639 0.334097i
\(686\) −3.55347 13.6597i −0.135672 0.521531i
\(687\) 0 0
\(688\) 33.3968 + 0.975261i 1.27324 + 0.0371815i
\(689\) 2.94198 + 1.69855i 0.112080 + 0.0647096i
\(690\) 0 0
\(691\) 30.3277 17.5097i 1.15372 0.666101i 0.203930 0.978986i \(-0.434629\pi\)
0.949791 + 0.312885i \(0.101295\pi\)
\(692\) 4.42247 + 2.64012i 0.168117 + 0.100362i
\(693\) 0 0
\(694\) 2.59554 9.41140i 0.0985255 0.357252i
\(695\) 9.84295 10.6457i 0.373364 0.403814i
\(696\) 0 0
\(697\) 2.18084 + 1.25911i 0.0826054 + 0.0476922i
\(698\) −31.2547 + 30.8018i −1.18301 + 1.16586i
\(699\) 0 0
\(700\) 18.3696 + 27.5951i 0.694306 + 1.04300i
\(701\) 41.5315i 1.56862i −0.620366 0.784312i \(-0.713016\pi\)
0.620366 0.784312i \(-0.286984\pi\)
\(702\) 0 0
\(703\) −34.8993 −1.31625
\(704\) −16.7413 + 8.71161i −0.630961 + 0.328331i
\(705\) 0 0
\(706\) 15.4686 15.2445i 0.582169 0.573732i
\(707\) 22.2881 + 12.8680i 0.838229 + 0.483952i
\(708\) 0 0
\(709\) 5.69139 + 9.85778i 0.213745 + 0.370217i 0.952883 0.303337i \(-0.0981006\pi\)
−0.739139 + 0.673553i \(0.764767\pi\)
\(710\) 37.0571 1.18108i 1.39073 0.0443252i
\(711\) 0 0
\(712\) −9.56534 + 9.15538i −0.358476 + 0.343112i
\(713\) −0.861656 1.49243i −0.0322693 0.0558920i
\(714\) 0 0
\(715\) 22.6374 + 5.12494i 0.846590 + 0.191662i
\(716\) −17.7873 + 9.92616i −0.664741 + 0.370958i
\(717\) 0 0
\(718\) 3.03065 + 11.6500i 0.113103 + 0.434774i
\(719\) −24.0599 −0.897282 −0.448641 0.893712i \(-0.648092\pi\)
−0.448641 + 0.893712i \(0.648092\pi\)
\(720\) 0 0
\(721\) −43.6278 −1.62478
\(722\) −3.48444 13.3944i −0.129678 0.498488i
\(723\) 0 0
\(724\) −7.29213 + 4.06936i −0.271010 + 0.151237i
\(725\) 5.96956 0.468490i 0.221704 0.0173993i
\(726\) 0 0
\(727\) −2.85756 4.94944i −0.105981 0.183565i 0.808158 0.588966i \(-0.200465\pi\)
−0.914139 + 0.405402i \(0.867132\pi\)
\(728\) −29.8044 + 28.5270i −1.10462 + 1.05728i
\(729\) 0 0
\(730\) −0.615391 19.3082i −0.0227766 0.714629i
\(731\) −3.71433 6.43341i −0.137380 0.237948i
\(732\) 0 0
\(733\) −22.3900 12.9269i −0.826994 0.477465i 0.0258286 0.999666i \(-0.491778\pi\)
−0.852822 + 0.522201i \(0.825111\pi\)
\(734\) 1.30249 1.28361i 0.0480756 0.0473790i
\(735\) 0 0
\(736\) −28.0153 30.1384i −1.03266 1.11092i
\(737\) 14.9675 0.551335
\(738\) 0 0
\(739\) 18.0774i 0.664989i −0.943105 0.332495i \(-0.892110\pi\)
0.943105 0.332495i \(-0.107890\pi\)
\(740\) 49.3246 14.5239i 1.81321 0.533909i
\(741\) 0 0
\(742\) 2.57799 2.54063i 0.0946409 0.0932694i
\(743\) 15.5973 + 9.00512i 0.572210 + 0.330366i 0.758032 0.652218i \(-0.226161\pi\)
−0.185821 + 0.982584i \(0.559495\pi\)
\(744\) 0 0
\(745\) −12.7084 + 13.7449i −0.465601 + 0.503573i
\(746\) −6.15788 + 22.3284i −0.225456 + 0.817500i
\(747\) 0 0
\(748\) 3.60292 + 2.15087i 0.131736 + 0.0786435i
\(749\) −0.723965 + 0.417982i −0.0264531 + 0.0152727i
\(750\) 0 0
\(751\) −35.2487 20.3509i −1.28624 0.742613i −0.308262 0.951302i \(-0.599747\pi\)
−0.977982 + 0.208689i \(0.933081\pi\)
\(752\) 0.884158 30.2770i 0.0322419 1.10409i
\(753\) 0 0
\(754\) 1.87617 + 7.21210i 0.0683260 + 0.262649i
\(755\) 10.8693 + 35.0184i 0.395573 + 1.27445i
\(756\) 0 0
\(757\) 35.4823i 1.28963i −0.764340 0.644813i \(-0.776935\pi\)
0.764340 0.644813i \(-0.223065\pi\)
\(758\) 16.1420 4.19921i 0.586304 0.152522i
\(759\) 0 0
\(760\) −9.88428 16.4572i −0.358540 0.596967i
\(761\) 34.0009 + 19.6304i 1.23253 + 0.711602i 0.967557 0.252654i \(-0.0813033\pi\)
0.264974 + 0.964256i \(0.414637\pi\)
\(762\) 0 0
\(763\) 0.760910 + 1.31794i 0.0275468 + 0.0477125i
\(764\) 42.9840 + 25.6606i 1.55511 + 0.928367i
\(765\) 0 0
\(766\) −4.23702 + 15.3634i −0.153090 + 0.555101i
\(767\) 8.11242 4.68371i 0.292923 0.169119i
\(768\) 0 0
\(769\) −3.27941 + 5.68011i −0.118259 + 0.204830i −0.919078 0.394076i \(-0.871065\pi\)
0.800819 + 0.598906i \(0.204398\pi\)
\(770\) 11.6764 21.7997i 0.420787 0.785605i
\(771\) 0 0
\(772\) 37.8308 + 0.552255i 1.36156 + 0.0198761i
\(773\) 34.2118 1.23051 0.615256 0.788327i \(-0.289053\pi\)
0.615256 + 0.788327i \(0.289053\pi\)
\(774\) 0 0
\(775\) 0.670727 + 0.976374i 0.0240932 + 0.0350724i
\(776\) −16.7647 4.88790i −0.601817 0.175465i
\(777\) 0 0
\(778\) 20.0115 + 20.3057i 0.717445 + 0.727995i
\(779\) −4.29729 + 7.44313i −0.153967 + 0.266678i
\(780\) 0 0
\(781\) −13.8292 23.9528i −0.494847 0.857099i
\(782\) −2.43237 + 8.81973i −0.0869813 + 0.315393i
\(783\) 0 0
\(784\) 7.57191 + 14.0465i 0.270425 + 0.501661i
\(785\) 16.2613 17.5875i 0.580392 0.627726i
\(786\) 0 0
\(787\) −8.68943 + 15.0505i −0.309745 + 0.536494i −0.978306 0.207163i \(-0.933577\pi\)
0.668562 + 0.743657i \(0.266910\pi\)
\(788\) 9.17623 5.12079i 0.326890 0.182420i
\(789\) 0 0
\(790\) 27.7636 17.2312i 0.987783 0.613060i
\(791\) 57.7846 2.05458
\(792\) 0 0
\(793\) 16.8349i 0.597826i
\(794\) 7.00561 1.82245i 0.248620 0.0646764i
\(795\) 0 0
\(796\) 18.3702 + 32.9185i 0.651113 + 1.16677i
\(797\) 3.50633 6.07314i 0.124201 0.215122i −0.797220 0.603689i \(-0.793697\pi\)
0.921420 + 0.388568i \(0.127030\pi\)
\(798\) 0 0
\(799\) −5.83244 + 3.36736i −0.206337 + 0.119129i
\(800\) 20.8188 + 19.1462i 0.736056 + 0.676921i
\(801\) 0 0
\(802\) −4.16042 + 15.0856i −0.146910 + 0.532692i
\(803\) −12.4804 + 7.20555i −0.440423 + 0.254278i
\(804\) 0 0
\(805\) 52.5889 + 11.9058i 1.85352 + 0.419623i
\(806\) −1.05001 + 1.03479i −0.0369851 + 0.0364491i
\(807\) 0 0
\(808\) 21.0807 + 6.14626i 0.741616 + 0.216225i
\(809\) 38.9234i 1.36847i −0.729261 0.684236i \(-0.760136\pi\)
0.729261 0.684236i \(-0.239864\pi\)
\(810\) 0 0
\(811\) 35.7891i 1.25673i −0.777920 0.628363i \(-0.783725\pi\)
0.777920 0.628363i \(-0.216275\pi\)
\(812\) 7.93917 + 0.115896i 0.278610 + 0.00406716i
\(813\) 0 0
\(814\) −26.9244 27.3203i −0.943700 0.957576i
\(815\) −0.659548 + 2.91329i −0.0231030 + 0.102048i
\(816\) 0 0
\(817\) 21.9570 12.6769i 0.768177 0.443507i
\(818\) 22.0398 + 6.07829i 0.770604 + 0.212523i
\(819\) 0 0
\(820\) 2.97597 12.3081i 0.103925 0.429817i
\(821\) 27.8765 16.0945i 0.972895 0.561701i 0.0727775 0.997348i \(-0.476814\pi\)
0.900118 + 0.435647i \(0.143480\pi\)
\(822\) 0 0
\(823\) −8.65813 + 14.9963i −0.301804 + 0.522739i −0.976545 0.215315i \(-0.930922\pi\)
0.674741 + 0.738055i \(0.264255\pi\)
\(824\) −36.1579 + 8.84475i −1.25962 + 0.308122i
\(825\) 0 0
\(826\) −2.51276 9.65921i −0.0874302 0.336087i
\(827\) 15.5363i 0.540249i −0.962825 0.270124i \(-0.912935\pi\)
0.962825 0.270124i \(-0.0870648\pi\)
\(828\) 0 0
\(829\) −27.4645 −0.953882 −0.476941 0.878935i \(-0.658254\pi\)
−0.476941 + 0.878935i \(0.658254\pi\)
\(830\) −6.98385 + 4.33448i −0.242413 + 0.150452i
\(831\) 0 0
\(832\) −18.9180 + 29.6849i −0.655862 + 1.02914i
\(833\) 1.77400 3.07266i 0.0614654 0.106461i
\(834\) 0 0
\(835\) −10.8843 + 11.7719i −0.376666 + 0.407385i
\(836\) −7.34082 + 12.2966i −0.253888 + 0.425287i
\(837\) 0 0
\(838\) −9.96761 2.74894i −0.344325 0.0949605i
\(839\) −6.91476 11.9767i −0.238724 0.413482i 0.721624 0.692285i \(-0.243396\pi\)
−0.960348 + 0.278803i \(0.910062\pi\)
\(840\) 0 0
\(841\) −13.7829 + 23.8727i −0.475272 + 0.823196i
\(842\) 30.1639 29.7268i 1.03952 1.02445i
\(843\) 0 0
\(844\) −9.14613 0.133515i −0.314823 0.00459579i
\(845\) 13.5836 4.21619i 0.467291 0.145041i
\(846\) 0 0
\(847\) 18.0170 0.619070
\(848\) 1.62152 2.62826i 0.0556832 0.0902550i
\(849\) 0 0
\(850\) 1.19250 6.17468i 0.0409024 0.211790i
\(851\) 41.8169 72.4290i 1.43346 2.48283i
\(852\) 0 0
\(853\) −31.2866 + 18.0633i −1.07123 + 0.618476i −0.928518 0.371288i \(-0.878916\pi\)
−0.142714 + 0.989764i \(0.545583\pi\)
\(854\) 17.2916 + 4.76879i 0.591705 + 0.163185i
\(855\) 0 0
\(856\) −0.515270 + 0.493186i −0.0176116 + 0.0168568i
\(857\) 3.70493 + 6.41713i 0.126558 + 0.219205i 0.922341 0.386377i \(-0.126274\pi\)
−0.795783 + 0.605582i \(0.792940\pi\)
\(858\) 0 0
\(859\) 35.7586 + 20.6452i 1.22007 + 0.704407i 0.964932 0.262499i \(-0.0845465\pi\)
0.255136 + 0.966905i \(0.417880\pi\)
\(860\) −25.7570 + 27.0545i −0.878307 + 0.922550i
\(861\) 0 0
\(862\) 10.9486 + 42.0870i 0.372910 + 1.43349i
\(863\) 46.7922i 1.59282i 0.604754 + 0.796412i \(0.293271\pi\)
−0.604754 + 0.796412i \(0.706729\pi\)
\(864\) 0 0
\(865\) −5.49970 + 1.70704i −0.186995 + 0.0580410i
\(866\) 40.2022 10.4583i 1.36613 0.355387i
\(867\) 0 0
\(868\) 0.765428 + 1.37161i 0.0259803 + 0.0465556i
\(869\) −21.1104 12.1881i −0.716120 0.413452i
\(870\) 0 0
\(871\) 24.1772 13.9587i 0.819213 0.472973i
\(872\) 0.897815 + 0.938018i 0.0304039 + 0.0317653i
\(873\) 0 0
\(874\) −30.1014 8.30157i −1.01819 0.280805i
\(875\) −36.6777 5.33040i −1.23993 0.180200i
\(876\) 0 0
\(877\) 12.2576 + 7.07692i 0.413909 + 0.238970i 0.692468 0.721449i \(-0.256523\pi\)
−0.278559 + 0.960419i \(0.589857\pi\)
\(878\) 7.76485 + 7.87903i 0.262051 + 0.265904i
\(879\) 0 0
\(880\) 5.25767 20.4343i 0.177236 0.688840i
\(881\) 13.5705i 0.457200i 0.973520 + 0.228600i \(0.0734148\pi\)
−0.973520 + 0.228600i \(0.926585\pi\)
\(882\) 0 0
\(883\) 46.0353 1.54921 0.774606 0.632444i \(-0.217948\pi\)
0.774606 + 0.632444i \(0.217948\pi\)
\(884\) 7.82574 + 0.114240i 0.263208 + 0.00384232i
\(885\) 0 0
\(886\) −26.5083 26.8981i −0.890565 0.903660i
\(887\) −17.1621 9.90855i −0.576247 0.332696i 0.183393 0.983040i \(-0.441292\pi\)
−0.759641 + 0.650343i \(0.774625\pi\)
\(888\) 0 0
\(889\) −17.5143 30.3356i −0.587409 1.01742i
\(890\) −0.471580 14.7961i −0.0158074 0.495965i
\(891\) 0 0
\(892\) 40.7910 + 24.3514i 1.36578 + 0.815346i
\(893\) −11.4927 19.9059i −0.384587 0.666125i
\(894\) 0 0
\(895\) 5.02856 22.2117i 0.168086 0.742454i
\(896\) 25.1312 + 27.8399i 0.839576 + 0.930064i
\(897\) 0 0
\(898\) −32.6345 + 8.48960i −1.08903 + 0.283302i
\(899\) 0.283722 0.00946265
\(900\) 0 0
\(901\) −0.686641 −0.0228753
\(902\) −9.14204 + 2.37823i −0.304396 + 0.0791863i
\(903\) 0 0
\(904\) 47.8907 11.7148i 1.59282 0.389628i
\(905\) 2.06153 9.10597i 0.0685274 0.302693i
\(906\) 0 0
\(907\) −24.4653 42.3752i −0.812358 1.40705i −0.911209 0.411943i \(-0.864850\pi\)
0.0988513 0.995102i \(-0.468483\pi\)
\(908\) 28.5587 47.8386i 0.947752 1.58758i
\(909\) 0 0
\(910\) −1.46938 46.1026i −0.0487095 1.52829i
\(911\) 16.0978 + 27.8822i 0.533343 + 0.923778i 0.999242 + 0.0389396i \(0.0123980\pi\)
−0.465898 + 0.884838i \(0.654269\pi\)
\(912\) 0 0
\(913\) 5.31026 + 3.06588i 0.175744 + 0.101466i
\(914\) −15.6406 15.8705i −0.517343 0.524951i
\(915\) 0 0
\(916\) −0.488101 + 33.4361i −0.0161273 + 1.10476i
\(917\) −53.8956 −1.77979
\(918\) 0 0
\(919\) 37.8553i 1.24873i −0.781133 0.624365i \(-0.785358\pi\)
0.781133 0.624365i \(-0.214642\pi\)
\(920\) 45.9984 0.794204i 1.51652 0.0261841i
\(921\) 0 0
\(922\) 10.5972 + 10.7530i 0.349000 + 0.354132i
\(923\) −44.6768 25.7942i −1.47056 0.849026i
\(924\) 0 0
\(925\) −24.7605 + 51.8820i −0.814121 + 1.70587i
\(926\) −8.66098 2.38859i −0.284618 0.0784939i
\(927\) 0 0
\(928\) 6.60333 1.51347i 0.216765 0.0496822i
\(929\) −14.4535 + 8.34474i −0.474205 + 0.273782i −0.717998 0.696045i \(-0.754941\pi\)
0.243794 + 0.969827i \(0.421608\pi\)
\(930\) 0 0
\(931\) 10.4868 + 6.05458i 0.343693 + 0.198431i
\(932\) −2.93298 + 1.63675i −0.0960730 + 0.0536135i
\(933\) 0 0
\(934\) 10.6234 2.76360i 0.347609 0.0904277i
\(935\) −4.48052 + 1.39070i −0.146529 + 0.0454806i
\(936\) 0 0
\(937\) 41.7514i 1.36396i −0.731372 0.681979i \(-0.761120\pi\)
0.731372 0.681979i \(-0.238880\pi\)
\(938\) −7.48870 28.7870i −0.244515 0.939929i
\(939\) 0 0
\(940\) 24.5272 + 23.3509i 0.799989 + 0.761624i
\(941\) −9.78882 5.65158i −0.319106 0.184236i 0.331888 0.943319i \(-0.392314\pi\)
−0.650994 + 0.759083i \(0.725648\pi\)
\(942\) 0 0
\(943\) −10.2982 17.8369i −0.335354 0.580851i
\(944\) −4.04076 7.49595i −0.131516 0.243972i
\(945\) 0 0
\(946\) 26.8634 + 7.40858i 0.873404 + 0.240874i
\(947\) −4.45025 + 2.56935i −0.144614 + 0.0834928i −0.570561 0.821255i \(-0.693274\pi\)
0.425947 + 0.904748i \(0.359941\pi\)
\(948\) 0 0
\(949\) −13.4398 + 23.2784i −0.436274 + 0.755649i
\(950\) 21.0739 + 4.06995i 0.683728 + 0.132047i
\(951\) 0 0
\(952\) 2.33412 8.00564i 0.0756491 0.259464i
\(953\) 22.9718 0.744131 0.372066 0.928206i \(-0.378650\pi\)
0.372066 + 0.928206i \(0.378650\pi\)
\(954\) 0 0
\(955\) −53.4541 + 16.5915i −1.72973 + 0.536887i
\(956\) −0.315917 + 21.6411i −0.0102175 + 0.699923i
\(957\) 0 0
\(958\) −7.18315 + 7.07906i −0.232077 + 0.228714i
\(959\) −21.8654 + 37.8720i −0.706072 + 1.22295i
\(960\) 0 0
\(961\) −15.4719 26.7982i −0.499095 0.864457i
\(962\) −68.9703 19.0211i −2.22369 0.613265i
\(963\) 0 0
\(964\) 18.7408 + 11.1879i 0.603601 + 0.360337i
\(965\) −28.7171 + 31.0592i −0.924437 + 0.999830i
\(966\) 0 0
\(967\) 21.0871 36.5239i 0.678115 1.17453i −0.297433 0.954743i \(-0.596131\pi\)
0.975548 0.219787i \(-0.0705361\pi\)
\(968\) 14.9321 3.65262i 0.479936 0.117400i
\(969\) 0 0
\(970\) 16.5886 10.2956i 0.532629 0.330573i
\(971\) −29.9678 −0.961712 −0.480856 0.876799i \(-0.659674\pi\)
−0.480856 + 0.876799i \(0.659674\pi\)
\(972\) 0 0
\(973\) 21.4947i 0.689090i
\(974\) −5.37946 20.6789i −0.172369 0.662596i
\(975\) 0 0
\(976\) 15.2977 + 0.446727i 0.489667 + 0.0142994i
\(977\) −18.5590 + 32.1452i −0.593756 + 1.02842i 0.399965 + 0.916530i \(0.369022\pi\)
−0.993721 + 0.111885i \(0.964311\pi\)
\(978\) 0 0
\(979\) −9.56383 + 5.52168i −0.305661 + 0.176474i
\(980\) −17.3412 4.19293i −0.553945 0.133938i
\(981\) 0 0
\(982\) 40.1402 + 11.0701i 1.28092 + 0.353262i
\(983\) −24.8903 + 14.3704i −0.793876 + 0.458345i −0.841325 0.540529i \(-0.818224\pi\)
0.0474493 + 0.998874i \(0.484891\pi\)
\(984\) 0 0
\(985\) −2.59417 + 11.4587i −0.0826572 + 0.365105i
\(986\) −1.05729 1.07284i −0.0336710 0.0341661i
\(987\) 0 0
\(988\) −0.389897 + 26.7089i −0.0124043 + 0.849724i
\(989\) 60.7584i 1.93201i
\(990\) 0 0
\(991\) 5.20653i 0.165391i −0.996575 0.0826954i \(-0.973647\pi\)
0.996575 0.0826954i \(-0.0263529\pi\)
\(992\) 0.912442 + 0.981591i 0.0289701 + 0.0311655i
\(993\) 0 0
\(994\) −39.1493 + 38.5820i −1.24174 + 1.22375i
\(995\) −41.1067 9.30626i −1.30317 0.295028i
\(996\) 0 0
\(997\) −18.1724 + 10.4918i −0.575525 + 0.332279i −0.759353 0.650679i \(-0.774484\pi\)
0.183828 + 0.982958i \(0.441151\pi\)
\(998\) −7.84924 + 28.4612i −0.248463 + 0.900924i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.10 48
3.2 odd 2 180.2.n.d.59.15 yes 48
4.3 odd 2 inner 540.2.n.d.179.6 48
5.4 even 2 inner 540.2.n.d.179.15 48
9.2 odd 6 inner 540.2.n.d.359.19 48
9.7 even 3 180.2.n.d.119.6 yes 48
12.11 even 2 180.2.n.d.59.19 yes 48
15.2 even 4 900.2.r.g.851.3 48
15.8 even 4 900.2.r.g.851.22 48
15.14 odd 2 180.2.n.d.59.10 yes 48
20.19 odd 2 inner 540.2.n.d.179.19 48
36.7 odd 6 180.2.n.d.119.10 yes 48
36.11 even 6 inner 540.2.n.d.359.15 48
45.7 odd 12 900.2.r.g.551.7 48
45.29 odd 6 inner 540.2.n.d.359.6 48
45.34 even 6 180.2.n.d.119.19 yes 48
45.43 odd 12 900.2.r.g.551.18 48
60.23 odd 4 900.2.r.g.851.18 48
60.47 odd 4 900.2.r.g.851.7 48
60.59 even 2 180.2.n.d.59.6 48
180.7 even 12 900.2.r.g.551.3 48
180.43 even 12 900.2.r.g.551.22 48
180.79 odd 6 180.2.n.d.119.15 yes 48
180.119 even 6 inner 540.2.n.d.359.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.6 48 60.59 even 2
180.2.n.d.59.10 yes 48 15.14 odd 2
180.2.n.d.59.15 yes 48 3.2 odd 2
180.2.n.d.59.19 yes 48 12.11 even 2
180.2.n.d.119.6 yes 48 9.7 even 3
180.2.n.d.119.10 yes 48 36.7 odd 6
180.2.n.d.119.15 yes 48 180.79 odd 6
180.2.n.d.119.19 yes 48 45.34 even 6
540.2.n.d.179.6 48 4.3 odd 2 inner
540.2.n.d.179.10 48 1.1 even 1 trivial
540.2.n.d.179.15 48 5.4 even 2 inner
540.2.n.d.179.19 48 20.19 odd 2 inner
540.2.n.d.359.6 48 45.29 odd 6 inner
540.2.n.d.359.10 48 180.119 even 6 inner
540.2.n.d.359.15 48 36.11 even 6 inner
540.2.n.d.359.19 48 9.2 odd 6 inner
900.2.r.g.551.3 48 180.7 even 12
900.2.r.g.551.7 48 45.7 odd 12
900.2.r.g.551.18 48 45.43 odd 12
900.2.r.g.551.22 48 180.43 even 12
900.2.r.g.851.3 48 15.2 even 4
900.2.r.g.851.7 48 60.47 odd 4
900.2.r.g.851.18 48 60.23 odd 4
900.2.r.g.851.22 48 15.8 even 4