Properties

Label 540.2.n.d.179.19
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.19
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00727 + 0.992675i) q^{2} +(0.0291929 + 1.99979i) q^{4} +(-1.64183 + 1.51803i) q^{5} +(1.65751 + 2.87089i) q^{7} +(-1.95573 + 2.04331i) q^{8} +(-3.16067 - 0.100737i) q^{10} +(-1.17952 - 2.04298i) q^{11} +(-3.81058 - 2.20004i) q^{13} +(-1.18030 + 4.53714i) q^{14} +(-3.99830 + 0.116759i) q^{16} +0.889368 q^{17} +3.03537i q^{19} +(-3.08366 - 3.23899i) q^{20} +(0.839925 - 3.22872i) q^{22} +(6.29952 + 3.63703i) q^{23} +(0.391197 - 4.98467i) q^{25} +(-1.65437 - 5.99870i) q^{26} +(-5.69278 + 3.39848i) q^{28} +(-1.03714 + 0.598791i) q^{29} +(0.205172 + 0.118456i) q^{31} +(-4.14327 - 3.85140i) q^{32} +(0.895835 + 0.882853i) q^{34} +(-7.07943 - 2.19737i) q^{35} +11.4975i q^{37} +(-3.01314 + 3.05745i) q^{38} +(0.109183 - 6.32361i) q^{40} +(-2.45213 - 1.41574i) q^{41} +(4.17637 + 7.23369i) q^{43} +(4.05110 - 2.41842i) q^{44} +(2.73494 + 9.91686i) q^{46} +(6.55796 - 3.78624i) q^{47} +(-1.99467 + 3.45488i) q^{49} +(5.34220 - 4.63259i) q^{50} +(4.28837 - 7.68457i) q^{52} -0.772055 q^{53} +(5.03787 + 1.56369i) q^{55} +(-9.10776 - 2.22789i) q^{56} +(-1.63908 - 0.426394i) q^{58} +(-1.06446 + 1.84370i) q^{59} +(1.91303 + 3.31346i) q^{61} +(0.0890754 + 0.322986i) q^{62} +(-0.350216 - 7.99233i) q^{64} +(9.59603 - 2.17247i) q^{65} +(3.17238 - 5.49472i) q^{67} +(0.0259632 + 1.77855i) q^{68} +(-4.94964 - 9.24092i) q^{70} +11.7244 q^{71} -6.10889i q^{73} +(-11.4133 + 11.5811i) q^{74} +(-6.07010 + 0.0886114i) q^{76} +(3.91012 - 6.77253i) q^{77} +(8.94873 - 5.16655i) q^{79} +(6.38727 - 6.26121i) q^{80} +(-1.06459 - 3.86020i) q^{82} +(2.25103 - 1.29963i) q^{83} +(-1.46019 + 1.35008i) q^{85} +(-2.97396 + 11.4321i) q^{86} +(6.48127 + 1.58541i) q^{88} +4.68130i q^{89} -14.5863i q^{91} +(-7.08939 + 12.7039i) q^{92} +(10.3642 + 2.69615i) q^{94} +(-4.60778 - 4.98356i) q^{95} +(5.34684 - 3.08700i) q^{97} +(-5.43875 + 1.49994i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00727 + 0.992675i 0.712249 + 0.701927i
\(3\) 0 0
\(4\) 0.0291929 + 1.99979i 0.0145965 + 0.999893i
\(5\) −1.64183 + 1.51803i −0.734248 + 0.678882i
\(6\) 0 0
\(7\) 1.65751 + 2.87089i 0.626480 + 1.08509i 0.988253 + 0.152828i \(0.0488382\pi\)
−0.361773 + 0.932266i \(0.617828\pi\)
\(8\) −1.95573 + 2.04331i −0.691456 + 0.722418i
\(9\) 0 0
\(10\) −3.16067 0.100737i −0.999492 0.0318558i
\(11\) −1.17952 2.04298i −0.355638 0.615983i 0.631589 0.775303i \(-0.282403\pi\)
−0.987227 + 0.159320i \(0.949070\pi\)
\(12\) 0 0
\(13\) −3.81058 2.20004i −1.05686 0.610181i −0.132301 0.991210i \(-0.542237\pi\)
−0.924563 + 0.381029i \(0.875570\pi\)
\(14\) −1.18030 + 4.53714i −0.315448 + 1.21260i
\(15\) 0 0
\(16\) −3.99830 + 0.116759i −0.999574 + 0.0291898i
\(17\) 0.889368 0.215703 0.107852 0.994167i \(-0.465603\pi\)
0.107852 + 0.994167i \(0.465603\pi\)
\(18\) 0 0
\(19\) 3.03537i 0.696363i 0.937427 + 0.348181i \(0.113201\pi\)
−0.937427 + 0.348181i \(0.886799\pi\)
\(20\) −3.08366 3.23899i −0.689527 0.724260i
\(21\) 0 0
\(22\) 0.839925 3.22872i 0.179073 0.688365i
\(23\) 6.29952 + 3.63703i 1.31354 + 0.758374i 0.982681 0.185306i \(-0.0593276\pi\)
0.330861 + 0.943680i \(0.392661\pi\)
\(24\) 0 0
\(25\) 0.391197 4.98467i 0.0782393 0.996935i
\(26\) −1.65437 5.99870i −0.324448 1.17644i
\(27\) 0 0
\(28\) −5.69278 + 3.39848i −1.07583 + 0.642251i
\(29\) −1.03714 + 0.598791i −0.192592 + 0.111193i −0.593195 0.805059i \(-0.702134\pi\)
0.400604 + 0.916251i \(0.368800\pi\)
\(30\) 0 0
\(31\) 0.205172 + 0.118456i 0.0368499 + 0.0212753i 0.518312 0.855192i \(-0.326561\pi\)
−0.481462 + 0.876467i \(0.659894\pi\)
\(32\) −4.14327 3.85140i −0.732434 0.680838i
\(33\) 0 0
\(34\) 0.895835 + 0.882853i 0.153634 + 0.151408i
\(35\) −7.07943 2.19737i −1.19664 0.371423i
\(36\) 0 0
\(37\) 11.4975i 1.89018i 0.326807 + 0.945091i \(0.394027\pi\)
−0.326807 + 0.945091i \(0.605973\pi\)
\(38\) −3.01314 + 3.05745i −0.488796 + 0.495983i
\(39\) 0 0
\(40\) 0.109183 6.32361i 0.0172633 0.999851i
\(41\) −2.45213 1.41574i −0.382958 0.221101i 0.296146 0.955143i \(-0.404298\pi\)
−0.679105 + 0.734042i \(0.737632\pi\)
\(42\) 0 0
\(43\) 4.17637 + 7.23369i 0.636891 + 1.10313i 0.986111 + 0.166087i \(0.0531132\pi\)
−0.349220 + 0.937041i \(0.613553\pi\)
\(44\) 4.05110 2.41842i 0.610726 0.364591i
\(45\) 0 0
\(46\) 2.73494 + 9.91686i 0.403245 + 1.46216i
\(47\) 6.55796 3.78624i 0.956577 0.552280i 0.0614594 0.998110i \(-0.480425\pi\)
0.895118 + 0.445829i \(0.147091\pi\)
\(48\) 0 0
\(49\) −1.99467 + 3.45488i −0.284954 + 0.493554i
\(50\) 5.34220 4.63259i 0.755501 0.655147i
\(51\) 0 0
\(52\) 4.28837 7.68457i 0.594689 1.06566i
\(53\) −0.772055 −0.106050 −0.0530249 0.998593i \(-0.516886\pi\)
−0.0530249 + 0.998593i \(0.516886\pi\)
\(54\) 0 0
\(55\) 5.03787 + 1.56369i 0.679306 + 0.210848i
\(56\) −9.10776 2.22789i −1.21708 0.297715i
\(57\) 0 0
\(58\) −1.63908 0.426394i −0.215222 0.0559883i
\(59\) −1.06446 + 1.84370i −0.138581 + 0.240029i −0.926960 0.375161i \(-0.877587\pi\)
0.788379 + 0.615190i \(0.210921\pi\)
\(60\) 0 0
\(61\) 1.91303 + 3.31346i 0.244938 + 0.424245i 0.962114 0.272647i \(-0.0878990\pi\)
−0.717176 + 0.696892i \(0.754566\pi\)
\(62\) 0.0890754 + 0.322986i 0.0113126 + 0.0410193i
\(63\) 0 0
\(64\) −0.350216 7.99233i −0.0437769 0.999041i
\(65\) 9.59603 2.17247i 1.19024 0.269462i
\(66\) 0 0
\(67\) 3.17238 5.49472i 0.387567 0.671287i −0.604554 0.796564i \(-0.706649\pi\)
0.992122 + 0.125277i \(0.0399821\pi\)
\(68\) 0.0259632 + 1.77855i 0.00314851 + 0.215680i
\(69\) 0 0
\(70\) −4.94964 9.24092i −0.591595 1.10450i
\(71\) 11.7244 1.39143 0.695717 0.718316i \(-0.255087\pi\)
0.695717 + 0.718316i \(0.255087\pi\)
\(72\) 0 0
\(73\) 6.10889i 0.714992i −0.933915 0.357496i \(-0.883631\pi\)
0.933915 0.357496i \(-0.116369\pi\)
\(74\) −11.4133 + 11.5811i −1.32677 + 1.34628i
\(75\) 0 0
\(76\) −6.07010 + 0.0886114i −0.696288 + 0.0101644i
\(77\) 3.91012 6.77253i 0.445600 0.771802i
\(78\) 0 0
\(79\) 8.94873 5.16655i 1.00681 0.581283i 0.0965546 0.995328i \(-0.469218\pi\)
0.910256 + 0.414045i \(0.135884\pi\)
\(80\) 6.38727 6.26121i 0.714118 0.700025i
\(81\) 0 0
\(82\) −1.06459 3.86020i −0.117565 0.426288i
\(83\) 2.25103 1.29963i 0.247083 0.142653i −0.371345 0.928495i \(-0.621103\pi\)
0.618428 + 0.785842i \(0.287770\pi\)
\(84\) 0 0
\(85\) −1.46019 + 1.35008i −0.158380 + 0.146437i
\(86\) −2.97396 + 11.4321i −0.320690 + 1.23275i
\(87\) 0 0
\(88\) 6.48127 + 1.58541i 0.690906 + 0.169006i
\(89\) 4.68130i 0.496217i 0.968732 + 0.248108i \(0.0798089\pi\)
−0.968732 + 0.248108i \(0.920191\pi\)
\(90\) 0 0
\(91\) 14.5863i 1.52906i
\(92\) −7.08939 + 12.7039i −0.739120 + 1.32447i
\(93\) 0 0
\(94\) 10.3642 + 2.69615i 1.06898 + 0.278087i
\(95\) −4.60778 4.98356i −0.472748 0.511303i
\(96\) 0 0
\(97\) 5.34684 3.08700i 0.542890 0.313438i −0.203360 0.979104i \(-0.565186\pi\)
0.746249 + 0.665667i \(0.231853\pi\)
\(98\) −5.43875 + 1.49994i −0.549397 + 0.151517i
\(99\) 0 0
\(100\) 9.97970 + 0.636793i 0.997970 + 0.0636793i
\(101\) 6.72336 3.88174i 0.669000 0.386247i −0.126698 0.991941i \(-0.540438\pi\)
0.795697 + 0.605694i \(0.207105\pi\)
\(102\) 0 0
\(103\) −6.58033 + 11.3975i −0.648379 + 1.12302i 0.335131 + 0.942171i \(0.391219\pi\)
−0.983510 + 0.180853i \(0.942114\pi\)
\(104\) 11.9478 3.48350i 1.17158 0.341585i
\(105\) 0 0
\(106\) −0.777669 0.766400i −0.0755339 0.0744393i
\(107\) 0.252175i 0.0243786i 0.999926 + 0.0121893i \(0.00388008\pi\)
−0.999926 + 0.0121893i \(0.996120\pi\)
\(108\) 0 0
\(109\) 0.459068 0.0439708 0.0219854 0.999758i \(-0.493001\pi\)
0.0219854 + 0.999758i \(0.493001\pi\)
\(110\) 3.52227 + 6.57603i 0.335835 + 0.627000i
\(111\) 0 0
\(112\) −6.96242 11.2851i −0.657886 1.06635i
\(113\) −8.71557 + 15.0958i −0.819892 + 1.42009i 0.0858696 + 0.996306i \(0.472633\pi\)
−0.905761 + 0.423788i \(0.860700\pi\)
\(114\) 0 0
\(115\) −15.8638 + 3.59146i −1.47931 + 0.334905i
\(116\) −1.22773 2.05657i −0.113992 0.190948i
\(117\) 0 0
\(118\) −2.90240 + 0.800444i −0.267187 + 0.0736868i
\(119\) 1.47414 + 2.55328i 0.135134 + 0.234059i
\(120\) 0 0
\(121\) 2.71748 4.70681i 0.247043 0.427891i
\(122\) −1.36225 + 5.23657i −0.123332 + 0.474097i
\(123\) 0 0
\(124\) −0.230897 + 0.413758i −0.0207352 + 0.0371565i
\(125\) 6.92458 + 8.77782i 0.619354 + 0.785112i
\(126\) 0 0
\(127\) −10.5666 −0.937635 −0.468817 0.883295i \(-0.655320\pi\)
−0.468817 + 0.883295i \(0.655320\pi\)
\(128\) 7.58102 8.39810i 0.670074 0.742294i
\(129\) 0 0
\(130\) 11.8224 + 7.33747i 1.03689 + 0.643538i
\(131\) 8.12900 14.0798i 0.710234 1.23016i −0.254535 0.967064i \(-0.581922\pi\)
0.964769 0.263098i \(-0.0847444\pi\)
\(132\) 0 0
\(133\) −8.71423 + 5.03116i −0.755619 + 0.436257i
\(134\) 8.64991 2.38554i 0.747239 0.206079i
\(135\) 0 0
\(136\) −1.73937 + 1.81725i −0.149149 + 0.155828i
\(137\) −6.59587 11.4244i −0.563523 0.976051i −0.997185 0.0749753i \(-0.976112\pi\)
0.433662 0.901076i \(-0.357221\pi\)
\(138\) 0 0
\(139\) −5.61535 3.24202i −0.476288 0.274985i 0.242580 0.970131i \(-0.422006\pi\)
−0.718868 + 0.695146i \(0.755340\pi\)
\(140\) 4.18759 14.2215i 0.353916 1.20194i
\(141\) 0 0
\(142\) 11.8097 + 11.6385i 0.991047 + 0.976685i
\(143\) 10.3799i 0.868014i
\(144\) 0 0
\(145\) 0.793820 2.55751i 0.0659232 0.212390i
\(146\) 6.06415 6.15332i 0.501872 0.509252i
\(147\) 0 0
\(148\) −22.9926 + 0.335646i −1.88998 + 0.0275900i
\(149\) −7.25009 4.18584i −0.593950 0.342917i 0.172708 0.984973i \(-0.444748\pi\)
−0.766658 + 0.642056i \(0.778082\pi\)
\(150\) 0 0
\(151\) 14.2008 8.19886i 1.15565 0.667214i 0.205391 0.978680i \(-0.434153\pi\)
0.950257 + 0.311466i \(0.100820\pi\)
\(152\) −6.20220 5.93638i −0.503065 0.481504i
\(153\) 0 0
\(154\) 10.6615 2.94030i 0.859127 0.236936i
\(155\) −0.516676 + 0.116972i −0.0415004 + 0.00939539i
\(156\) 0 0
\(157\) −9.27700 5.35608i −0.740386 0.427462i 0.0818239 0.996647i \(-0.473925\pi\)
−0.822209 + 0.569185i \(0.807259\pi\)
\(158\) 14.1425 + 3.67906i 1.12512 + 0.292690i
\(159\) 0 0
\(160\) 12.6491 + 0.0337379i 0.999996 + 0.00266722i
\(161\) 24.1137i 1.90042i
\(162\) 0 0
\(163\) −1.33584 −0.104631 −0.0523153 0.998631i \(-0.516660\pi\)
−0.0523153 + 0.998631i \(0.516660\pi\)
\(164\) 2.75959 4.94507i 0.215488 0.386145i
\(165\) 0 0
\(166\) 3.55752 + 0.925458i 0.276117 + 0.0718295i
\(167\) −6.20942 3.58501i −0.480500 0.277417i 0.240125 0.970742i \(-0.422812\pi\)
−0.720625 + 0.693325i \(0.756145\pi\)
\(168\) 0 0
\(169\) 3.18034 + 5.50851i 0.244641 + 0.423731i
\(170\) −2.81100 0.0895921i −0.215594 0.00687140i
\(171\) 0 0
\(172\) −14.3439 + 8.56303i −1.09371 + 0.652925i
\(173\) 1.28765 + 2.23027i 0.0978979 + 0.169564i 0.910814 0.412816i \(-0.135455\pi\)
−0.812916 + 0.582380i \(0.802121\pi\)
\(174\) 0 0
\(175\) 14.9589 7.13906i 1.13078 0.539662i
\(176\) 4.95460 + 8.03074i 0.373467 + 0.605340i
\(177\) 0 0
\(178\) −4.64701 + 4.71534i −0.348308 + 0.353430i
\(179\) −10.1847 −0.761243 −0.380622 0.924731i \(-0.624290\pi\)
−0.380622 + 0.924731i \(0.624290\pi\)
\(180\) 0 0
\(181\) 4.17537 0.310353 0.155176 0.987887i \(-0.450405\pi\)
0.155176 + 0.987887i \(0.450405\pi\)
\(182\) 14.4795 14.6924i 1.07329 1.08907i
\(183\) 0 0
\(184\) −19.7518 + 5.75880i −1.45612 + 0.424545i
\(185\) −17.4535 18.8770i −1.28321 1.38786i
\(186\) 0 0
\(187\) −1.04902 1.81696i −0.0767123 0.132870i
\(188\) 7.76312 + 13.0040i 0.566184 + 0.948414i
\(189\) 0 0
\(190\) 0.305774 9.59382i 0.0221832 0.696009i
\(191\) 12.5152 + 21.6770i 0.905570 + 1.56849i 0.820151 + 0.572147i \(0.193889\pi\)
0.0854186 + 0.996345i \(0.472777\pi\)
\(192\) 0 0
\(193\) 16.3830 + 9.45871i 1.17927 + 0.680853i 0.955846 0.293868i \(-0.0949425\pi\)
0.223426 + 0.974721i \(0.428276\pi\)
\(194\) 8.45011 + 2.19823i 0.606683 + 0.157824i
\(195\) 0 0
\(196\) −6.96725 3.88807i −0.497661 0.277719i
\(197\) 5.25418 0.374345 0.187172 0.982327i \(-0.440068\pi\)
0.187172 + 0.982327i \(0.440068\pi\)
\(198\) 0 0
\(199\) 18.8487i 1.33615i 0.744095 + 0.668074i \(0.232881\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(200\) 9.42015 + 10.5480i 0.666105 + 0.745858i
\(201\) 0 0
\(202\) 10.6256 + 2.76415i 0.747612 + 0.194485i
\(203\) −3.43813 1.98500i −0.241309 0.139320i
\(204\) 0 0
\(205\) 6.17510 1.39800i 0.431288 0.0976404i
\(206\) −17.9421 + 4.94821i −1.25009 + 0.344758i
\(207\) 0 0
\(208\) 15.4927 + 8.35148i 1.07423 + 0.579071i
\(209\) 6.20122 3.58028i 0.428948 0.247653i
\(210\) 0 0
\(211\) −3.96081 2.28678i −0.272674 0.157428i 0.357428 0.933941i \(-0.383654\pi\)
−0.630102 + 0.776512i \(0.716987\pi\)
\(212\) −0.0225385 1.54395i −0.00154795 0.106039i
\(213\) 0 0
\(214\) −0.250327 + 0.254008i −0.0171120 + 0.0173636i
\(215\) −17.8378 5.53663i −1.21653 0.377595i
\(216\) 0 0
\(217\) 0.785367i 0.0533142i
\(218\) 0.462407 + 0.455706i 0.0313181 + 0.0308643i
\(219\) 0 0
\(220\) −2.97998 + 10.1203i −0.200910 + 0.682311i
\(221\) −3.38900 1.95664i −0.227969 0.131618i
\(222\) 0 0
\(223\) −11.8767 20.5711i −0.795323 1.37754i −0.922634 0.385677i \(-0.873968\pi\)
0.127310 0.991863i \(-0.459366\pi\)
\(224\) 4.18943 18.2786i 0.279918 1.22129i
\(225\) 0 0
\(226\) −23.7642 + 6.55386i −1.58077 + 0.435956i
\(227\) −24.1252 + 13.9287i −1.60124 + 0.924478i −0.610005 + 0.792398i \(0.708832\pi\)
−0.991239 + 0.132081i \(0.957834\pi\)
\(228\) 0 0
\(229\) 8.35991 14.4798i 0.552439 0.956852i −0.445659 0.895203i \(-0.647031\pi\)
0.998098 0.0616492i \(-0.0196360\pi\)
\(230\) −19.5444 12.1301i −1.28872 0.799833i
\(231\) 0 0
\(232\) 0.804848 3.29027i 0.0528409 0.216017i
\(233\) −1.67938 −0.110020 −0.0550101 0.998486i \(-0.517519\pi\)
−0.0550101 + 0.998486i \(0.517519\pi\)
\(234\) 0 0
\(235\) −5.01943 + 16.1715i −0.327432 + 1.05491i
\(236\) −3.71808 2.07487i −0.242027 0.135063i
\(237\) 0 0
\(238\) −1.04972 + 4.03518i −0.0680432 + 0.261562i
\(239\) −5.41085 + 9.37186i −0.349999 + 0.606215i −0.986249 0.165267i \(-0.947151\pi\)
0.636250 + 0.771483i \(0.280485\pi\)
\(240\) 0 0
\(241\) −5.45657 9.45105i −0.351488 0.608796i 0.635022 0.772494i \(-0.280991\pi\)
−0.986510 + 0.163698i \(0.947658\pi\)
\(242\) 7.40957 2.04346i 0.476305 0.131359i
\(243\) 0 0
\(244\) −6.57037 + 3.92238i −0.420625 + 0.251104i
\(245\) −1.96968 8.70028i −0.125838 0.555841i
\(246\) 0 0
\(247\) 6.67794 11.5665i 0.424907 0.735961i
\(248\) −0.643303 + 0.187561i −0.0408498 + 0.0119101i
\(249\) 0 0
\(250\) −1.73858 + 15.7155i −0.109958 + 0.993936i
\(251\) 5.05766 0.319237 0.159618 0.987179i \(-0.448974\pi\)
0.159618 + 0.987179i \(0.448974\pi\)
\(252\) 0 0
\(253\) 17.1598i 1.07883i
\(254\) −10.6434 10.4892i −0.667829 0.658151i
\(255\) 0 0
\(256\) 15.9727 0.933676i 0.998296 0.0583548i
\(257\) −6.69541 + 11.5968i −0.417649 + 0.723388i −0.995702 0.0926101i \(-0.970479\pi\)
0.578054 + 0.815999i \(0.303812\pi\)
\(258\) 0 0
\(259\) −33.0081 + 19.0573i −2.05103 + 1.18416i
\(260\) 4.62462 + 19.1266i 0.286807 + 1.18618i
\(261\) 0 0
\(262\) 22.1648 6.11278i 1.36935 0.377649i
\(263\) −9.43213 + 5.44564i −0.581610 + 0.335793i −0.761773 0.647844i \(-0.775671\pi\)
0.180163 + 0.983637i \(0.442337\pi\)
\(264\) 0 0
\(265\) 1.26758 1.17200i 0.0778669 0.0719953i
\(266\) −13.7719 3.58265i −0.844410 0.219666i
\(267\) 0 0
\(268\) 11.0809 + 6.18367i 0.676872 + 0.377728i
\(269\) 21.5020i 1.31100i −0.755195 0.655500i \(-0.772458\pi\)
0.755195 0.655500i \(-0.227542\pi\)
\(270\) 0 0
\(271\) 18.9445i 1.15080i −0.817873 0.575399i \(-0.804847\pi\)
0.817873 0.575399i \(-0.195153\pi\)
\(272\) −3.55595 + 0.103842i −0.215611 + 0.00629634i
\(273\) 0 0
\(274\) 4.69686 18.0550i 0.283748 1.09074i
\(275\) −10.6450 + 5.08030i −0.641920 + 0.306354i
\(276\) 0 0
\(277\) 16.1616 9.33092i 0.971058 0.560641i 0.0714994 0.997441i \(-0.477222\pi\)
0.899559 + 0.436800i \(0.143888\pi\)
\(278\) −2.43791 8.83982i −0.146216 0.530177i
\(279\) 0 0
\(280\) 18.3354 10.1680i 1.09575 0.607654i
\(281\) 5.84683 3.37567i 0.348792 0.201375i −0.315361 0.948972i \(-0.602126\pi\)
0.664153 + 0.747596i \(0.268792\pi\)
\(282\) 0 0
\(283\) −2.63488 + 4.56374i −0.156627 + 0.271286i −0.933650 0.358186i \(-0.883395\pi\)
0.777023 + 0.629472i \(0.216729\pi\)
\(284\) 0.342270 + 23.4464i 0.0203100 + 1.39129i
\(285\) 0 0
\(286\) −10.3039 + 10.4554i −0.609283 + 0.618242i
\(287\) 9.38639i 0.554061i
\(288\) 0 0
\(289\) −16.2090 −0.953472
\(290\) 3.33837 1.78811i 0.196036 0.105001i
\(291\) 0 0
\(292\) 12.2165 0.178336i 0.714916 0.0104364i
\(293\) 11.1453 19.3041i 0.651113 1.12776i −0.331741 0.943371i \(-0.607636\pi\)
0.982853 0.184390i \(-0.0590308\pi\)
\(294\) 0 0
\(295\) −1.05112 4.64292i −0.0611988 0.270321i
\(296\) −23.4930 22.4861i −1.36550 1.30698i
\(297\) 0 0
\(298\) −3.14763 11.4133i −0.182337 0.661153i
\(299\) −16.0032 27.7184i −0.925490 1.60300i
\(300\) 0 0
\(301\) −13.8448 + 23.9798i −0.797999 + 1.38217i
\(302\) 22.4429 + 5.83834i 1.29144 + 0.335959i
\(303\) 0 0
\(304\) −0.354408 12.1363i −0.0203267 0.696066i
\(305\) −8.17078 2.53611i −0.467857 0.145217i
\(306\) 0 0
\(307\) 0.415414 0.0237089 0.0118545 0.999930i \(-0.496227\pi\)
0.0118545 + 0.999930i \(0.496227\pi\)
\(308\) 13.6578 + 7.62170i 0.778224 + 0.434287i
\(309\) 0 0
\(310\) −0.636548 0.395069i −0.0361535 0.0224384i
\(311\) 0.284562 0.492876i 0.0161360 0.0279484i −0.857845 0.513909i \(-0.828197\pi\)
0.873981 + 0.485961i \(0.161530\pi\)
\(312\) 0 0
\(313\) −24.3028 + 14.0312i −1.37367 + 0.793091i −0.991388 0.130954i \(-0.958196\pi\)
−0.382285 + 0.924044i \(0.624863\pi\)
\(314\) −4.02762 14.6041i −0.227292 0.824156i
\(315\) 0 0
\(316\) 10.5932 + 17.7447i 0.595917 + 0.998219i
\(317\) 6.63676 + 11.4952i 0.372758 + 0.645635i 0.989989 0.141147i \(-0.0450790\pi\)
−0.617231 + 0.786782i \(0.711746\pi\)
\(318\) 0 0
\(319\) 2.44664 + 1.41257i 0.136986 + 0.0790887i
\(320\) 12.7076 + 12.5904i 0.710374 + 0.703824i
\(321\) 0 0
\(322\) −23.9370 + 24.2890i −1.33396 + 1.35357i
\(323\) 2.69956i 0.150208i
\(324\) 0 0
\(325\) −12.4572 + 18.1338i −0.690999 + 1.00588i
\(326\) −1.34555 1.32605i −0.0745231 0.0734431i
\(327\) 0 0
\(328\) 7.68850 2.24165i 0.424526 0.123774i
\(329\) 21.7398 + 12.5515i 1.19855 + 0.691985i
\(330\) 0 0
\(331\) 7.43989 4.29542i 0.408933 0.236098i −0.281398 0.959591i \(-0.590798\pi\)
0.690331 + 0.723493i \(0.257465\pi\)
\(332\) 2.66471 + 4.46364i 0.146245 + 0.244974i
\(333\) 0 0
\(334\) −2.69583 9.77502i −0.147509 0.534865i
\(335\) 3.13263 + 13.8371i 0.171154 + 0.756003i
\(336\) 0 0
\(337\) 0.914017 + 0.527708i 0.0497897 + 0.0287461i 0.524688 0.851294i \(-0.324182\pi\)
−0.474899 + 0.880041i \(0.657515\pi\)
\(338\) −2.26469 + 8.70561i −0.123183 + 0.473523i
\(339\) 0 0
\(340\) −2.74250 2.88065i −0.148733 0.156225i
\(341\) 0.558884i 0.0302652i
\(342\) 0 0
\(343\) 9.98036 0.538889
\(344\) −22.9485 5.61355i −1.23730 0.302662i
\(345\) 0 0
\(346\) −0.916922 + 3.52470i −0.0492940 + 0.189489i
\(347\) 5.97844 + 3.45165i 0.320939 + 0.185294i 0.651811 0.758381i \(-0.274009\pi\)
−0.330872 + 0.943676i \(0.607343\pi\)
\(348\) 0 0
\(349\) −15.5145 26.8719i −0.830473 1.43842i −0.897663 0.440682i \(-0.854737\pi\)
0.0671899 0.997740i \(-0.478597\pi\)
\(350\) 22.1544 + 7.65831i 1.18420 + 0.409354i
\(351\) 0 0
\(352\) −2.98128 + 13.0074i −0.158903 + 0.693299i
\(353\) −7.67847 13.2995i −0.408684 0.707861i 0.586059 0.810269i \(-0.300679\pi\)
−0.994743 + 0.102408i \(0.967345\pi\)
\(354\) 0 0
\(355\) −19.2495 + 17.7980i −1.02166 + 0.944619i
\(356\) −9.36161 + 0.136661i −0.496164 + 0.00724301i
\(357\) 0 0
\(358\) −10.2588 10.1101i −0.542194 0.534337i
\(359\) 8.51196 0.449244 0.224622 0.974446i \(-0.427885\pi\)
0.224622 + 0.974446i \(0.427885\pi\)
\(360\) 0 0
\(361\) 9.78650 0.515079
\(362\) 4.20573 + 4.14478i 0.221048 + 0.217845i
\(363\) 0 0
\(364\) 29.1696 0.425818i 1.52890 0.0223189i
\(365\) 9.27346 + 10.0298i 0.485395 + 0.524981i
\(366\) 0 0
\(367\) 0.646542 + 1.11984i 0.0337492 + 0.0584553i 0.882407 0.470488i \(-0.155922\pi\)
−0.848657 + 0.528943i \(0.822589\pi\)
\(368\) −25.6120 13.8064i −1.33512 0.719708i
\(369\) 0 0
\(370\) 1.15823 36.3399i 0.0602133 1.88922i
\(371\) −1.27969 2.21648i −0.0664381 0.115074i
\(372\) 0 0
\(373\) 14.1837 + 8.18898i 0.734406 + 0.424010i 0.820032 0.572318i \(-0.193956\pi\)
−0.0856259 + 0.996327i \(0.527289\pi\)
\(374\) 0.747002 2.87152i 0.0386265 0.148483i
\(375\) 0 0
\(376\) −5.08917 + 20.8048i −0.262454 + 1.07293i
\(377\) 5.26946 0.271391
\(378\) 0 0
\(379\) 11.7940i 0.605818i −0.953020 0.302909i \(-0.902042\pi\)
0.953020 0.302909i \(-0.0979578\pi\)
\(380\) 9.83155 9.36005i 0.504348 0.480161i
\(381\) 0 0
\(382\) −8.91198 + 34.2582i −0.455977 + 1.75280i
\(383\) −9.75933 5.63455i −0.498678 0.287912i 0.229489 0.973311i \(-0.426294\pi\)
−0.728168 + 0.685399i \(0.759628\pi\)
\(384\) 0 0
\(385\) 3.86113 + 17.0550i 0.196781 + 0.869203i
\(386\) 7.11268 + 25.7905i 0.362026 + 1.31270i
\(387\) 0 0
\(388\) 6.32944 + 10.6024i 0.321328 + 0.538257i
\(389\) −17.4583 + 10.0796i −0.885172 + 0.511054i −0.872360 0.488864i \(-0.837411\pi\)
−0.0128115 + 0.999918i \(0.504078\pi\)
\(390\) 0 0
\(391\) 5.60259 + 3.23466i 0.283335 + 0.163584i
\(392\) −3.15833 10.8326i −0.159520 0.547127i
\(393\) 0 0
\(394\) 5.29239 + 5.21569i 0.266627 + 0.262763i
\(395\) −6.84932 + 22.0670i −0.344627 + 1.11031i
\(396\) 0 0
\(397\) 5.11859i 0.256895i −0.991716 0.128447i \(-0.959001\pi\)
0.991716 0.128447i \(-0.0409993\pi\)
\(398\) −18.7106 + 18.9858i −0.937879 + 0.951670i
\(399\) 0 0
\(400\) −0.982113 + 19.9759i −0.0491056 + 0.998794i
\(401\) −9.58291 5.53269i −0.478548 0.276290i 0.241263 0.970460i \(-0.422438\pi\)
−0.719811 + 0.694170i \(0.755772\pi\)
\(402\) 0 0
\(403\) −0.521215 0.902771i −0.0259636 0.0449702i
\(404\) 7.95892 + 13.3320i 0.395971 + 0.663291i
\(405\) 0 0
\(406\) −1.49267 5.41238i −0.0740798 0.268612i
\(407\) 23.4893 13.5615i 1.16432 0.672221i
\(408\) 0 0
\(409\) −8.08315 + 14.0004i −0.399686 + 0.692276i −0.993687 0.112188i \(-0.964214\pi\)
0.594001 + 0.804464i \(0.297548\pi\)
\(410\) 7.60776 + 4.72170i 0.375721 + 0.233188i
\(411\) 0 0
\(412\) −22.9846 12.8265i −1.13237 0.631917i
\(413\) −7.05742 −0.347273
\(414\) 0 0
\(415\) −1.72293 + 5.55090i −0.0845753 + 0.272483i
\(416\) 7.31504 + 23.7914i 0.358650 + 1.16647i
\(417\) 0 0
\(418\) 9.80037 + 2.54949i 0.479352 + 0.124699i
\(419\) −3.65564 + 6.33176i −0.178590 + 0.309327i −0.941398 0.337298i \(-0.890487\pi\)
0.762808 + 0.646625i \(0.223820\pi\)
\(420\) 0 0
\(421\) 14.9731 + 25.9341i 0.729742 + 1.26395i 0.956992 + 0.290114i \(0.0936932\pi\)
−0.227250 + 0.973836i \(0.572973\pi\)
\(422\) −1.71959 6.23521i −0.0837083 0.303525i
\(423\) 0 0
\(424\) 1.50993 1.57755i 0.0733288 0.0766124i
\(425\) 0.347917 4.43321i 0.0168765 0.215042i
\(426\) 0 0
\(427\) −6.34172 + 10.9842i −0.306897 + 0.531562i
\(428\) −0.504295 + 0.00736171i −0.0243760 + 0.000355842i
\(429\) 0 0
\(430\) −12.4715 23.2840i −0.601427 1.12286i
\(431\) 30.7505 1.48120 0.740599 0.671947i \(-0.234542\pi\)
0.740599 + 0.671947i \(0.234542\pi\)
\(432\) 0 0
\(433\) 29.3734i 1.41160i −0.708413 0.705798i \(-0.750589\pi\)
0.708413 0.705798i \(-0.249411\pi\)
\(434\) −0.779614 + 0.791078i −0.0374227 + 0.0379730i
\(435\) 0 0
\(436\) 0.0134016 + 0.918039i 0.000641818 + 0.0439661i
\(437\) −11.0398 + 19.1214i −0.528103 + 0.914701i
\(438\) 0 0
\(439\) 6.77418 3.91108i 0.323314 0.186665i −0.329555 0.944136i \(-0.606899\pi\)
0.652869 + 0.757471i \(0.273565\pi\)
\(440\) −13.0478 + 7.23575i −0.622031 + 0.344951i
\(441\) 0 0
\(442\) −1.47134 5.33505i −0.0699844 0.253763i
\(443\) 23.1263 13.3520i 1.09876 0.634371i 0.162867 0.986648i \(-0.447926\pi\)
0.935896 + 0.352277i \(0.114592\pi\)
\(444\) 0 0
\(445\) −7.10634 7.68589i −0.336873 0.364346i
\(446\) 8.45731 32.5104i 0.400465 1.53941i
\(447\) 0 0
\(448\) 22.3646 14.2528i 1.05663 0.673381i
\(449\) 23.8441i 1.12527i −0.826704 0.562637i \(-0.809787\pi\)
0.826704 0.562637i \(-0.190213\pi\)
\(450\) 0 0
\(451\) 6.67955i 0.314528i
\(452\) −30.4428 16.9886i −1.43191 0.799076i
\(453\) 0 0
\(454\) −38.1272 9.91849i −1.78940 0.465498i
\(455\) 22.1424 + 23.9483i 1.03805 + 1.12271i
\(456\) 0 0
\(457\) −13.6451 + 7.87798i −0.638289 + 0.368516i −0.783955 0.620817i \(-0.786801\pi\)
0.145666 + 0.989334i \(0.453468\pi\)
\(458\) 22.7944 6.28641i 1.06511 0.293745i
\(459\) 0 0
\(460\) −7.64526 31.6195i −0.356462 1.47426i
\(461\) −9.24515 + 5.33769i −0.430590 + 0.248601i −0.699598 0.714537i \(-0.746637\pi\)
0.269008 + 0.963138i \(0.413304\pi\)
\(462\) 0 0
\(463\) 3.17644 5.50175i 0.147622 0.255688i −0.782726 0.622366i \(-0.786172\pi\)
0.930348 + 0.366678i \(0.119505\pi\)
\(464\) 4.07687 2.51524i 0.189264 0.116767i
\(465\) 0 0
\(466\) −1.69160 1.66708i −0.0783617 0.0772261i
\(467\) 7.76191i 0.359179i 0.983742 + 0.179589i \(0.0574769\pi\)
−0.983742 + 0.179589i \(0.942523\pi\)
\(468\) 0 0
\(469\) 21.0330 0.971213
\(470\) −21.1090 + 11.3064i −0.973685 + 0.521527i
\(471\) 0 0
\(472\) −1.68545 5.78081i −0.0775790 0.266083i
\(473\) 9.85221 17.0645i 0.453005 0.784628i
\(474\) 0 0
\(475\) 15.1303 + 1.18743i 0.694228 + 0.0544829i
\(476\) −5.06298 + 3.02249i −0.232061 + 0.138536i
\(477\) 0 0
\(478\) −14.7534 + 4.06880i −0.674805 + 0.186103i
\(479\) 3.56565 + 6.17588i 0.162919 + 0.282183i 0.935914 0.352228i \(-0.114576\pi\)
−0.772996 + 0.634411i \(0.781243\pi\)
\(480\) 0 0
\(481\) 25.2950 43.8122i 1.15335 1.99767i
\(482\) 3.88558 14.9364i 0.176983 0.680333i
\(483\) 0 0
\(484\) 9.49194 + 5.29697i 0.431452 + 0.240771i
\(485\) −4.09245 + 13.1850i −0.185829 + 0.598699i
\(486\) 0 0
\(487\) 15.1089 0.684649 0.342325 0.939582i \(-0.388786\pi\)
0.342325 + 0.939582i \(0.388786\pi\)
\(488\) −10.5118 2.57134i −0.475846 0.116399i
\(489\) 0 0
\(490\) 6.65255 10.7188i 0.300531 0.484226i
\(491\) 14.7215 25.4984i 0.664372 1.15073i −0.315083 0.949064i \(-0.602032\pi\)
0.979455 0.201662i \(-0.0646342\pi\)
\(492\) 0 0
\(493\) −0.922396 + 0.532546i −0.0415426 + 0.0239847i
\(494\) 18.2083 5.02162i 0.819230 0.225933i
\(495\) 0 0
\(496\) −0.834168 0.449666i −0.0374552 0.0201906i
\(497\) 19.4333 + 33.6595i 0.871705 + 1.50984i
\(498\) 0 0
\(499\) 18.0795 + 10.4382i 0.809351 + 0.467279i 0.846730 0.532022i \(-0.178568\pi\)
−0.0373795 + 0.999301i \(0.511901\pi\)
\(500\) −17.3516 + 14.1039i −0.775988 + 0.630748i
\(501\) 0 0
\(502\) 5.09444 + 5.02061i 0.227376 + 0.224081i
\(503\) 22.6713i 1.01086i −0.862867 0.505431i \(-0.831333\pi\)
0.862867 0.505431i \(-0.168667\pi\)
\(504\) 0 0
\(505\) −5.14603 + 16.5794i −0.228995 + 0.737773i
\(506\) 17.0341 17.2846i 0.757257 0.768392i
\(507\) 0 0
\(508\) −0.308470 21.1310i −0.0136862 0.937535i
\(509\) 23.5593 + 13.6020i 1.04425 + 0.602896i 0.921033 0.389484i \(-0.127347\pi\)
0.123213 + 0.992380i \(0.460680\pi\)
\(510\) 0 0
\(511\) 17.5380 10.1255i 0.775834 0.447928i
\(512\) 17.0157 + 14.9153i 0.751996 + 0.659168i
\(513\) 0 0
\(514\) −18.2560 + 5.03476i −0.805236 + 0.222074i
\(515\) −6.49787 28.7018i −0.286330 1.26475i
\(516\) 0 0
\(517\) −15.4705 8.93188i −0.680390 0.392824i
\(518\) −52.1658 13.5705i −2.29204 0.596254i
\(519\) 0 0
\(520\) −14.3282 + 23.8564i −0.628335 + 1.04617i
\(521\) 2.18176i 0.0955847i 0.998857 + 0.0477924i \(0.0152186\pi\)
−0.998857 + 0.0477924i \(0.984781\pi\)
\(522\) 0 0
\(523\) 28.8185 1.26014 0.630071 0.776537i \(-0.283026\pi\)
0.630071 + 0.776537i \(0.283026\pi\)
\(524\) 28.3940 + 15.8452i 1.24040 + 0.692203i
\(525\) 0 0
\(526\) −14.9065 3.87779i −0.649953 0.169080i
\(527\) 0.182473 + 0.105351i 0.00794865 + 0.00458916i
\(528\) 0 0
\(529\) 14.9560 + 25.9046i 0.650261 + 1.12629i
\(530\) 2.44021 + 0.0777744i 0.105996 + 0.00337830i
\(531\) 0 0
\(532\) −10.3156 17.2797i −0.447240 0.749171i
\(533\) 6.22935 + 10.7896i 0.269823 + 0.467348i
\(534\) 0 0
\(535\) −0.382807 0.414027i −0.0165502 0.0179000i
\(536\) 5.02308 + 17.2283i 0.216964 + 0.744151i
\(537\) 0 0
\(538\) 21.3445 21.6584i 0.920227 0.933759i
\(539\) 9.41102 0.405361
\(540\) 0 0
\(541\) 3.32257 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(542\) 18.8058 19.0823i 0.807777 0.819655i
\(543\) 0 0
\(544\) −3.68489 3.42531i −0.157989 0.146859i
\(545\) −0.753711 + 0.696878i −0.0322854 + 0.0298510i
\(546\) 0 0
\(547\) 13.8697 + 24.0231i 0.593027 + 1.02715i 0.993822 + 0.110986i \(0.0354008\pi\)
−0.400795 + 0.916168i \(0.631266\pi\)
\(548\) 22.6538 13.5238i 0.967721 0.577710i
\(549\) 0 0
\(550\) −15.7655 5.44981i −0.672244 0.232381i
\(551\) −1.81756 3.14810i −0.0774305 0.134114i
\(552\) 0 0
\(553\) 29.6652 + 17.1272i 1.26149 + 0.728323i
\(554\) 25.5417 + 6.64447i 1.08516 + 0.282296i
\(555\) 0 0
\(556\) 6.31943 11.3241i 0.268003 0.480251i
\(557\) −30.0401 −1.27284 −0.636419 0.771344i \(-0.719585\pi\)
−0.636419 + 0.771344i \(0.719585\pi\)
\(558\) 0 0
\(559\) 36.7527i 1.55447i
\(560\) 28.5622 + 7.95913i 1.20697 + 0.336335i
\(561\) 0 0
\(562\) 9.24028 + 2.40378i 0.389778 + 0.101398i
\(563\) −1.52959 0.883109i −0.0644645 0.0372186i 0.467421 0.884035i \(-0.345183\pi\)
−0.531886 + 0.846816i \(0.678516\pi\)
\(564\) 0 0
\(565\) −8.60636 38.0152i −0.362072 1.59931i
\(566\) −7.18435 + 1.98135i −0.301981 + 0.0832824i
\(567\) 0 0
\(568\) −22.9298 + 23.9566i −0.962115 + 1.00520i
\(569\) −31.9951 + 18.4724i −1.34131 + 0.774403i −0.986999 0.160726i \(-0.948616\pi\)
−0.354306 + 0.935129i \(0.615283\pi\)
\(570\) 0 0
\(571\) −26.5164 15.3092i −1.10968 0.640672i −0.170930 0.985283i \(-0.554677\pi\)
−0.938745 + 0.344612i \(0.888011\pi\)
\(572\) −20.7577 + 0.303021i −0.867922 + 0.0126699i
\(573\) 0 0
\(574\) 9.31764 9.45465i 0.388911 0.394629i
\(575\) 20.5938 29.9783i 0.858819 1.25018i
\(576\) 0 0
\(577\) 23.6405i 0.984168i −0.870548 0.492084i \(-0.836235\pi\)
0.870548 0.492084i \(-0.163765\pi\)
\(578\) −16.3269 16.0903i −0.679109 0.669268i
\(579\) 0 0
\(580\) 5.13766 + 1.51281i 0.213330 + 0.0628160i
\(581\) 7.46221 + 4.30831i 0.309585 + 0.178739i
\(582\) 0 0
\(583\) 0.910652 + 1.57730i 0.0377154 + 0.0653249i
\(584\) 12.4824 + 11.9474i 0.516523 + 0.494385i
\(585\) 0 0
\(586\) 30.3890 8.38091i 1.25536 0.346212i
\(587\) −0.0513568 + 0.0296509i −0.00211972 + 0.00122382i −0.501059 0.865413i \(-0.667056\pi\)
0.498940 + 0.866637i \(0.333723\pi\)
\(588\) 0 0
\(589\) −0.359558 + 0.622773i −0.0148153 + 0.0256609i
\(590\) 3.55014 5.72010i 0.146157 0.235493i
\(591\) 0 0
\(592\) −1.34244 45.9705i −0.0551741 1.88938i
\(593\) 44.6245 1.83251 0.916255 0.400596i \(-0.131197\pi\)
0.916255 + 0.400596i \(0.131197\pi\)
\(594\) 0 0
\(595\) −6.29622 1.95427i −0.258120 0.0801171i
\(596\) 8.15914 14.6208i 0.334211 0.598893i
\(597\) 0 0
\(598\) 11.3958 43.8059i 0.466007 1.79136i
\(599\) −11.5001 + 19.9187i −0.469881 + 0.813857i −0.999407 0.0344362i \(-0.989036\pi\)
0.529526 + 0.848294i \(0.322370\pi\)
\(600\) 0 0
\(601\) 0.981232 + 1.69954i 0.0400253 + 0.0693259i 0.885344 0.464936i \(-0.153923\pi\)
−0.845319 + 0.534262i \(0.820589\pi\)
\(602\) −37.7496 + 10.4109i −1.53856 + 0.424315i
\(603\) 0 0
\(604\) 16.8105 + 28.1593i 0.684011 + 1.14579i
\(605\) 2.68343 + 11.8530i 0.109097 + 0.481891i
\(606\) 0 0
\(607\) −10.1049 + 17.5023i −0.410146 + 0.710394i −0.994905 0.100813i \(-0.967856\pi\)
0.584759 + 0.811207i \(0.301189\pi\)
\(608\) 11.6904 12.5764i 0.474110 0.510040i
\(609\) 0 0
\(610\) −5.71267 10.6655i −0.231299 0.431833i
\(611\) −33.3195 −1.34796
\(612\) 0 0
\(613\) 24.8672i 1.00438i 0.864758 + 0.502189i \(0.167472\pi\)
−0.864758 + 0.502189i \(0.832528\pi\)
\(614\) 0.418434 + 0.412371i 0.0168866 + 0.0166419i
\(615\) 0 0
\(616\) 6.19121 + 21.2349i 0.249451 + 0.855577i
\(617\) 16.3707 28.3549i 0.659059 1.14152i −0.321800 0.946808i \(-0.604288\pi\)
0.980860 0.194717i \(-0.0623788\pi\)
\(618\) 0 0
\(619\) 11.9754 6.91400i 0.481332 0.277897i −0.239640 0.970862i \(-0.577029\pi\)
0.720971 + 0.692965i \(0.243696\pi\)
\(620\) −0.249002 1.02983i −0.0100001 0.0413588i
\(621\) 0 0
\(622\) 0.775897 0.213982i 0.0311106 0.00857991i
\(623\) −13.4395 + 7.75930i −0.538442 + 0.310870i
\(624\) 0 0
\(625\) −24.6939 3.89997i −0.987757 0.155999i
\(626\) −38.4079 9.99151i −1.53509 0.399341i
\(627\) 0 0
\(628\) 10.4402 18.7084i 0.416609 0.746546i
\(629\) 10.2255i 0.407719i
\(630\) 0 0
\(631\) 0.298908i 0.0118994i 0.999982 + 0.00594968i \(0.00189385\pi\)
−0.999982 + 0.00594968i \(0.998106\pi\)
\(632\) −6.94447 + 28.3894i −0.276236 + 1.12927i
\(633\) 0 0
\(634\) −4.72598 + 18.1669i −0.187693 + 0.721501i
\(635\) 17.3485 16.0404i 0.688456 0.636543i
\(636\) 0 0
\(637\) 15.2017 8.77672i 0.602314 0.347746i
\(638\) 1.06221 + 3.85156i 0.0420534 + 0.152485i
\(639\) 0 0
\(640\) 0.301795 + 25.2964i 0.0119295 + 0.999929i
\(641\) −12.2453 + 7.06982i −0.483660 + 0.279241i −0.721940 0.691955i \(-0.756750\pi\)
0.238281 + 0.971196i \(0.423416\pi\)
\(642\) 0 0
\(643\) 18.2808 31.6633i 0.720925 1.24868i −0.239704 0.970846i \(-0.577050\pi\)
0.960629 0.277833i \(-0.0896162\pi\)
\(644\) −48.2222 + 0.703948i −1.90022 + 0.0277394i
\(645\) 0 0
\(646\) −2.67979 + 2.71919i −0.105435 + 0.106985i
\(647\) 25.4645i 1.00111i 0.865704 + 0.500556i \(0.166871\pi\)
−0.865704 + 0.500556i \(0.833129\pi\)
\(648\) 0 0
\(649\) 5.02220 0.197139
\(650\) −30.5488 + 5.89980i −1.19822 + 0.231409i
\(651\) 0 0
\(652\) −0.0389969 2.67139i −0.00152724 0.104620i
\(653\) −11.2123 + 19.4203i −0.438772 + 0.759976i −0.997595 0.0693112i \(-0.977920\pi\)
0.558823 + 0.829287i \(0.311253\pi\)
\(654\) 0 0
\(655\) 8.02715 + 35.4567i 0.313647 + 1.38541i
\(656\) 9.96964 + 5.37423i 0.389249 + 0.209828i
\(657\) 0 0
\(658\) 9.43834 + 34.2233i 0.367945 + 1.33416i
\(659\) −3.28193 5.68446i −0.127846 0.221435i 0.794996 0.606615i \(-0.207473\pi\)
−0.922842 + 0.385179i \(0.874140\pi\)
\(660\) 0 0
\(661\) −9.44856 + 16.3654i −0.367506 + 0.636540i −0.989175 0.146741i \(-0.953122\pi\)
0.621669 + 0.783280i \(0.286455\pi\)
\(662\) 11.7579 + 3.05873i 0.456986 + 0.118881i
\(663\) 0 0
\(664\) −1.74687 + 7.14129i −0.0677915 + 0.277136i
\(665\) 6.66983 21.4887i 0.258645 0.833297i
\(666\) 0 0
\(667\) −8.71129 −0.337303
\(668\) 6.98799 12.5222i 0.270373 0.484498i
\(669\) 0 0
\(670\) −10.5804 + 17.0474i −0.408755 + 0.658600i
\(671\) 4.51290 7.81657i 0.174219 0.301755i
\(672\) 0 0
\(673\) −27.1258 + 15.6611i −1.04562 + 0.603690i −0.921420 0.388567i \(-0.872970\pi\)
−0.124201 + 0.992257i \(0.539637\pi\)
\(674\) 0.396821 + 1.43887i 0.0152850 + 0.0554231i
\(675\) 0 0
\(676\) −10.9230 + 6.52081i −0.420115 + 0.250800i
\(677\) −20.4922 35.4936i −0.787580 1.36413i −0.927446 0.373958i \(-0.878000\pi\)
0.139866 0.990171i \(-0.455333\pi\)
\(678\) 0 0
\(679\) 17.7249 + 10.2335i 0.680219 + 0.392724i
\(680\) 0.0971038 5.62402i 0.00372376 0.215671i
\(681\) 0 0
\(682\) 0.554790 0.562948i 0.0212440 0.0215564i
\(683\) 42.0703i 1.60978i −0.593427 0.804888i \(-0.702225\pi\)
0.593427 0.804888i \(-0.297775\pi\)
\(684\) 0 0
\(685\) 28.1718 + 8.74417i 1.07639 + 0.334097i
\(686\) 10.0529 + 9.90726i 0.383823 + 0.378261i
\(687\) 0 0
\(688\) −17.5430 28.4348i −0.668820 1.08407i
\(689\) 2.94198 + 1.69855i 0.112080 + 0.0647096i
\(690\) 0 0
\(691\) −30.3277 + 17.5097i −1.15372 + 0.666101i −0.949791 0.312885i \(-0.898705\pi\)
−0.203930 + 0.978986i \(0.565371\pi\)
\(692\) −4.42247 + 2.64012i −0.168117 + 0.100362i
\(693\) 0 0
\(694\) 2.59554 + 9.41140i 0.0985255 + 0.357252i
\(695\) 14.1409 3.20140i 0.536395 0.121436i
\(696\) 0 0
\(697\) −2.18084 1.25911i −0.0826054 0.0476922i
\(698\) 11.0478 42.4682i 0.418164 1.60745i
\(699\) 0 0
\(700\) 14.7133 + 29.7061i 0.556110 + 1.12279i
\(701\) 41.5315i 1.56862i −0.620366 0.784312i \(-0.713016\pi\)
0.620366 0.784312i \(-0.286984\pi\)
\(702\) 0 0
\(703\) −34.8993 −1.31625
\(704\) −15.9151 + 10.1426i −0.599824 + 0.382263i
\(705\) 0 0
\(706\) 5.46777 21.0184i 0.205782 0.791039i
\(707\) 22.2881 + 12.8680i 0.838229 + 0.483952i
\(708\) 0 0
\(709\) 5.69139 + 9.85778i 0.213745 + 0.370217i 0.952883 0.303337i \(-0.0981006\pi\)
−0.739139 + 0.673553i \(0.764767\pi\)
\(710\) −37.0571 1.18108i −1.39073 0.0443252i
\(711\) 0 0
\(712\) −9.56534 9.15538i −0.358476 0.343112i
\(713\) 0.861656 + 1.49243i 0.0322693 + 0.0558920i
\(714\) 0 0
\(715\) −15.7570 17.0421i −0.589279 0.637337i
\(716\) −0.297322 20.3673i −0.0111115 0.761162i
\(717\) 0 0
\(718\) 8.57386 + 8.44961i 0.319974 + 0.315337i
\(719\) 24.0599 0.897282 0.448641 0.893712i \(-0.351908\pi\)
0.448641 + 0.893712i \(0.351908\pi\)
\(720\) 0 0
\(721\) −43.6278 −1.62478
\(722\) 9.85767 + 9.71482i 0.366864 + 0.361548i
\(723\) 0 0
\(724\) 0.121891 + 8.34985i 0.00453005 + 0.310320i
\(725\) 2.57906 + 5.40403i 0.0957837 + 0.200701i
\(726\) 0 0
\(727\) −2.85756 4.94944i −0.105981 0.183565i 0.808158 0.588966i \(-0.200465\pi\)
−0.914139 + 0.405402i \(0.867132\pi\)
\(728\) 29.8044 + 28.5270i 1.10462 + 1.05728i
\(729\) 0 0
\(730\) −0.615391 + 19.3082i −0.0227766 + 0.714629i
\(731\) 3.71433 + 6.43341i 0.137380 + 0.237948i
\(732\) 0 0
\(733\) 22.3900 + 12.9269i 0.826994 + 0.477465i 0.852822 0.522201i \(-0.174889\pi\)
−0.0258286 + 0.999666i \(0.508222\pi\)
\(734\) −0.460397 + 1.76979i −0.0169936 + 0.0653242i
\(735\) 0 0
\(736\) −12.0930 39.3312i −0.445754 1.44977i
\(737\) −14.9675 −0.551335
\(738\) 0 0
\(739\) 18.0774i 0.664989i 0.943105 + 0.332495i \(0.107890\pi\)
−0.943105 + 0.332495i \(0.892110\pi\)
\(740\) 37.2404 35.4544i 1.36898 1.30333i
\(741\) 0 0
\(742\) 0.911255 3.50292i 0.0334532 0.128596i
\(743\) 15.5973 + 9.00512i 0.572210 + 0.330366i 0.758032 0.652218i \(-0.226161\pi\)
−0.185821 + 0.982584i \(0.559495\pi\)
\(744\) 0 0
\(745\) 18.2576 4.13339i 0.668907 0.151436i
\(746\) 6.15788 + 22.3284i 0.225456 + 0.817500i
\(747\) 0 0
\(748\) 3.60292 2.15087i 0.131736 0.0786435i
\(749\) −0.723965 + 0.417982i −0.0264531 + 0.0152727i
\(750\) 0 0
\(751\) 35.2487 + 20.3509i 1.28624 + 0.742613i 0.977982 0.208689i \(-0.0669195\pi\)
0.308262 + 0.951302i \(0.400253\pi\)
\(752\) −25.7786 + 15.9042i −0.940049 + 0.579967i
\(753\) 0 0
\(754\) 5.30778 + 5.23086i 0.193298 + 0.190497i
\(755\) −10.8693 + 35.0184i −0.395573 + 1.27445i
\(756\) 0 0
\(757\) 35.4823i 1.28963i 0.764340 + 0.644813i \(0.223065\pi\)
−0.764340 + 0.644813i \(0.776935\pi\)
\(758\) 11.7076 11.8798i 0.425240 0.431493i
\(759\) 0 0
\(760\) 19.1945 + 0.331411i 0.696259 + 0.0120215i
\(761\) 34.0009 + 19.6304i 1.23253 + 0.711602i 0.967557 0.252654i \(-0.0813033\pi\)
0.264974 + 0.964256i \(0.414637\pi\)
\(762\) 0 0
\(763\) 0.760910 + 1.31794i 0.0275468 + 0.0477125i
\(764\) −42.9840 + 25.6606i −1.55511 + 0.928367i
\(765\) 0 0
\(766\) −4.23702 15.3634i −0.153090 0.555101i
\(767\) 8.11242 4.68371i 0.292923 0.169119i
\(768\) 0 0
\(769\) −3.27941 + 5.68011i −0.118259 + 0.204830i −0.919078 0.394076i \(-0.871065\pi\)
0.800819 + 0.598906i \(0.204398\pi\)
\(770\) −13.0409 + 21.0119i −0.469960 + 0.757215i
\(771\) 0 0
\(772\) −18.4371 + 33.0386i −0.663567 + 1.18908i
\(773\) −34.2118 −1.23051 −0.615256 0.788327i \(-0.710947\pi\)
−0.615256 + 0.788327i \(0.710947\pi\)
\(774\) 0 0
\(775\) 0.670727 0.976374i 0.0240932 0.0350724i
\(776\) −4.14930 + 16.9626i −0.148951 + 0.608922i
\(777\) 0 0
\(778\) −27.5910 7.17757i −0.989185 0.257328i
\(779\) 4.29729 7.44313i 0.153967 0.266678i
\(780\) 0 0
\(781\) −13.8292 23.9528i −0.494847 0.857099i
\(782\) 2.43237 + 8.81973i 0.0869813 + 0.315393i
\(783\) 0 0
\(784\) 7.57191 14.0465i 0.270425 0.501661i
\(785\) 23.3619 5.28897i 0.833822 0.188771i
\(786\) 0 0
\(787\) −8.68943 + 15.0505i −0.309745 + 0.536494i −0.978306 0.207163i \(-0.933577\pi\)
0.668562 + 0.743657i \(0.266910\pi\)
\(788\) 0.153385 + 10.5072i 0.00546411 + 0.374305i
\(789\) 0 0
\(790\) −28.8045 + 15.4283i −1.02482 + 0.548915i
\(791\) −57.7846 −2.05458
\(792\) 0 0
\(793\) 16.8349i 0.597826i
\(794\) 5.08109 5.15581i 0.180321 0.182973i
\(795\) 0 0
\(796\) −37.6934 + 0.550249i −1.33601 + 0.0195030i
\(797\) −3.50633 + 6.07314i −0.124201 + 0.215122i −0.921420 0.388568i \(-0.872970\pi\)
0.797220 + 0.603689i \(0.206303\pi\)
\(798\) 0 0
\(799\) 5.83244 3.36736i 0.206337 0.119129i
\(800\) −20.8188 + 19.1462i −0.736056 + 0.676921i
\(801\) 0 0
\(802\) −4.16042 15.0856i −0.146910 0.532692i
\(803\) −12.4804 + 7.20555i −0.440423 + 0.254278i
\(804\) 0 0
\(805\) −36.6052 39.5905i −1.29016 1.39538i
\(806\) 0.371153 1.42673i 0.0130733 0.0502545i
\(807\) 0 0
\(808\) −5.21752 + 21.3295i −0.183552 + 0.750371i
\(809\) 38.9234i 1.36847i −0.729261 0.684236i \(-0.760136\pi\)
0.729261 0.684236i \(-0.239864\pi\)
\(810\) 0 0
\(811\) 35.7891i 1.25673i 0.777920 + 0.628363i \(0.216275\pi\)
−0.777920 + 0.628363i \(0.783725\pi\)
\(812\) 3.86922 6.93347i 0.135783 0.243317i
\(813\) 0 0
\(814\) 37.1223 + 9.65706i 1.30114 + 0.338480i
\(815\) 2.19321 2.02783i 0.0768248 0.0710319i
\(816\) 0 0
\(817\) −21.9570 + 12.6769i −0.768177 + 0.443507i
\(818\) −22.0398 + 6.07829i −0.770604 + 0.212523i
\(819\) 0 0
\(820\) 2.97597 + 12.3081i 0.103925 + 0.429817i
\(821\) 27.8765 16.0945i 0.972895 0.561701i 0.0727775 0.997348i \(-0.476814\pi\)
0.900118 + 0.435647i \(0.143480\pi\)
\(822\) 0 0
\(823\) −8.65813 + 14.9963i −0.301804 + 0.522739i −0.976545 0.215315i \(-0.930922\pi\)
0.674741 + 0.738055i \(0.264255\pi\)
\(824\) −10.4192 35.7360i −0.362969 1.24492i
\(825\) 0 0
\(826\) −7.10874 7.00572i −0.247345 0.243760i
\(827\) 15.5363i 0.540249i −0.962825 0.270124i \(-0.912935\pi\)
0.962825 0.270124i \(-0.0870648\pi\)
\(828\) 0 0
\(829\) −27.4645 −0.953882 −0.476941 0.878935i \(-0.658254\pi\)
−0.476941 + 0.878935i \(0.658254\pi\)
\(830\) −7.24570 + 3.88096i −0.251502 + 0.134710i
\(831\) 0 0
\(832\) −16.2489 + 31.2259i −0.563330 + 1.08256i
\(833\) −1.77400 + 3.07266i −0.0614654 + 0.106461i
\(834\) 0 0
\(835\) 15.6369 3.54009i 0.541139 0.122510i
\(836\) 7.34082 + 12.2966i 0.253888 + 0.425287i
\(837\) 0 0
\(838\) −9.96761 + 2.74894i −0.344325 + 0.0949605i
\(839\) 6.91476 + 11.9767i 0.238724 + 0.413482i 0.960348 0.278803i \(-0.0899376\pi\)
−0.721624 + 0.692285i \(0.756604\pi\)
\(840\) 0 0
\(841\) −13.7829 + 23.8727i −0.475272 + 0.823196i
\(842\) −10.6622 + 40.9861i −0.367443 + 1.41247i
\(843\) 0 0
\(844\) 4.45744 7.98754i 0.153431 0.274943i
\(845\) −13.5836 4.21619i −0.467291 0.145041i
\(846\) 0 0
\(847\) 18.0170 0.619070
\(848\) 3.08690 0.0901446i 0.106005 0.00309558i
\(849\) 0 0
\(850\) 4.75118 4.12007i 0.162964 0.141317i
\(851\) −41.8169 + 72.4290i −1.43346 + 2.48283i
\(852\) 0 0
\(853\) 31.2866 18.0633i 1.07123 0.618476i 0.142714 0.989764i \(-0.454417\pi\)
0.928518 + 0.371288i \(0.121084\pi\)
\(854\) −17.2916 + 4.76879i −0.591705 + 0.163185i
\(855\) 0 0
\(856\) −0.515270 0.493186i −0.0176116 0.0168568i
\(857\) −3.70493 6.41713i −0.126558 0.219205i 0.795783 0.605582i \(-0.207060\pi\)
−0.922341 + 0.386377i \(0.873726\pi\)
\(858\) 0 0
\(859\) −35.7586 20.6452i −1.22007 0.704407i −0.255136 0.966905i \(-0.582120\pi\)
−0.964932 + 0.262499i \(0.915453\pi\)
\(860\) 10.5513 35.8335i 0.359798 1.22191i
\(861\) 0 0
\(862\) 30.9741 + 30.5252i 1.05498 + 1.03969i
\(863\) 46.7922i 1.59282i 0.604754 + 0.796412i \(0.293271\pi\)
−0.604754 + 0.796412i \(0.706729\pi\)
\(864\) 0 0
\(865\) −5.49970 1.70704i −0.186995 0.0580410i
\(866\) 29.1583 29.5870i 0.990838 1.00541i
\(867\) 0 0
\(868\) −1.57057 + 0.0229272i −0.0533085 + 0.000778199i
\(869\) −21.1104 12.1881i −0.716120 0.413452i
\(870\) 0 0
\(871\) −24.1772 + 13.9587i −0.819213 + 0.472973i
\(872\) −0.897815 + 0.938018i −0.0304039 + 0.0317653i
\(873\) 0 0
\(874\) −30.1014 + 8.30157i −1.01819 + 0.280805i
\(875\) −13.7226 + 34.4290i −0.463909 + 1.16391i
\(876\) 0 0
\(877\) −12.2576 7.07692i −0.413909 0.238970i 0.278559 0.960419i \(-0.410143\pi\)
−0.692468 + 0.721449i \(0.743477\pi\)
\(878\) 10.7059 + 2.78504i 0.361306 + 0.0939907i
\(879\) 0 0
\(880\) −20.3255 5.66388i −0.685171 0.190929i
\(881\) 13.5705i 0.457200i 0.973520 + 0.228600i \(0.0734148\pi\)
−0.973520 + 0.228600i \(0.926585\pi\)
\(882\) 0 0
\(883\) 46.0353 1.54921 0.774606 0.632444i \(-0.217948\pi\)
0.774606 + 0.632444i \(0.217948\pi\)
\(884\) 3.81393 6.83441i 0.128276 0.229866i
\(885\) 0 0
\(886\) 36.5486 + 9.50783i 1.22788 + 0.319422i
\(887\) −17.1621 9.90855i −0.576247 0.332696i 0.183393 0.983040i \(-0.441292\pi\)
−0.759641 + 0.650343i \(0.774625\pi\)
\(888\) 0 0
\(889\) −17.5143 30.3356i −0.587409 1.01742i
\(890\) 0.471580 14.7961i 0.0158074 0.495965i
\(891\) 0 0
\(892\) 40.7910 24.3514i 1.36578 0.815346i
\(893\) 11.4927 + 19.9059i 0.384587 + 0.666125i
\(894\) 0 0
\(895\) 16.7216 15.4607i 0.558941 0.516794i
\(896\) 36.6756 + 7.84436i 1.22525 + 0.262062i
\(897\) 0 0
\(898\) 23.6695 24.0175i 0.789860 0.801475i
\(899\) −0.283722 −0.00946265
\(900\) 0 0
\(901\) −0.686641 −0.0228753
\(902\) −6.63062 + 6.72812i −0.220776 + 0.224022i
\(903\) 0 0
\(904\) −13.8001 47.3320i −0.458983 1.57424i
\(905\) −6.85524 + 6.33832i −0.227876 + 0.210693i
\(906\) 0 0
\(907\) −24.4653 42.3752i −0.812358 1.40705i −0.911209 0.411943i \(-0.864850\pi\)
0.0988513 0.995102i \(-0.468483\pi\)
\(908\) −28.5587 47.8386i −0.947752 1.58758i
\(909\) 0 0
\(910\) −1.46938 + 46.1026i −0.0487095 + 1.52829i
\(911\) −16.0978 27.8822i −0.533343 0.923778i −0.999242 0.0389396i \(-0.987602\pi\)
0.465898 0.884838i \(-0.345731\pi\)
\(912\) 0 0
\(913\) −5.31026 3.06588i −0.175744 0.101466i
\(914\) −21.5646 5.60985i −0.713292 0.185557i
\(915\) 0 0
\(916\) 29.2006 + 16.2953i 0.964814 + 0.538413i
\(917\) 53.8956 1.77979
\(918\) 0 0
\(919\) 37.8553i 1.24873i 0.781133 + 0.624365i \(0.214642\pi\)
−0.781133 + 0.624365i \(0.785358\pi\)
\(920\) 23.6870 39.4386i 0.780937 1.30025i
\(921\) 0 0
\(922\) −14.6110 3.80093i −0.481187 0.125177i
\(923\) −44.6768 25.7942i −1.47056 0.849026i
\(924\) 0 0
\(925\) 57.3114 + 4.49779i 1.88439 + 0.147887i
\(926\) 8.66098 2.38859i 0.284618 0.0784939i
\(927\) 0 0
\(928\) 6.60333 + 1.51347i 0.216765 + 0.0496822i
\(929\) −14.4535 + 8.34474i −0.474205 + 0.273782i −0.717998 0.696045i \(-0.754941\pi\)
0.243794 + 0.969827i \(0.421608\pi\)
\(930\) 0 0
\(931\) −10.4868 6.05458i −0.343693 0.198431i
\(932\) −0.0490261 3.35841i −0.00160590 0.110008i
\(933\) 0 0
\(934\) −7.70506 + 7.81836i −0.252117 + 0.255824i
\(935\) 4.48052 + 1.39070i 0.146529 + 0.0454806i
\(936\) 0 0
\(937\) 41.7514i 1.36396i 0.731372 + 0.681979i \(0.238880\pi\)
−0.731372 + 0.681979i \(0.761120\pi\)
\(938\) 21.1859 + 20.8789i 0.691745 + 0.681721i
\(939\) 0 0
\(940\) −32.4861 9.56570i −1.05958 0.311999i
\(941\) −9.78882 5.65158i −0.319106 0.184236i 0.331888 0.943319i \(-0.392314\pi\)
−0.650994 + 0.759083i \(0.725648\pi\)
\(942\) 0 0
\(943\) −10.2982 17.8369i −0.335354 0.580851i
\(944\) 4.04076 7.49595i 0.131516 0.243972i
\(945\) 0 0
\(946\) 26.8634 7.40858i 0.873404 0.240874i
\(947\) −4.45025 + 2.56935i −0.144614 + 0.0834928i −0.570561 0.821255i \(-0.693274\pi\)
0.425947 + 0.904748i \(0.359941\pi\)
\(948\) 0 0
\(949\) −13.4398 + 23.2784i −0.436274 + 0.755649i
\(950\) 14.0616 + 16.2156i 0.456220 + 0.526103i
\(951\) 0 0
\(952\) −8.10015 1.98142i −0.262527 0.0642181i
\(953\) −22.9718 −0.744131 −0.372066 0.928206i \(-0.621350\pi\)
−0.372066 + 0.928206i \(0.621350\pi\)
\(954\) 0 0
\(955\) −53.4541 16.5915i −1.72973 0.536887i
\(956\) −18.8997 10.5470i −0.611260 0.341113i
\(957\) 0 0
\(958\) −2.53907 + 9.76032i −0.0820336 + 0.315342i
\(959\) 21.8654 37.8720i 0.706072 1.22295i
\(960\) 0 0
\(961\) −15.4719 26.7982i −0.499095 0.864457i
\(962\) 68.9703 19.0211i 2.22369 0.613265i
\(963\) 0 0
\(964\) 18.7408 11.1879i 0.603601 0.360337i
\(965\) −41.2566 + 9.34019i −1.32810 + 0.300671i
\(966\) 0 0
\(967\) 21.0871 36.5239i 0.678115 1.17453i −0.297433 0.954743i \(-0.596131\pi\)
0.975548 0.219787i \(-0.0705361\pi\)
\(968\) 4.30280 + 14.7579i 0.138297 + 0.474337i
\(969\) 0 0
\(970\) −17.2106 + 9.21838i −0.552599 + 0.295984i
\(971\) 29.9678 0.961712 0.480856 0.876799i \(-0.340326\pi\)
0.480856 + 0.876799i \(0.340326\pi\)
\(972\) 0 0
\(973\) 21.4947i 0.689090i
\(974\) 15.2188 + 14.9982i 0.487641 + 0.480574i
\(975\) 0 0
\(976\) −8.03573 13.0248i −0.257217 0.416915i
\(977\) 18.5590 32.1452i 0.593756 1.02842i −0.399965 0.916530i \(-0.630978\pi\)
0.993721 0.111885i \(-0.0356888\pi\)
\(978\) 0 0
\(979\) 9.56383 5.52168i 0.305661 0.176474i
\(980\) 17.3412 4.19293i 0.553945 0.133938i
\(981\) 0 0
\(982\) 40.1402 11.0701i 1.28092 0.353262i
\(983\) −24.8903 + 14.3704i −0.793876 + 0.458345i −0.841325 0.540529i \(-0.818224\pi\)
0.0474493 + 0.998874i \(0.484891\pi\)
\(984\) 0 0
\(985\) −8.62646 + 7.97598i −0.274862 + 0.254136i
\(986\) −1.45775 0.379221i −0.0464242 0.0120769i
\(987\) 0 0
\(988\) 23.3255 + 13.0168i 0.742084 + 0.414119i
\(989\) 60.7584i 1.93201i
\(990\) 0 0
\(991\) 5.20653i 0.165391i 0.996575 + 0.0826954i \(0.0263529\pi\)
−0.996575 + 0.0826954i \(0.973647\pi\)
\(992\) −0.393862 1.28099i −0.0125051 0.0406716i
\(993\) 0 0
\(994\) −13.8383 + 53.1953i −0.438925 + 1.68725i
\(995\) −28.6128 30.9463i −0.907087 0.981064i
\(996\) 0 0
\(997\) 18.1724 10.4918i 0.575525 0.332279i −0.183828 0.982958i \(-0.558849\pi\)
0.759353 + 0.650679i \(0.225516\pi\)
\(998\) 7.84924 + 28.4612i 0.248463 + 0.900924i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.19 48
3.2 odd 2 180.2.n.d.59.6 48
4.3 odd 2 inner 540.2.n.d.179.15 48
5.4 even 2 inner 540.2.n.d.179.6 48
9.2 odd 6 inner 540.2.n.d.359.10 48
9.7 even 3 180.2.n.d.119.15 yes 48
12.11 even 2 180.2.n.d.59.10 yes 48
15.2 even 4 900.2.r.g.851.18 48
15.8 even 4 900.2.r.g.851.7 48
15.14 odd 2 180.2.n.d.59.19 yes 48
20.19 odd 2 inner 540.2.n.d.179.10 48
36.7 odd 6 180.2.n.d.119.19 yes 48
36.11 even 6 inner 540.2.n.d.359.6 48
45.7 odd 12 900.2.r.g.551.22 48
45.29 odd 6 inner 540.2.n.d.359.15 48
45.34 even 6 180.2.n.d.119.10 yes 48
45.43 odd 12 900.2.r.g.551.3 48
60.23 odd 4 900.2.r.g.851.3 48
60.47 odd 4 900.2.r.g.851.22 48
60.59 even 2 180.2.n.d.59.15 yes 48
180.7 even 12 900.2.r.g.551.18 48
180.43 even 12 900.2.r.g.551.7 48
180.79 odd 6 180.2.n.d.119.6 yes 48
180.119 even 6 inner 540.2.n.d.359.19 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.6 48 3.2 odd 2
180.2.n.d.59.10 yes 48 12.11 even 2
180.2.n.d.59.15 yes 48 60.59 even 2
180.2.n.d.59.19 yes 48 15.14 odd 2
180.2.n.d.119.6 yes 48 180.79 odd 6
180.2.n.d.119.10 yes 48 45.34 even 6
180.2.n.d.119.15 yes 48 9.7 even 3
180.2.n.d.119.19 yes 48 36.7 odd 6
540.2.n.d.179.6 48 5.4 even 2 inner
540.2.n.d.179.10 48 20.19 odd 2 inner
540.2.n.d.179.15 48 4.3 odd 2 inner
540.2.n.d.179.19 48 1.1 even 1 trivial
540.2.n.d.359.6 48 36.11 even 6 inner
540.2.n.d.359.10 48 9.2 odd 6 inner
540.2.n.d.359.15 48 45.29 odd 6 inner
540.2.n.d.359.19 48 180.119 even 6 inner
900.2.r.g.551.3 48 45.43 odd 12
900.2.r.g.551.7 48 180.43 even 12
900.2.r.g.551.18 48 180.7 even 12
900.2.r.g.551.22 48 45.7 odd 12
900.2.r.g.851.3 48 60.23 odd 4
900.2.r.g.851.7 48 15.8 even 4
900.2.r.g.851.18 48 15.2 even 4
900.2.r.g.851.22 48 60.47 odd 4