Properties

Label 900.2.r.g.851.22
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.22
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.g.551.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36866 - 0.356046i) q^{2} +(1.14213 + 1.30213i) q^{3} +(1.74646 - 0.974612i) q^{4} +(2.02680 + 1.37553i) q^{6} +(2.87089 - 1.65751i) q^{7} +(2.04331 - 1.95573i) q^{8} +(-0.391092 + 2.97440i) q^{9} +(-1.17952 - 2.04298i) q^{11} +(3.26375 + 1.16099i) q^{12} +(-2.20004 + 3.81058i) q^{13} +(3.33912 - 3.29074i) q^{14} +(2.10026 - 3.40425i) q^{16} -0.889368i q^{17} +(0.523750 + 4.21019i) q^{18} +3.03537i q^{19} +(5.43722 + 1.84519i) q^{21} +(-2.34176 - 2.37619i) q^{22} +(3.63703 - 6.29952i) q^{23} +(4.88034 + 0.426960i) q^{24} +(-1.65437 + 5.99870i) q^{26} +(-4.31973 + 2.88789i) q^{27} +(3.39848 - 5.69278i) q^{28} +(-1.03714 + 0.598791i) q^{29} +(-0.205172 - 0.118456i) q^{31} +(1.66248 - 5.40705i) q^{32} +(1.31308 - 3.86923i) q^{33} +(-0.316656 - 1.21724i) q^{34} +(2.21586 + 5.57584i) q^{36} -11.4975 q^{37} +(1.08073 + 4.15440i) q^{38} +(-7.47460 + 1.48743i) q^{39} +(2.45213 + 1.41574i) q^{41} +(8.09868 + 0.589541i) q^{42} +(-7.23369 + 4.17637i) q^{43} +(-4.05110 - 2.41842i) q^{44} +(2.73494 - 9.91686i) q^{46} +(3.78624 + 6.55796i) q^{47} +(6.83154 - 1.15326i) q^{48} +(1.99467 - 3.45488i) q^{49} +(1.15807 - 1.01577i) q^{51} +(-0.128451 + 8.79922i) q^{52} -0.772055i q^{53} +(-4.88403 + 5.49056i) q^{54} +(2.62447 - 9.00150i) q^{56} +(-3.95246 + 3.46678i) q^{57} +(-1.20629 + 1.18881i) q^{58} +(1.06446 - 1.84370i) q^{59} +(1.91303 + 3.31346i) q^{61} +(-0.322986 - 0.0890754i) q^{62} +(3.80731 + 9.18741i) q^{63} +(0.350216 - 7.99233i) q^{64} +(0.419529 - 5.76318i) q^{66} +(-5.49472 - 3.17238i) q^{67} +(-0.866788 - 1.55325i) q^{68} +(12.3568 - 2.45896i) q^{69} +11.7244 q^{71} +(5.01801 + 6.84248i) q^{72} -6.10889 q^{73} +(-15.7362 + 4.09365i) q^{74} +(2.95831 + 5.30117i) q^{76} +(-6.77253 - 3.91012i) q^{77} +(-9.70059 + 4.69708i) q^{78} +(8.94873 - 5.16655i) q^{79} +(-8.69409 - 2.32653i) q^{81} +(3.86020 + 1.06459i) q^{82} +(-1.29963 - 2.25103i) q^{83} +(11.2942 - 2.07662i) q^{84} +(-8.41349 + 8.29156i) q^{86} +(-1.96425 - 0.666593i) q^{87} +(-6.40565 - 1.86763i) q^{88} +4.68130i q^{89} +14.5863i q^{91} +(0.212351 - 14.5466i) q^{92} +(-0.0800869 - 0.402452i) q^{93} +(7.51702 + 7.62755i) q^{94} +(8.93945 - 4.01077i) q^{96} +(3.08700 + 5.34684i) q^{97} +(1.49994 - 5.43875i) q^{98} +(6.53795 - 2.70936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36866 0.356046i 0.967789 0.251762i
\(3\) 1.14213 + 1.30213i 0.659407 + 0.751786i
\(4\) 1.74646 0.974612i 0.873231 0.487306i
\(5\) 0 0
\(6\) 2.02680 + 1.37553i 0.827439 + 0.561556i
\(7\) 2.87089 1.65751i 1.08509 0.626480i 0.152828 0.988253i \(-0.451162\pi\)
0.932266 + 0.361773i \(0.117828\pi\)
\(8\) 2.04331 1.95573i 0.722418 0.691456i
\(9\) −0.391092 + 2.97440i −0.130364 + 0.991466i
\(10\) 0 0
\(11\) −1.17952 2.04298i −0.355638 0.615983i 0.631589 0.775303i \(-0.282403\pi\)
−0.987227 + 0.159320i \(0.949070\pi\)
\(12\) 3.26375 + 1.16099i 0.942165 + 0.335150i
\(13\) −2.20004 + 3.81058i −0.610181 + 1.05686i 0.381029 + 0.924563i \(0.375570\pi\)
−0.991210 + 0.132301i \(0.957763\pi\)
\(14\) 3.33912 3.29074i 0.892419 0.879486i
\(15\) 0 0
\(16\) 2.10026 3.40425i 0.525066 0.851061i
\(17\) 0.889368i 0.215703i −0.994167 0.107852i \(-0.965603\pi\)
0.994167 0.107852i \(-0.0343972\pi\)
\(18\) 0.523750 + 4.21019i 0.123449 + 0.992351i
\(19\) 3.03537i 0.696363i 0.937427 + 0.348181i \(0.113201\pi\)
−0.937427 + 0.348181i \(0.886799\pi\)
\(20\) 0 0
\(21\) 5.43722 + 1.84519i 1.18650 + 0.402654i
\(22\) −2.34176 2.37619i −0.499264 0.506605i
\(23\) 3.63703 6.29952i 0.758374 1.31354i −0.185306 0.982681i \(-0.559328\pi\)
0.943680 0.330861i \(-0.107339\pi\)
\(24\) 4.88034 + 0.426960i 0.996195 + 0.0871528i
\(25\) 0 0
\(26\) −1.65437 + 5.99870i −0.324448 + 1.17644i
\(27\) −4.31973 + 2.88789i −0.831333 + 0.555774i
\(28\) 3.39848 5.69278i 0.642251 1.07583i
\(29\) −1.03714 + 0.598791i −0.192592 + 0.111193i −0.593195 0.805059i \(-0.702134\pi\)
0.400604 + 0.916251i \(0.368800\pi\)
\(30\) 0 0
\(31\) −0.205172 0.118456i −0.0368499 0.0212753i 0.481462 0.876467i \(-0.340106\pi\)
−0.518312 + 0.855192i \(0.673439\pi\)
\(32\) 1.66248 5.40705i 0.293888 0.955840i
\(33\) 1.31308 3.86923i 0.228577 0.673547i
\(34\) −0.316656 1.21724i −0.0543060 0.208755i
\(35\) 0 0
\(36\) 2.21586 + 5.57584i 0.369309 + 0.929307i
\(37\) −11.4975 −1.89018 −0.945091 0.326807i \(-0.894027\pi\)
−0.945091 + 0.326807i \(0.894027\pi\)
\(38\) 1.08073 + 4.15440i 0.175318 + 0.673932i
\(39\) −7.47460 + 1.48743i −1.19689 + 0.238179i
\(40\) 0 0
\(41\) 2.45213 + 1.41574i 0.382958 + 0.221101i 0.679105 0.734042i \(-0.262368\pi\)
−0.296146 + 0.955143i \(0.595702\pi\)
\(42\) 8.09868 + 0.589541i 1.24965 + 0.0909681i
\(43\) −7.23369 + 4.17637i −1.10313 + 0.636891i −0.937041 0.349220i \(-0.886447\pi\)
−0.166087 + 0.986111i \(0.553113\pi\)
\(44\) −4.05110 2.41842i −0.610726 0.364591i
\(45\) 0 0
\(46\) 2.73494 9.91686i 0.403245 1.46216i
\(47\) 3.78624 + 6.55796i 0.552280 + 0.956577i 0.998110 + 0.0614594i \(0.0195755\pi\)
−0.445829 + 0.895118i \(0.647091\pi\)
\(48\) 6.83154 1.15326i 0.986048 0.166459i
\(49\) 1.99467 3.45488i 0.284954 0.493554i
\(50\) 0 0
\(51\) 1.15807 1.01577i 0.162163 0.142236i
\(52\) −0.128451 + 8.79922i −0.0178130 + 1.22023i
\(53\) 0.772055i 0.106050i −0.998593 0.0530249i \(-0.983114\pi\)
0.998593 0.0530249i \(-0.0168863\pi\)
\(54\) −4.88403 + 5.49056i −0.664632 + 0.747171i
\(55\) 0 0
\(56\) 2.62447 9.00150i 0.350709 1.20288i
\(57\) −3.95246 + 3.46678i −0.523516 + 0.459187i
\(58\) −1.20629 + 1.18881i −0.158394 + 0.156098i
\(59\) 1.06446 1.84370i 0.138581 0.240029i −0.788379 0.615190i \(-0.789079\pi\)
0.926960 + 0.375161i \(0.122413\pi\)
\(60\) 0 0
\(61\) 1.91303 + 3.31346i 0.244938 + 0.424245i 0.962114 0.272647i \(-0.0878990\pi\)
−0.717176 + 0.696892i \(0.754566\pi\)
\(62\) −0.322986 0.0890754i −0.0410193 0.0113126i
\(63\) 3.80731 + 9.18741i 0.479676 + 1.15751i
\(64\) 0.350216 7.99233i 0.0437769 0.999041i
\(65\) 0 0
\(66\) 0.419529 5.76318i 0.0516405 0.709399i
\(67\) −5.49472 3.17238i −0.671287 0.387567i 0.125277 0.992122i \(-0.460018\pi\)
−0.796564 + 0.604554i \(0.793351\pi\)
\(68\) −0.866788 1.55325i −0.105113 0.188359i
\(69\) 12.3568 2.45896i 1.48758 0.296024i
\(70\) 0 0
\(71\) 11.7244 1.39143 0.695717 0.718316i \(-0.255087\pi\)
0.695717 + 0.718316i \(0.255087\pi\)
\(72\) 5.01801 + 6.84248i 0.591378 + 0.806395i
\(73\) −6.10889 −0.714992 −0.357496 0.933915i \(-0.616369\pi\)
−0.357496 + 0.933915i \(0.616369\pi\)
\(74\) −15.7362 + 4.09365i −1.82930 + 0.475877i
\(75\) 0 0
\(76\) 2.95831 + 5.30117i 0.339342 + 0.608086i
\(77\) −6.77253 3.91012i −0.771802 0.445600i
\(78\) −9.70059 + 4.69708i −1.09838 + 0.531839i
\(79\) 8.94873 5.16655i 1.00681 0.581283i 0.0965546 0.995328i \(-0.469218\pi\)
0.910256 + 0.414045i \(0.135884\pi\)
\(80\) 0 0
\(81\) −8.69409 2.32653i −0.966010 0.258503i
\(82\) 3.86020 + 1.06459i 0.426288 + 0.117565i
\(83\) −1.29963 2.25103i −0.142653 0.247083i 0.785842 0.618428i \(-0.212230\pi\)
−0.928495 + 0.371345i \(0.878897\pi\)
\(84\) 11.2942 2.07662i 1.23230 0.226578i
\(85\) 0 0
\(86\) −8.41349 + 8.29156i −0.907250 + 0.894102i
\(87\) −1.96425 0.666593i −0.210589 0.0714663i
\(88\) −6.40565 1.86763i −0.682845 0.199089i
\(89\) 4.68130i 0.496217i 0.968732 + 0.248108i \(0.0798089\pi\)
−0.968732 + 0.248108i \(0.920191\pi\)
\(90\) 0 0
\(91\) 14.5863i 1.52906i
\(92\) 0.212351 14.5466i 0.0221391 1.51659i
\(93\) −0.0800869 0.402452i −0.00830463 0.0417324i
\(94\) 7.51702 + 7.62755i 0.775321 + 0.786722i
\(95\) 0 0
\(96\) 8.93945 4.01077i 0.912379 0.409347i
\(97\) 3.08700 + 5.34684i 0.313438 + 0.542890i 0.979104 0.203360i \(-0.0651860\pi\)
−0.665667 + 0.746249i \(0.731853\pi\)
\(98\) 1.49994 5.43875i 0.151517 0.549397i
\(99\) 6.53795 2.70936i 0.657089 0.272301i
\(100\) 0 0
\(101\) −6.72336 + 3.88174i −0.669000 + 0.386247i −0.795697 0.605694i \(-0.792895\pi\)
0.126698 + 0.991941i \(0.459562\pi\)
\(102\) 1.22335 1.80257i 0.121130 0.178481i
\(103\) −11.3975 6.58033i −1.12302 0.648379i −0.180853 0.983510i \(-0.557886\pi\)
−0.942171 + 0.335131i \(0.891219\pi\)
\(104\) 2.95712 + 12.0889i 0.289969 + 1.18541i
\(105\) 0 0
\(106\) −0.274887 1.05668i −0.0266994 0.102634i
\(107\) −0.252175 −0.0243786 −0.0121893 0.999926i \(-0.503880\pi\)
−0.0121893 + 0.999926i \(0.503880\pi\)
\(108\) −4.72969 + 9.25365i −0.455114 + 0.890433i
\(109\) −0.459068 −0.0439708 −0.0219854 0.999758i \(-0.506999\pi\)
−0.0219854 + 0.999758i \(0.506999\pi\)
\(110\) 0 0
\(111\) −13.1316 14.9713i −1.24640 1.42101i
\(112\) 0.387059 13.2544i 0.0365736 1.25243i
\(113\) −15.0958 8.71557i −1.42009 0.819892i −0.423788 0.905761i \(-0.639300\pi\)
−0.996306 + 0.0858696i \(0.972633\pi\)
\(114\) −4.17524 + 6.15210i −0.391047 + 0.576197i
\(115\) 0 0
\(116\) −1.22773 + 2.05657i −0.113992 + 0.190948i
\(117\) −10.4738 8.03408i −0.968300 0.742751i
\(118\) 0.800444 2.90240i 0.0736868 0.267187i
\(119\) −1.47414 2.55328i −0.135134 0.234059i
\(120\) 0 0
\(121\) 2.71748 4.70681i 0.247043 0.427891i
\(122\) 3.79803 + 3.85388i 0.343857 + 0.348914i
\(123\) 0.957167 + 4.80995i 0.0863048 + 0.433698i
\(124\) −0.473773 0.00691615i −0.0425461 0.000621089i
\(125\) 0 0
\(126\) 8.48206 + 11.2189i 0.755642 + 0.999456i
\(127\) 10.5666i 0.937635i 0.883295 + 0.468817i \(0.155320\pi\)
−0.883295 + 0.468817i \(0.844680\pi\)
\(128\) −2.36631 11.0635i −0.209154 0.977883i
\(129\) −13.7000 4.64927i −1.20622 0.409345i
\(130\) 0 0
\(131\) 8.12900 14.0798i 0.710234 1.23016i −0.254535 0.967064i \(-0.581922\pi\)
0.964769 0.263098i \(-0.0847444\pi\)
\(132\) −1.47776 8.03721i −0.128623 0.699550i
\(133\) 5.03116 + 8.71423i 0.436257 + 0.755619i
\(134\) −8.64991 2.38554i −0.747239 0.206079i
\(135\) 0 0
\(136\) −1.73937 1.81725i −0.149149 0.155828i
\(137\) −11.4244 + 6.59587i −0.976051 + 0.563523i −0.901076 0.433662i \(-0.857221\pi\)
−0.0749753 + 0.997185i \(0.523888\pi\)
\(138\) 16.0367 7.76506i 1.36513 0.661006i
\(139\) −5.61535 3.24202i −0.476288 0.274985i 0.242580 0.970131i \(-0.422006\pi\)
−0.718868 + 0.695146i \(0.755340\pi\)
\(140\) 0 0
\(141\) −4.21496 + 12.4202i −0.354964 + 1.04597i
\(142\) 16.0468 4.17443i 1.34661 0.350311i
\(143\) 10.3799 0.868014
\(144\) 9.30419 + 7.57840i 0.775349 + 0.631533i
\(145\) 0 0
\(146\) −8.36100 + 2.17505i −0.691961 + 0.180008i
\(147\) 6.77688 1.34858i 0.558947 0.111229i
\(148\) −20.0800 + 11.2056i −1.65057 + 0.921097i
\(149\) −7.25009 4.18584i −0.593950 0.342917i 0.172708 0.984973i \(-0.444748\pi\)
−0.766658 + 0.642056i \(0.778082\pi\)
\(150\) 0 0
\(151\) −14.2008 + 8.19886i −1.15565 + 0.667214i −0.950257 0.311466i \(-0.899180\pi\)
−0.205391 + 0.978680i \(0.565847\pi\)
\(152\) 5.93638 + 6.20220i 0.481504 + 0.503065i
\(153\) 2.64533 + 0.347825i 0.213863 + 0.0281200i
\(154\) −10.6615 2.94030i −0.859127 0.236936i
\(155\) 0 0
\(156\) −11.6044 + 9.88256i −0.929099 + 0.791238i
\(157\) 5.35608 9.27700i 0.427462 0.740386i −0.569185 0.822209i \(-0.692741\pi\)
0.996647 + 0.0818239i \(0.0260745\pi\)
\(158\) 10.4082 10.2574i 0.828036 0.816036i
\(159\) 1.00532 0.881785i 0.0797268 0.0699301i
\(160\) 0 0
\(161\) 24.1137i 1.90042i
\(162\) −12.7276 0.0887308i −0.999976 0.00697135i
\(163\) 1.33584i 0.104631i −0.998631 0.0523153i \(-0.983340\pi\)
0.998631 0.0523153i \(-0.0166601\pi\)
\(164\) 5.66235 + 0.0826590i 0.442155 + 0.00645459i
\(165\) 0 0
\(166\) −2.58023 2.61817i −0.200265 0.203209i
\(167\) 3.58501 6.20942i 0.277417 0.480500i −0.693325 0.720625i \(-0.743855\pi\)
0.970742 + 0.240125i \(0.0771884\pi\)
\(168\) 14.7186 6.86345i 1.13557 0.529527i
\(169\) −3.18034 5.50851i −0.244641 0.423731i
\(170\) 0 0
\(171\) −9.02841 1.18711i −0.690420 0.0907806i
\(172\) −8.56303 + 14.3439i −0.652925 + 1.09371i
\(173\) −2.23027 + 1.28765i −0.169564 + 0.0978979i −0.582380 0.812916i \(-0.697879\pi\)
0.412816 + 0.910814i \(0.364545\pi\)
\(174\) −2.92573 0.212977i −0.221799 0.0161458i
\(175\) 0 0
\(176\) −9.43212 0.275439i −0.710973 0.0207620i
\(177\) 3.61649 0.719672i 0.271832 0.0540939i
\(178\) 1.66676 + 6.40711i 0.124929 + 0.480233i
\(179\) 10.1847 0.761243 0.380622 0.924731i \(-0.375710\pi\)
0.380622 + 0.924731i \(0.375710\pi\)
\(180\) 0 0
\(181\) 4.17537 0.310353 0.155176 0.987887i \(-0.450405\pi\)
0.155176 + 0.987887i \(0.450405\pi\)
\(182\) 5.19340 + 19.9637i 0.384961 + 1.47981i
\(183\) −2.12964 + 6.27541i −0.157428 + 0.463891i
\(184\) −4.88861 19.9849i −0.360393 1.47331i
\(185\) 0 0
\(186\) −0.252903 0.522306i −0.0185438 0.0382973i
\(187\) −1.81696 + 1.04902i −0.132870 + 0.0767123i
\(188\) 13.0040 + 7.76312i 0.948414 + 0.566184i
\(189\) −7.61478 + 15.4508i −0.553894 + 1.12388i
\(190\) 0 0
\(191\) 12.5152 + 21.6770i 0.905570 + 1.56849i 0.820151 + 0.572147i \(0.193889\pi\)
0.0854186 + 0.996345i \(0.472777\pi\)
\(192\) 10.8071 8.67223i 0.779932 0.625864i
\(193\) 9.45871 16.3830i 0.680853 1.17927i −0.293868 0.955846i \(-0.594943\pi\)
0.974721 0.223426i \(-0.0717241\pi\)
\(194\) 6.12878 + 6.21890i 0.440021 + 0.446491i
\(195\) 0 0
\(196\) 0.116461 7.97785i 0.00831863 0.569846i
\(197\) 5.25418i 0.374345i −0.982327 0.187172i \(-0.940068\pi\)
0.982327 0.187172i \(-0.0599323\pi\)
\(198\) 7.98358 6.03600i 0.567368 0.428960i
\(199\) 18.8487i 1.33615i 0.744095 + 0.668074i \(0.232881\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(200\) 0 0
\(201\) −2.14481 10.7781i −0.151284 0.760229i
\(202\) −7.81993 + 7.70660i −0.550208 + 0.542235i
\(203\) −1.98500 + 3.43813i −0.139320 + 0.241309i
\(204\) 1.03255 2.90268i 0.0722930 0.203228i
\(205\) 0 0
\(206\) −17.9421 4.94821i −1.25009 0.344758i
\(207\) 17.3149 + 13.2817i 1.20347 + 0.923140i
\(208\) 8.35148 + 15.4927i 0.579071 + 1.07423i
\(209\) 6.20122 3.58028i 0.428948 0.247653i
\(210\) 0 0
\(211\) 3.96081 + 2.28678i 0.272674 + 0.157428i 0.630102 0.776512i \(-0.283013\pi\)
−0.357428 + 0.933941i \(0.616346\pi\)
\(212\) −0.752454 1.34837i −0.0516787 0.0926061i
\(213\) 13.3908 + 15.2667i 0.917521 + 1.04606i
\(214\) −0.345141 + 0.0897857i −0.0235934 + 0.00613762i
\(215\) 0 0
\(216\) −3.17861 + 14.3491i −0.216277 + 0.976332i
\(217\) −0.785367 −0.0533142
\(218\) −0.628309 + 0.163449i −0.0425544 + 0.0110702i
\(219\) −6.97713 7.95458i −0.471471 0.537521i
\(220\) 0 0
\(221\) 3.38900 + 1.95664i 0.227969 + 0.131618i
\(222\) −23.3032 15.8152i −1.56401 1.06144i
\(223\) 20.5711 11.8767i 1.37754 0.795323i 0.385677 0.922634i \(-0.373968\pi\)
0.991863 + 0.127310i \(0.0406344\pi\)
\(224\) −4.18943 18.2786i −0.279918 1.22129i
\(225\) 0 0
\(226\) −23.7642 6.55386i −1.58077 0.435956i
\(227\) −13.9287 24.1252i −0.924478 1.60124i −0.792398 0.610005i \(-0.791168\pi\)
−0.132081 0.991239i \(-0.542166\pi\)
\(228\) −3.52405 + 9.90672i −0.233386 + 0.656088i
\(229\) −8.35991 + 14.4798i −0.552439 + 0.956852i 0.445659 + 0.895203i \(0.352969\pi\)
−0.998098 + 0.0616492i \(0.980364\pi\)
\(230\) 0 0
\(231\) −2.64360 13.2846i −0.173936 0.874061i
\(232\) −0.948115 + 3.25188i −0.0622468 + 0.213496i
\(233\) 1.67938i 0.110020i −0.998486 0.0550101i \(-0.982481\pi\)
0.998486 0.0550101i \(-0.0175191\pi\)
\(234\) −17.1955 7.26679i −1.12411 0.475045i
\(235\) 0 0
\(236\) 0.0621495 4.25739i 0.00404559 0.277133i
\(237\) 16.9481 + 5.75157i 1.10090 + 0.373604i
\(238\) −2.92667 2.96971i −0.189708 0.192498i
\(239\) 5.41085 9.37186i 0.349999 0.606215i −0.636250 0.771483i \(-0.719515\pi\)
0.986249 + 0.165267i \(0.0528487\pi\)
\(240\) 0 0
\(241\) −5.45657 9.45105i −0.351488 0.608796i 0.635022 0.772494i \(-0.280991\pi\)
−0.986510 + 0.163698i \(0.947658\pi\)
\(242\) 2.04346 7.40957i 0.131359 0.476305i
\(243\) −6.90031 13.9780i −0.442655 0.896692i
\(244\) 6.57037 + 3.92238i 0.420625 + 0.251104i
\(245\) 0 0
\(246\) 3.02260 + 6.24239i 0.192714 + 0.398000i
\(247\) −11.5665 6.67794i −0.735961 0.424907i
\(248\) −0.650897 + 0.159219i −0.0413320 + 0.0101104i
\(249\) 1.44679 4.26326i 0.0916867 0.270173i
\(250\) 0 0
\(251\) 5.05766 0.319237 0.159618 0.987179i \(-0.448974\pi\)
0.159618 + 0.987179i \(0.448974\pi\)
\(252\) 15.6035 + 12.3348i 0.982927 + 0.777021i
\(253\) −17.1598 −1.07883
\(254\) 3.76220 + 14.4621i 0.236061 + 0.907433i
\(255\) 0 0
\(256\) −7.17778 14.2996i −0.448611 0.893727i
\(257\) 11.5968 + 6.69541i 0.723388 + 0.417649i 0.815999 0.578054i \(-0.196188\pi\)
−0.0926101 + 0.995702i \(0.529521\pi\)
\(258\) −20.4060 1.48545i −1.27042 0.0924799i
\(259\) −33.0081 + 19.0573i −2.05103 + 1.18416i
\(260\) 0 0
\(261\) −1.37543 3.31904i −0.0851369 0.205444i
\(262\) 6.11278 22.1648i 0.377649 1.36935i
\(263\) 5.44564 + 9.43213i 0.335793 + 0.581610i 0.983637 0.180163i \(-0.0576626\pi\)
−0.647844 + 0.761773i \(0.724329\pi\)
\(264\) −4.88417 10.4741i −0.300600 0.644634i
\(265\) 0 0
\(266\) 9.98862 + 10.1355i 0.612441 + 0.621447i
\(267\) −6.09567 + 5.34664i −0.373049 + 0.327209i
\(268\) −12.6882 0.185222i −0.775052 0.0113142i
\(269\) 21.5020i 1.31100i −0.755195 0.655500i \(-0.772458\pi\)
0.755195 0.655500i \(-0.227542\pi\)
\(270\) 0 0
\(271\) 18.9445i 1.15080i 0.817873 + 0.575399i \(0.195153\pi\)
−0.817873 + 0.575399i \(0.804847\pi\)
\(272\) −3.02763 1.86791i −0.183577 0.113258i
\(273\) −18.9933 + 16.6594i −1.14953 + 1.00828i
\(274\) −13.2877 + 13.0951i −0.802737 + 0.791105i
\(275\) 0 0
\(276\) 19.1841 16.3375i 1.15475 0.983404i
\(277\) 9.33092 + 16.1616i 0.560641 + 0.971058i 0.997441 + 0.0714994i \(0.0227784\pi\)
−0.436800 + 0.899559i \(0.643888\pi\)
\(278\) −8.83982 2.43791i −0.530177 0.146216i
\(279\) 0.432576 0.563935i 0.0258977 0.0337619i
\(280\) 0 0
\(281\) −5.84683 + 3.37567i −0.348792 + 0.201375i −0.664153 0.747596i \(-0.731208\pi\)
0.315361 + 0.948972i \(0.397874\pi\)
\(282\) −1.34669 + 18.4998i −0.0801940 + 1.10165i
\(283\) −4.56374 2.63488i −0.271286 0.156627i 0.358186 0.933650i \(-0.383395\pi\)
−0.629472 + 0.777023i \(0.716729\pi\)
\(284\) 20.4763 11.4268i 1.21504 0.678054i
\(285\) 0 0
\(286\) 14.2066 3.69573i 0.840054 0.218533i
\(287\) 9.38639 0.554061
\(288\) 15.4325 + 7.05953i 0.909371 + 0.415987i
\(289\) 16.2090 0.953472
\(290\) 0 0
\(291\) −3.43655 + 10.1265i −0.201454 + 0.593623i
\(292\) −10.6690 + 5.95380i −0.624353 + 0.348420i
\(293\) 19.3041 + 11.1453i 1.12776 + 0.651113i 0.943371 0.331741i \(-0.107636\pi\)
0.184390 + 0.982853i \(0.440969\pi\)
\(294\) 8.79509 4.25863i 0.512940 0.248368i
\(295\) 0 0
\(296\) −23.4930 + 22.4861i −1.36550 + 1.30698i
\(297\) 10.9951 + 5.41884i 0.638001 + 0.314433i
\(298\) −11.4133 3.14763i −0.661153 0.182337i
\(299\) 16.0032 + 27.7184i 0.925490 + 1.60300i
\(300\) 0 0
\(301\) −13.8448 + 23.9798i −0.797999 + 1.38217i
\(302\) −16.5170 + 16.2776i −0.950444 + 0.936671i
\(303\) −12.7335 4.32127i −0.731518 0.248250i
\(304\) 10.3332 + 6.37509i 0.592647 + 0.365636i
\(305\) 0 0
\(306\) 3.74440 0.465806i 0.214053 0.0266284i
\(307\) 0.415414i 0.0237089i −0.999930 0.0118545i \(-0.996227\pi\)
0.999930 0.0118545i \(-0.00377348\pi\)
\(308\) −15.6388 0.228296i −0.891105 0.0130084i
\(309\) −4.44890 22.3566i −0.253089 1.27182i
\(310\) 0 0
\(311\) 0.284562 0.492876i 0.0161360 0.0279484i −0.857845 0.513909i \(-0.828197\pi\)
0.873981 + 0.485961i \(0.161530\pi\)
\(312\) −12.3639 + 17.6576i −0.699968 + 0.999664i
\(313\) 14.0312 + 24.3028i 0.793091 + 1.37367i 0.924044 + 0.382285i \(0.124863\pi\)
−0.130954 + 0.991388i \(0.541804\pi\)
\(314\) 4.02762 14.6041i 0.227292 0.824156i
\(315\) 0 0
\(316\) 10.5932 17.7447i 0.595917 0.998219i
\(317\) 11.4952 6.63676i 0.645635 0.372758i −0.141147 0.989989i \(-0.545079\pi\)
0.786782 + 0.617231i \(0.211746\pi\)
\(318\) 1.06198 1.56480i 0.0595530 0.0877498i
\(319\) 2.44664 + 1.41257i 0.136986 + 0.0790887i
\(320\) 0 0
\(321\) −0.288015 0.328364i −0.0160754 0.0183275i
\(322\) −8.58557 33.0034i −0.478455 1.83921i
\(323\) 2.69956 0.150208
\(324\) −17.4514 + 4.41017i −0.969521 + 0.245010i
\(325\) 0 0
\(326\) −0.475619 1.82830i −0.0263421 0.101260i
\(327\) −0.524314 0.597767i −0.0289947 0.0330566i
\(328\) 7.77926 1.90292i 0.429538 0.105071i
\(329\) 21.7398 + 12.5515i 1.19855 + 0.691985i
\(330\) 0 0
\(331\) −7.43989 + 4.29542i −0.408933 + 0.236098i −0.690331 0.723493i \(-0.742535\pi\)
0.281398 + 0.959591i \(0.409202\pi\)
\(332\) −4.46364 2.66471i −0.244974 0.146245i
\(333\) 4.49659 34.1982i 0.246412 1.87405i
\(334\) 2.69583 9.77502i 0.147509 0.534865i
\(335\) 0 0
\(336\) 17.7011 14.6342i 0.965673 0.798363i
\(337\) −0.527708 + 0.914017i −0.0287461 + 0.0497897i −0.880041 0.474899i \(-0.842485\pi\)
0.851294 + 0.524688i \(0.175818\pi\)
\(338\) −6.31409 6.40693i −0.343441 0.348491i
\(339\) −5.89251 29.6110i −0.320037 1.60825i
\(340\) 0 0
\(341\) 0.558884i 0.0302652i
\(342\) −12.7795 + 1.58978i −0.691036 + 0.0859653i
\(343\) 9.98036i 0.538889i
\(344\) −6.61279 + 22.6808i −0.356538 + 1.22287i
\(345\) 0 0
\(346\) −2.59402 + 2.55643i −0.139455 + 0.137434i
\(347\) −3.45165 + 5.97844i −0.185294 + 0.320939i −0.943676 0.330872i \(-0.892657\pi\)
0.758381 + 0.651811i \(0.225991\pi\)
\(348\) −4.08015 + 0.750199i −0.218719 + 0.0402149i
\(349\) 15.5145 + 26.8719i 0.830473 + 1.43842i 0.897663 + 0.440682i \(0.145263\pi\)
−0.0671899 + 0.997740i \(0.521403\pi\)
\(350\) 0 0
\(351\) −1.50094 22.8142i −0.0801142 1.21773i
\(352\) −13.0074 + 2.98128i −0.693299 + 0.158903i
\(353\) 13.2995 7.67847i 0.707861 0.408684i −0.102408 0.994743i \(-0.532655\pi\)
0.810269 + 0.586059i \(0.199321\pi\)
\(354\) 4.69351 2.27262i 0.249457 0.120789i
\(355\) 0 0
\(356\) 4.56245 + 8.17572i 0.241809 + 0.433312i
\(357\) 1.64105 4.83568i 0.0868537 0.255932i
\(358\) 13.9394 3.62623i 0.736723 0.191652i
\(359\) −8.51196 −0.449244 −0.224622 0.974446i \(-0.572115\pi\)
−0.224622 + 0.974446i \(0.572115\pi\)
\(360\) 0 0
\(361\) 9.78650 0.515079
\(362\) 5.71466 1.48662i 0.300356 0.0781352i
\(363\) 9.23258 1.83726i 0.484585 0.0964311i
\(364\) 14.2160 + 25.4745i 0.745122 + 1.33523i
\(365\) 0 0
\(366\) −0.680423 + 9.34715i −0.0355663 + 0.488583i
\(367\) 1.11984 0.646542i 0.0584553 0.0337492i −0.470488 0.882407i \(-0.655922\pi\)
0.528943 + 0.848657i \(0.322589\pi\)
\(368\) −13.8064 25.6120i −0.719708 1.33512i
\(369\) −5.16998 + 6.73993i −0.269138 + 0.350867i
\(370\) 0 0
\(371\) −1.27969 2.21648i −0.0664381 0.115074i
\(372\) −0.532103 0.624814i −0.0275883 0.0323951i
\(373\) 8.18898 14.1837i 0.424010 0.734406i −0.572318 0.820032i \(-0.693956\pi\)
0.996327 + 0.0856259i \(0.0272890\pi\)
\(374\) −2.11331 + 2.08268i −0.109276 + 0.107693i
\(375\) 0 0
\(376\) 20.5621 + 5.99506i 1.06041 + 0.309172i
\(377\) 5.26946i 0.271391i
\(378\) −4.92086 + 23.8581i −0.253102 + 1.22713i
\(379\) 11.7940i 0.605818i −0.953020 0.302909i \(-0.902042\pi\)
0.953020 0.302909i \(-0.0979578\pi\)
\(380\) 0 0
\(381\) −13.7591 + 12.0684i −0.704901 + 0.618283i
\(382\) 24.8471 + 25.2125i 1.27129 + 1.28998i
\(383\) −5.63455 + 9.75933i −0.287912 + 0.498678i −0.973311 0.229489i \(-0.926294\pi\)
0.685399 + 0.728168i \(0.259628\pi\)
\(384\) 11.7035 15.7171i 0.597241 0.802062i
\(385\) 0 0
\(386\) 7.11268 25.7905i 0.362026 1.31270i
\(387\) −9.59316 23.1492i −0.487648 1.17674i
\(388\) 10.6024 + 6.32944i 0.538257 + 0.321328i
\(389\) −17.4583 + 10.0796i −0.885172 + 0.511054i −0.872360 0.488864i \(-0.837411\pi\)
−0.0128115 + 0.999918i \(0.504078\pi\)
\(390\) 0 0
\(391\) −5.60259 3.23466i −0.283335 0.163584i
\(392\) −2.68108 10.9604i −0.135415 0.553585i
\(393\) 27.6182 5.49594i 1.39315 0.277234i
\(394\) −1.87073 7.19119i −0.0942460 0.362287i
\(395\) 0 0
\(396\) 8.77771 11.1038i 0.441097 0.557985i
\(397\) 5.11859 0.256895 0.128447 0.991716i \(-0.459001\pi\)
0.128447 + 0.991716i \(0.459001\pi\)
\(398\) 6.71100 + 25.7975i 0.336392 + 1.29311i
\(399\) −5.60084 + 16.5040i −0.280393 + 0.826233i
\(400\) 0 0
\(401\) 9.58291 + 5.53269i 0.478548 + 0.276290i 0.719811 0.694170i \(-0.244228\pi\)
−0.241263 + 0.970460i \(0.577562\pi\)
\(402\) −6.77302 13.9879i −0.337808 0.697653i
\(403\) 0.902771 0.521215i 0.0449702 0.0259636i
\(404\) −7.95892 + 13.3320i −0.395971 + 0.663291i
\(405\) 0 0
\(406\) −1.49267 + 5.41238i −0.0740798 + 0.268612i
\(407\) 13.5615 + 23.4893i 0.672221 + 1.16432i
\(408\) 0.379724 4.34041i 0.0187992 0.214883i
\(409\) 8.08315 14.0004i 0.399686 0.692276i −0.594001 0.804464i \(-0.702452\pi\)
0.993687 + 0.112188i \(0.0357858\pi\)
\(410\) 0 0
\(411\) −21.6368 7.34273i −1.06726 0.362190i
\(412\) −26.3185 0.384198i −1.29662 0.0189281i
\(413\) 7.05742i 0.347273i
\(414\) 28.4271 + 12.0132i 1.39711 + 0.590417i
\(415\) 0 0
\(416\) 16.9465 + 18.2307i 0.830868 + 0.893835i
\(417\) −2.19190 11.0147i −0.107338 0.539394i
\(418\) 7.21263 7.10810i 0.352781 0.347669i
\(419\) 3.65564 6.33176i 0.178590 0.309327i −0.762808 0.646625i \(-0.776180\pi\)
0.941398 + 0.337298i \(0.109513\pi\)
\(420\) 0 0
\(421\) 14.9731 + 25.9341i 0.729742 + 1.26395i 0.956992 + 0.290114i \(0.0936932\pi\)
−0.227250 + 0.973836i \(0.572973\pi\)
\(422\) 6.23521 + 1.71959i 0.303525 + 0.0837083i
\(423\) −20.9868 + 8.69702i −1.02041 + 0.422864i
\(424\) −1.50993 1.57755i −0.0733288 0.0766124i
\(425\) 0 0
\(426\) 23.7631 + 16.1273i 1.15133 + 0.781368i
\(427\) 10.9842 + 6.34172i 0.531562 + 0.306897i
\(428\) −0.440413 + 0.245772i −0.0212882 + 0.0118798i
\(429\) 11.8552 + 13.5160i 0.572375 + 0.652561i
\(430\) 0 0
\(431\) 30.7505 1.48120 0.740599 0.671947i \(-0.234542\pi\)
0.740599 + 0.671947i \(0.234542\pi\)
\(432\) 0.758495 + 20.7708i 0.0364931 + 0.999334i
\(433\) −29.3734 −1.41160 −0.705798 0.708413i \(-0.749411\pi\)
−0.705798 + 0.708413i \(0.749411\pi\)
\(434\) −1.07490 + 0.279627i −0.0515969 + 0.0134225i
\(435\) 0 0
\(436\) −0.801746 + 0.447413i −0.0383967 + 0.0214272i
\(437\) 19.1214 + 11.0398i 0.914701 + 0.528103i
\(438\) −12.3815 8.40294i −0.591612 0.401508i
\(439\) 6.77418 3.91108i 0.323314 0.186665i −0.329555 0.944136i \(-0.606899\pi\)
0.652869 + 0.757471i \(0.273565\pi\)
\(440\) 0 0
\(441\) 9.49608 + 7.28413i 0.452194 + 0.346863i
\(442\) 5.33505 + 1.47134i 0.253763 + 0.0699844i
\(443\) −13.3520 23.1263i −0.634371 1.09876i −0.986648 0.162867i \(-0.947926\pi\)
0.352277 0.935896i \(-0.385408\pi\)
\(444\) −37.5251 13.3486i −1.78086 0.633495i
\(445\) 0 0
\(446\) 23.9261 23.5794i 1.13294 1.11652i
\(447\) −2.83001 14.2213i −0.133855 0.672646i
\(448\) −12.2419 23.5256i −0.578377 1.11148i
\(449\) 23.8441i 1.12527i −0.826704 0.562637i \(-0.809787\pi\)
0.826704 0.562637i \(-0.190213\pi\)
\(450\) 0 0
\(451\) 6.67955i 0.314528i
\(452\) −34.8586 0.508866i −1.63961 0.0239350i
\(453\) −26.8952 9.12722i −1.26364 0.428834i
\(454\) −27.6533 28.0599i −1.29783 1.31692i
\(455\) 0 0
\(456\) −1.29598 + 14.8137i −0.0606900 + 0.693713i
\(457\) −7.87798 13.6451i −0.368516 0.638289i 0.620817 0.783955i \(-0.286801\pi\)
−0.989334 + 0.145666i \(0.953468\pi\)
\(458\) −6.28641 + 22.7944i −0.293745 + 1.06511i
\(459\) 2.56839 + 3.84183i 0.119882 + 0.179321i
\(460\) 0 0
\(461\) 9.24515 5.33769i 0.430590 0.248601i −0.269008 0.963138i \(-0.586696\pi\)
0.699598 + 0.714537i \(0.253363\pi\)
\(462\) −8.34811 17.2408i −0.388389 0.802117i
\(463\) 5.50175 + 3.17644i 0.255688 + 0.147622i 0.622366 0.782726i \(-0.286172\pi\)
−0.366678 + 0.930348i \(0.619505\pi\)
\(464\) −0.139829 + 4.78829i −0.00649139 + 0.222291i
\(465\) 0 0
\(466\) −0.597938 2.29851i −0.0276989 0.106476i
\(467\) −7.76191 −0.359179 −0.179589 0.983742i \(-0.557477\pi\)
−0.179589 + 0.983742i \(0.557477\pi\)
\(468\) −26.1221 3.82337i −1.20750 0.176735i
\(469\) −21.0330 −0.971213
\(470\) 0 0
\(471\) 18.1972 3.62120i 0.838483 0.166856i
\(472\) −1.43076 5.84905i −0.0658563 0.269224i
\(473\) 17.0645 + 9.85221i 0.784628 + 0.453005i
\(474\) 25.2440 + 1.83763i 1.15950 + 0.0844053i
\(475\) 0 0
\(476\) −5.06298 3.02249i −0.232061 0.138536i
\(477\) 2.29640 + 0.301945i 0.105145 + 0.0138251i
\(478\) 4.06880 14.7534i 0.186103 0.674805i
\(479\) −3.56565 6.17588i −0.162919 0.282183i 0.772996 0.634411i \(-0.218757\pi\)
−0.935914 + 0.352228i \(0.885424\pi\)
\(480\) 0 0
\(481\) 25.2950 43.8122i 1.15335 1.99767i
\(482\) −10.8332 10.9925i −0.493439 0.500694i
\(483\) 31.3992 27.5409i 1.42871 1.25315i
\(484\) 0.158662 10.8687i 0.00721192 0.494034i
\(485\) 0 0
\(486\) −14.4210 16.6744i −0.654150 0.756365i
\(487\) 15.1089i 0.684649i −0.939582 0.342325i \(-0.888786\pi\)
0.939582 0.342325i \(-0.111214\pi\)
\(488\) 10.3891 + 3.02905i 0.470295 + 0.137119i
\(489\) 1.73943 1.52569i 0.0786599 0.0689942i
\(490\) 0 0
\(491\) 14.7215 25.4984i 0.664372 1.15073i −0.315083 0.949064i \(-0.602032\pi\)
0.979455 0.201662i \(-0.0646342\pi\)
\(492\) 6.35949 + 7.46753i 0.286708 + 0.336662i
\(493\) 0.532546 + 0.922396i 0.0239847 + 0.0415426i
\(494\) −18.2083 5.02162i −0.819230 0.225933i
\(495\) 0 0
\(496\) −0.834168 + 0.449666i −0.0374552 + 0.0201906i
\(497\) 33.6595 19.4333i 1.50984 0.871705i
\(498\) 0.462252 6.35008i 0.0207140 0.284554i
\(499\) 18.0795 + 10.4382i 0.809351 + 0.467279i 0.846730 0.532022i \(-0.178568\pi\)
−0.0373795 + 0.999301i \(0.511901\pi\)
\(500\) 0 0
\(501\) 12.1800 2.42379i 0.544163 0.108287i
\(502\) 6.92222 1.80076i 0.308954 0.0803718i
\(503\) −22.6713 −1.01086 −0.505431 0.862867i \(-0.668667\pi\)
−0.505431 + 0.862867i \(0.668667\pi\)
\(504\) 25.7476 + 11.3266i 1.14689 + 0.504528i
\(505\) 0 0
\(506\) −23.4859 + 6.10967i −1.04408 + 0.271608i
\(507\) 3.54045 10.4326i 0.157237 0.463330i
\(508\) 10.2983 + 18.4542i 0.456915 + 0.818772i
\(509\) 23.5593 + 13.6020i 1.04425 + 0.602896i 0.921033 0.389484i \(-0.127347\pi\)
0.123213 + 0.992380i \(0.460680\pi\)
\(510\) 0 0
\(511\) −17.5380 + 10.1255i −0.775834 + 0.447928i
\(512\) −14.9153 17.0157i −0.659168 0.751996i
\(513\) −8.76582 13.1120i −0.387020 0.578909i
\(514\) 18.2560 + 5.03476i 0.805236 + 0.222074i
\(515\) 0 0
\(516\) −28.4577 + 5.23239i −1.25278 + 0.230343i
\(517\) 8.93188 15.4705i 0.392824 0.680390i
\(518\) −38.3917 + 37.8353i −1.68683 + 1.66239i
\(519\) −4.22393 1.43345i −0.185410 0.0629213i
\(520\) 0 0
\(521\) 2.18176i 0.0955847i −0.998857 0.0477924i \(-0.984781\pi\)
0.998857 0.0477924i \(-0.0152186\pi\)
\(522\) −3.06423 4.05293i −0.134117 0.177392i
\(523\) 28.8185i 1.26014i 0.776537 + 0.630071i \(0.216974\pi\)
−0.776537 + 0.630071i \(0.783026\pi\)
\(524\) 0.474619 32.5126i 0.0207338 1.42032i
\(525\) 0 0
\(526\) 10.8115 + 10.9705i 0.471404 + 0.478336i
\(527\) −0.105351 + 0.182473i −0.00458916 + 0.00794865i
\(528\) −10.4140 12.5964i −0.453212 0.548190i
\(529\) −14.9560 25.9046i −0.650261 1.12629i
\(530\) 0 0
\(531\) 5.06760 + 3.88719i 0.219915 + 0.168690i
\(532\) 17.2797 + 10.3156i 0.749171 + 0.447240i
\(533\) −10.7896 + 6.22935i −0.467348 + 0.269823i
\(534\) −6.43925 + 9.48807i −0.278654 + 0.410589i
\(535\) 0 0
\(536\) −17.4317 + 4.26406i −0.752936 + 0.184179i
\(537\) 11.6323 + 13.2619i 0.501969 + 0.572292i
\(538\) −7.65570 29.4290i −0.330061 1.26877i
\(539\) −9.41102 −0.405361
\(540\) 0 0
\(541\) 3.32257 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(542\) 6.74512 + 25.9286i 0.289728 + 1.11373i
\(543\) 4.76880 + 5.43688i 0.204649 + 0.233319i
\(544\) −4.80885 1.47856i −0.206178 0.0633926i
\(545\) 0 0
\(546\) −20.0639 + 29.5636i −0.858655 + 1.26521i
\(547\) 24.0231 13.8697i 1.02715 0.593027i 0.110986 0.993822i \(-0.464599\pi\)
0.916168 + 0.400795i \(0.131266\pi\)
\(548\) −13.5238 + 22.6538i −0.577710 + 0.967721i
\(549\) −10.6037 + 4.39424i −0.452556 + 0.187541i
\(550\) 0 0
\(551\) −1.81756 3.14810i −0.0774305 0.134114i
\(552\) 20.4396 29.1909i 0.869967 1.24245i
\(553\) 17.1272 29.6652i 0.728323 1.26149i
\(554\) 18.5251 + 18.7975i 0.787058 + 0.798631i
\(555\) 0 0
\(556\) −12.9667 0.189288i −0.549911 0.00802761i
\(557\) 30.0401i 1.27284i 0.771344 + 0.636419i \(0.219585\pi\)
−0.771344 + 0.636419i \(0.780415\pi\)
\(558\) 0.391263 0.925853i 0.0165635 0.0391945i
\(559\) 36.7527i 1.55447i
\(560\) 0 0
\(561\) −3.44117 1.16781i −0.145286 0.0493048i
\(562\) −6.80043 + 6.70188i −0.286859 + 0.282702i
\(563\) −0.883109 + 1.52959i −0.0372186 + 0.0644645i −0.884035 0.467421i \(-0.845183\pi\)
0.846816 + 0.531886i \(0.178516\pi\)
\(564\) 4.74361 + 25.7994i 0.199742 + 1.08635i
\(565\) 0 0
\(566\) −7.18435 1.98135i −0.301981 0.0832824i
\(567\) −28.8160 + 7.73134i −1.21016 + 0.324686i
\(568\) 23.9566 22.9298i 1.00520 0.962115i
\(569\) −31.9951 + 18.4724i −1.34131 + 0.774403i −0.986999 0.160726i \(-0.948616\pi\)
−0.354306 + 0.935129i \(0.615283\pi\)
\(570\) 0 0
\(571\) 26.5164 + 15.3092i 1.10968 + 0.640672i 0.938745 0.344612i \(-0.111989\pi\)
0.170930 + 0.985283i \(0.445323\pi\)
\(572\) 18.1282 10.1164i 0.757977 0.422988i
\(573\) −13.9323 + 41.0543i −0.582031 + 1.71507i
\(574\) 12.8468 3.34199i 0.536214 0.139492i
\(575\) 0 0
\(576\) 23.6354 + 4.16742i 0.984809 + 0.173642i
\(577\) 23.6405 0.984168 0.492084 0.870548i \(-0.336235\pi\)
0.492084 + 0.870548i \(0.336235\pi\)
\(578\) 22.1847 5.77116i 0.922760 0.240048i
\(579\) 32.1358 6.39495i 1.33552 0.265765i
\(580\) 0 0
\(581\) −7.46221 4.30831i −0.309585 0.178739i
\(582\) −1.09798 + 15.0832i −0.0455128 + 0.625221i
\(583\) −1.57730 + 0.910652i −0.0653249 + 0.0377154i
\(584\) −12.4824 + 11.9474i −0.516523 + 0.494385i
\(585\) 0 0
\(586\) 30.3890 + 8.38091i 1.25536 + 0.346212i
\(587\) −0.0296509 0.0513568i −0.00122382 0.00211972i 0.865413 0.501059i \(-0.167056\pi\)
−0.866637 + 0.498940i \(0.833723\pi\)
\(588\) 10.5212 8.96007i 0.433888 0.369507i
\(589\) 0.359558 0.622773i 0.0148153 0.0256609i
\(590\) 0 0
\(591\) 6.84163 6.00094i 0.281427 0.246846i
\(592\) −24.1478 + 39.1404i −0.992471 + 1.60866i
\(593\) 44.6245i 1.83251i 0.400596 + 0.916255i \(0.368803\pi\)
−0.400596 + 0.916255i \(0.631197\pi\)
\(594\) 16.9779 + 3.50178i 0.696613 + 0.143680i
\(595\) 0 0
\(596\) −16.7416 0.244394i −0.685762 0.0100108i
\(597\) −24.5435 + 21.5276i −1.00450 + 0.881066i
\(598\) 31.7720 + 32.2392i 1.29925 + 1.31836i
\(599\) 11.5001 19.9187i 0.469881 0.813857i −0.529526 0.848294i \(-0.677630\pi\)
0.999407 + 0.0344362i \(0.0109636\pi\)
\(600\) 0 0
\(601\) 0.981232 + 1.69954i 0.0400253 + 0.0693259i 0.885344 0.464936i \(-0.153923\pi\)
−0.845319 + 0.534262i \(0.820589\pi\)
\(602\) −10.4109 + 37.7496i −0.424315 + 1.53856i
\(603\) 11.5849 15.1028i 0.471772 0.615033i
\(604\) −16.8105 + 28.1593i −0.684011 + 1.14579i
\(605\) 0 0
\(606\) −18.9664 1.38065i −0.770456 0.0560851i
\(607\) 17.5023 + 10.1049i 0.710394 + 0.410146i 0.811207 0.584759i \(-0.198811\pi\)
−0.100813 + 0.994905i \(0.532144\pi\)
\(608\) 16.4124 + 5.04625i 0.665611 + 0.204653i
\(609\) −6.74402 + 1.34204i −0.273282 + 0.0543823i
\(610\) 0 0
\(611\) −33.3195 −1.34796
\(612\) 4.95897 1.97071i 0.200455 0.0796612i
\(613\) 24.8672 1.00438 0.502189 0.864758i \(-0.332528\pi\)
0.502189 + 0.864758i \(0.332528\pi\)
\(614\) −0.147906 0.568560i −0.00596901 0.0229452i
\(615\) 0 0
\(616\) −21.4855 + 5.25568i −0.865677 + 0.211757i
\(617\) −28.3549 16.3707i −1.14152 0.659059i −0.194717 0.980860i \(-0.562379\pi\)
−0.946808 + 0.321800i \(0.895712\pi\)
\(618\) −14.0490 29.0145i −0.565133 1.16714i
\(619\) 11.9754 6.91400i 0.481332 0.277897i −0.239640 0.970862i \(-0.577029\pi\)
0.720971 + 0.692965i \(0.243696\pi\)
\(620\) 0 0
\(621\) 2.48130 + 37.7156i 0.0995713 + 1.51348i
\(622\) 0.213982 0.775897i 0.00857991 0.0311106i
\(623\) 7.75930 + 13.4395i 0.310870 + 0.538442i
\(624\) −10.6351 + 28.5694i −0.425743 + 1.14369i
\(625\) 0 0
\(626\) 27.8569 + 28.2665i 1.11338 + 1.12976i
\(627\) 11.7446 + 3.98568i 0.469033 + 0.159173i
\(628\) 0.312719 21.4220i 0.0124789 0.854833i
\(629\) 10.2255i 0.407719i
\(630\) 0 0
\(631\) 0.298908i 0.0118994i −0.999982 0.00594968i \(-0.998106\pi\)
0.999982 0.00594968i \(-0.00189385\pi\)
\(632\) 8.18062 28.0582i 0.325407 1.11609i
\(633\) 1.54607 + 7.76929i 0.0614507 + 0.308802i
\(634\) 13.3700 13.1763i 0.530992 0.523297i
\(635\) 0 0
\(636\) 0.896351 2.51980i 0.0355426 0.0999165i
\(637\) 8.77672 + 15.2017i 0.347746 + 0.602314i
\(638\) 3.85156 + 1.06221i 0.152485 + 0.0420534i
\(639\) −4.58533 + 34.8731i −0.181393 + 1.37956i
\(640\) 0 0
\(641\) 12.2453 7.06982i 0.483660 0.279241i −0.238281 0.971196i \(-0.576584\pi\)
0.721940 + 0.691955i \(0.243250\pi\)
\(642\) −0.511108 0.346873i −0.0201718 0.0136900i
\(643\) 31.6633 + 18.2808i 1.24868 + 0.720925i 0.970846 0.239704i \(-0.0770505\pi\)
0.277833 + 0.960629i \(0.410384\pi\)
\(644\) −23.5015 42.1136i −0.926087 1.65951i
\(645\) 0 0
\(646\) 3.69479 0.961168i 0.145369 0.0378167i
\(647\) −25.4645 −1.00111 −0.500556 0.865704i \(-0.666871\pi\)
−0.500556 + 0.865704i \(0.666871\pi\)
\(648\) −22.3148 + 12.2495i −0.876607 + 0.481206i
\(649\) −5.02220 −0.197139
\(650\) 0 0
\(651\) −0.896989 1.02265i −0.0351558 0.0400809i
\(652\) −1.30192 2.33299i −0.0509871 0.0913668i
\(653\) −19.4203 11.2123i −0.759976 0.438772i 0.0693112 0.997595i \(-0.477920\pi\)
−0.829287 + 0.558823i \(0.811253\pi\)
\(654\) −0.930441 0.631461i −0.0363831 0.0246921i
\(655\) 0 0
\(656\) 9.96964 5.37423i 0.389249 0.209828i
\(657\) 2.38914 18.1703i 0.0932092 0.708890i
\(658\) 34.2233 + 9.43834i 1.33416 + 0.367945i
\(659\) 3.28193 + 5.68446i 0.127846 + 0.221435i 0.922842 0.385179i \(-0.125860\pi\)
−0.794996 + 0.606615i \(0.792527\pi\)
\(660\) 0 0
\(661\) −9.44856 + 16.3654i −0.367506 + 0.636540i −0.989175 0.146741i \(-0.953122\pi\)
0.621669 + 0.783280i \(0.286455\pi\)
\(662\) −8.65332 + 8.52792i −0.336321 + 0.331447i
\(663\) 1.32287 + 6.64766i 0.0513759 + 0.258174i
\(664\) −7.05797 2.05781i −0.273902 0.0798587i
\(665\) 0 0
\(666\) −6.02183 48.4068i −0.233341 1.87572i
\(667\) 8.71129i 0.337303i
\(668\) 0.209314 14.3385i 0.00809860 0.554774i
\(669\) 38.9598 + 13.2215i 1.50627 + 0.511173i
\(670\) 0 0
\(671\) 4.51290 7.81657i 0.174219 0.301755i
\(672\) 19.0163 26.3317i 0.733570 1.01577i
\(673\) 15.6611 + 27.1258i 0.603690 + 1.04562i 0.992257 + 0.124201i \(0.0396367\pi\)
−0.388567 + 0.921420i \(0.627030\pi\)
\(674\) −0.396821 + 1.43887i −0.0152850 + 0.0554231i
\(675\) 0 0
\(676\) −10.9230 6.52081i −0.420115 0.250800i
\(677\) −35.4936 + 20.4922i −1.36413 + 0.787580i −0.990171 0.139866i \(-0.955333\pi\)
−0.373958 + 0.927446i \(0.622000\pi\)
\(678\) −18.6077 38.4294i −0.714626 1.47587i
\(679\) 17.7249 + 10.2335i 0.680219 + 0.392724i
\(680\) 0 0
\(681\) 15.5058 45.6910i 0.594185 1.75088i
\(682\) 0.198988 + 0.764922i 0.00761965 + 0.0292904i
\(683\) −42.0703 −1.60978 −0.804888 0.593427i \(-0.797775\pi\)
−0.804888 + 0.593427i \(0.797775\pi\)
\(684\) −16.9248 + 6.72595i −0.647134 + 0.257173i
\(685\) 0 0
\(686\) 3.55347 + 13.6597i 0.135672 + 0.521531i
\(687\) −28.4027 + 5.65206i −1.08363 + 0.215639i
\(688\) −0.975261 + 33.3968i −0.0371815 + 1.27324i
\(689\) 2.94198 + 1.69855i 0.112080 + 0.0647096i
\(690\) 0 0
\(691\) 30.3277 17.5097i 1.15372 0.666101i 0.203930 0.978986i \(-0.434629\pi\)
0.949791 + 0.312885i \(0.101295\pi\)
\(692\) −2.64012 + 4.42247i −0.100362 + 0.168117i
\(693\) 14.2789 18.6150i 0.542412 0.707125i
\(694\) −2.59554 + 9.41140i −0.0985255 + 0.357252i
\(695\) 0 0
\(696\) −5.31724 + 2.47949i −0.201549 + 0.0939848i
\(697\) 1.25911 2.18084i 0.0476922 0.0826054i
\(698\) 30.8018 + 31.2547i 1.16586 + 1.18301i
\(699\) 2.18678 1.91807i 0.0827116 0.0725481i
\(700\) 0 0
\(701\) 41.5315i 1.56862i 0.620366 + 0.784312i \(0.286984\pi\)
−0.620366 + 0.784312i \(0.713016\pi\)
\(702\) −10.1772 30.6904i −0.384112 1.15834i
\(703\) 34.8993i 1.31625i
\(704\) −16.7413 + 8.71161i −0.630961 + 0.328331i
\(705\) 0 0
\(706\) 15.4686 15.2445i 0.582169 0.573732i
\(707\) −12.8680 + 22.2881i −0.483952 + 0.838229i
\(708\) 5.61466 4.78155i 0.211012 0.179702i
\(709\) −5.69139 9.85778i −0.213745 0.370217i 0.739139 0.673553i \(-0.235233\pi\)
−0.952883 + 0.303337i \(0.901899\pi\)
\(710\) 0 0
\(711\) 11.8676 + 28.6377i 0.445070 + 1.07400i
\(712\) 9.15538 + 9.56534i 0.343112 + 0.358476i
\(713\) −1.49243 + 0.861656i −0.0558920 + 0.0322693i
\(714\) 0.524319 7.20270i 0.0196221 0.269554i
\(715\) 0 0
\(716\) 17.7873 9.92616i 0.664741 0.370958i
\(717\) 18.3833 3.65822i 0.686536 0.136619i
\(718\) −11.6500 + 3.03065i −0.434774 + 0.113103i
\(719\) −24.0599 −0.897282 −0.448641 0.893712i \(-0.648092\pi\)
−0.448641 + 0.893712i \(0.648092\pi\)
\(720\) 0 0
\(721\) −43.6278 −1.62478
\(722\) 13.3944 3.48444i 0.498488 0.129678i
\(723\) 6.07442 17.8995i 0.225910 0.665689i
\(724\) 7.29213 4.06936i 0.271010 0.151237i
\(725\) 0 0
\(726\) 11.9821 5.80181i 0.444698 0.215325i
\(727\) −4.94944 + 2.85756i −0.183565 + 0.105981i −0.588966 0.808158i \(-0.700465\pi\)
0.405402 + 0.914139i \(0.367132\pi\)
\(728\) 28.5270 + 29.8044i 1.05728 + 1.10462i
\(729\) 10.3202 24.9498i 0.382230 0.924067i
\(730\) 0 0
\(731\) 3.71433 + 6.43341i 0.137380 + 0.237948i
\(732\) 2.39674 + 13.0353i 0.0885862 + 0.481800i
\(733\) 12.9269 22.3900i 0.477465 0.826994i −0.522201 0.852822i \(-0.674889\pi\)
0.999666 + 0.0258286i \(0.00822241\pi\)
\(734\) 1.30249 1.28361i 0.0480756 0.0473790i
\(735\) 0 0
\(736\) −28.0153 30.1384i −1.03266 1.11092i
\(737\) 14.9675i 0.551335i
\(738\) −4.67622 + 11.0654i −0.172134 + 0.407324i
\(739\) 18.0774i 0.664989i 0.943105 + 0.332495i \(0.107890\pi\)
−0.943105 + 0.332495i \(0.892110\pi\)
\(740\) 0 0
\(741\) −4.51489 22.6882i −0.165859 0.833472i
\(742\) −2.54063 2.57799i −0.0932694 0.0946409i
\(743\) 9.00512 15.5973i 0.330366 0.572210i −0.652218 0.758032i \(-0.726161\pi\)
0.982584 + 0.185821i \(0.0594946\pi\)
\(744\) −0.950731 0.665705i −0.0348555 0.0244059i
\(745\) 0 0
\(746\) 6.15788 22.3284i 0.225456 0.817500i
\(747\) 7.20374 2.98527i 0.263571 0.109225i
\(748\) −2.15087 + 3.60292i −0.0786435 + 0.131736i
\(749\) −0.723965 + 0.417982i −0.0264531 + 0.0152727i
\(750\) 0 0
\(751\) −35.2487 20.3509i −1.28624 0.742613i −0.308262 0.951302i \(-0.599747\pi\)
−0.977982 + 0.208689i \(0.933081\pi\)
\(752\) 30.2770 + 0.884158i 1.10409 + 0.0322419i
\(753\) 5.77649 + 6.58574i 0.210507 + 0.239998i
\(754\) −1.87617 7.21210i −0.0683260 0.262649i
\(755\) 0 0
\(756\) 1.75960 + 34.4057i 0.0639961 + 1.25132i
\(757\) −35.4823 −1.28963 −0.644813 0.764340i \(-0.723065\pi\)
−0.644813 + 0.764340i \(0.723065\pi\)
\(758\) −4.19921 16.1420i −0.152522 0.586304i
\(759\) −19.5986 22.3443i −0.711386 0.811046i
\(760\) 0 0
\(761\) −34.0009 19.6304i −1.23253 0.711602i −0.264974 0.964256i \(-0.585363\pi\)
−0.967557 + 0.252654i \(0.918697\pi\)
\(762\) −14.5346 + 21.4164i −0.526535 + 0.775835i
\(763\) −1.31794 + 0.760910i −0.0477125 + 0.0275468i
\(764\) 42.9840 + 25.6606i 1.55511 + 0.928367i
\(765\) 0 0
\(766\) −4.23702 + 15.3634i −0.153090 + 0.555101i
\(767\) 4.68371 + 8.11242i 0.169119 + 0.292923i
\(768\) 10.4221 25.6784i 0.376074 0.926590i
\(769\) 3.27941 5.68011i 0.118259 0.204830i −0.800819 0.598906i \(-0.795602\pi\)
0.919078 + 0.394076i \(0.128935\pi\)
\(770\) 0 0
\(771\) 4.52671 + 22.7476i 0.163025 + 0.819234i
\(772\) 0.552255 37.8308i 0.0198761 1.36156i
\(773\) 34.2118i 1.23051i −0.788327 0.615256i \(-0.789053\pi\)
0.788327 0.615256i \(-0.210947\pi\)
\(774\) −21.3720 28.2678i −0.768199 1.01607i
\(775\) 0 0
\(776\) 16.7647 + 4.88790i 0.601817 + 0.175465i
\(777\) −62.5146 21.2151i −2.24270 0.761089i
\(778\) −20.3057 + 20.0115i −0.727995 + 0.717445i
\(779\) −4.29729 + 7.44313i −0.153967 + 0.266678i
\(780\) 0 0
\(781\) −13.8292 23.9528i −0.494847 0.857099i
\(782\) −8.81973 2.43237i −0.315393 0.0869813i
\(783\) 2.75092 5.58176i 0.0983097 0.199476i
\(784\) −7.57191 14.0465i −0.270425 0.501661i
\(785\) 0 0
\(786\) 35.8431 17.3554i 1.27848 0.619047i
\(787\) 15.0505 + 8.68943i 0.536494 + 0.309745i 0.743657 0.668562i \(-0.233090\pi\)
−0.207163 + 0.978306i \(0.566423\pi\)
\(788\) −5.12079 9.17623i −0.182420 0.326890i
\(789\) −6.06225 + 17.8636i −0.215822 + 0.635962i
\(790\) 0 0
\(791\) −57.7846 −2.05458
\(792\) 8.06026 18.3225i 0.286409 0.651063i
\(793\) −16.8349 −0.597826
\(794\) 7.00561 1.82245i 0.248620 0.0646764i
\(795\) 0 0
\(796\) 18.3702 + 32.9185i 0.651113 + 1.16677i
\(797\) 6.07314 + 3.50633i 0.215122 + 0.124201i 0.603689 0.797220i \(-0.293697\pi\)
−0.388568 + 0.921420i \(0.627030\pi\)
\(798\) −1.78948 + 24.5825i −0.0633468 + 0.870211i
\(799\) 5.83244 3.36736i 0.206337 0.119129i
\(800\) 0 0
\(801\) −13.9241 1.83082i −0.491982 0.0646889i
\(802\) 15.0856 + 4.16042i 0.532692 + 0.146910i
\(803\) 7.20555 + 12.4804i 0.254278 + 0.440423i
\(804\) −14.2503 16.7332i −0.502569 0.590134i
\(805\) 0 0
\(806\) 1.05001 1.03479i 0.0369851 0.0364491i
\(807\) 27.9984 24.5580i 0.985592 0.864483i
\(808\) −6.14626 + 21.0807i −0.216225 + 0.741616i
\(809\) 38.9234i 1.36847i −0.729261 0.684236i \(-0.760136\pi\)
0.729261 0.684236i \(-0.239864\pi\)
\(810\) 0 0
\(811\) 35.7891i 1.25673i −0.777920 0.628363i \(-0.783725\pi\)
0.777920 0.628363i \(-0.216275\pi\)
\(812\) −0.115896 + 7.93917i −0.00406716 + 0.278610i
\(813\) −24.6683 + 21.6371i −0.865154 + 0.758845i
\(814\) 26.9244 + 27.3203i 0.943700 + 0.957576i
\(815\) 0 0
\(816\) −1.02567 6.07575i −0.0359057 0.212694i
\(817\) −12.6769 21.9570i −0.443507 0.768177i
\(818\) 6.07829 22.0398i 0.212523 0.770604i
\(819\) −43.3856 5.70460i −1.51601 0.199335i
\(820\) 0 0
\(821\) −27.8765 + 16.0945i −0.972895 + 0.561701i −0.900118 0.435647i \(-0.856520\pi\)
−0.0727775 + 0.997348i \(0.523186\pi\)
\(822\) −32.2278 2.34601i −1.12407 0.0818265i
\(823\) −14.9963 8.65813i −0.522739 0.301804i 0.215315 0.976545i \(-0.430922\pi\)
−0.738055 + 0.674741i \(0.764255\pi\)
\(824\) −36.1579 + 8.84475i −1.25962 + 0.308122i
\(825\) 0 0
\(826\) −2.51276 9.65921i −0.0874302 0.336087i
\(827\) 15.5363 0.540249 0.270124 0.962825i \(-0.412935\pi\)
0.270124 + 0.962825i \(0.412935\pi\)
\(828\) 43.1843 + 6.32067i 1.50076 + 0.219658i
\(829\) 27.4645 0.953882 0.476941 0.878935i \(-0.341746\pi\)
0.476941 + 0.878935i \(0.341746\pi\)
\(830\) 0 0
\(831\) −10.3875 + 30.6087i −0.360337 + 1.06180i
\(832\) 29.6849 + 18.9180i 1.02914 + 0.655862i
\(833\) −3.07266 1.77400i −0.106461 0.0614654i
\(834\) −6.92172 14.2950i −0.239679 0.494995i
\(835\) 0 0
\(836\) 7.34082 12.2966i 0.253888 0.425287i
\(837\) 1.22837 0.0808146i 0.0424588 0.00279336i
\(838\) 2.74894 9.96761i 0.0949605 0.344325i
\(839\) −6.91476 11.9767i −0.238724 0.413482i 0.721624 0.692285i \(-0.243396\pi\)
−0.960348 + 0.278803i \(0.910062\pi\)
\(840\) 0 0
\(841\) −13.7829 + 23.8727i −0.475272 + 0.823196i
\(842\) 29.7268 + 30.1639i 1.02445 + 1.03952i
\(843\) −11.0734 3.75790i −0.381387 0.129429i
\(844\) 9.14613 + 0.133515i 0.314823 + 0.00459579i
\(845\) 0 0
\(846\) −25.6272 + 19.3755i −0.881082 + 0.666144i
\(847\) 18.0170i 0.619070i
\(848\) −2.62826 1.62152i −0.0902550 0.0556832i
\(849\) −1.78142 8.95196i −0.0611380 0.307230i
\(850\) 0 0
\(851\) −41.8169 + 72.4290i −1.43346 + 2.48283i
\(852\) 38.2656 + 13.6120i 1.31096 + 0.466339i
\(853\) −18.0633 31.2866i −0.618476 1.07123i −0.989764 0.142714i \(-0.954417\pi\)
0.371288 0.928518i \(-0.378916\pi\)
\(854\) 17.2916 + 4.76879i 0.591705 + 0.163185i
\(855\) 0 0
\(856\) −0.515270 + 0.493186i −0.0176116 + 0.0168568i
\(857\) −6.41713 + 3.70493i −0.219205 + 0.126558i −0.605582 0.795783i \(-0.707060\pi\)
0.386377 + 0.922341i \(0.373726\pi\)
\(858\) 21.0381 + 14.2779i 0.718228 + 0.487439i
\(859\) −35.7586 20.6452i −1.22007 0.704407i −0.255136 0.966905i \(-0.582120\pi\)
−0.964932 + 0.262499i \(0.915453\pi\)
\(860\) 0 0
\(861\) 10.7205 + 12.2223i 0.365352 + 0.416535i
\(862\) 42.0870 10.9486i 1.43349 0.372910i
\(863\) 46.7922 1.59282 0.796412 0.604754i \(-0.206729\pi\)
0.796412 + 0.604754i \(0.206729\pi\)
\(864\) 8.43347 + 28.1581i 0.286912 + 0.957957i
\(865\) 0 0
\(866\) −40.2022 + 10.4583i −1.36613 + 0.355387i
\(867\) 18.5128 + 21.1063i 0.628726 + 0.716807i
\(868\) −1.37161 + 0.765428i −0.0465556 + 0.0259803i
\(869\) −21.1104 12.1881i −0.716120 0.413452i
\(870\) 0 0
\(871\) 24.1772 13.9587i 0.819213 0.472973i
\(872\) −0.938018 + 0.897815i −0.0317653 + 0.0304039i
\(873\) −17.1109 + 7.09086i −0.579118 + 0.239989i
\(874\) 30.1014 + 8.30157i 1.01819 + 0.280805i
\(875\) 0 0
\(876\) −19.9379 7.09239i −0.673640 0.239630i
\(877\) 7.07692 12.2576i 0.238970 0.413909i −0.721449 0.692468i \(-0.756523\pi\)
0.960419 + 0.278559i \(0.0898567\pi\)
\(878\) 7.87903 7.76485i 0.265904 0.262051i
\(879\) 7.53520 + 37.8658i 0.254156 + 1.27718i
\(880\) 0 0
\(881\) 13.5705i 0.457200i −0.973520 0.228600i \(-0.926585\pi\)
0.973520 0.228600i \(-0.0734148\pi\)
\(882\) 15.5904 + 6.58846i 0.524956 + 0.221845i
\(883\) 46.0353i 1.54921i 0.632444 + 0.774606i \(0.282052\pi\)
−0.632444 + 0.774606i \(0.717948\pi\)
\(884\) 7.82574 + 0.114240i 0.263208 + 0.00384232i
\(885\) 0 0
\(886\) −26.5083 26.8981i −0.890565 0.903660i
\(887\) 9.90855 17.1621i 0.332696 0.576247i −0.650343 0.759641i \(-0.725375\pi\)
0.983040 + 0.183393i \(0.0587082\pi\)
\(888\) −56.1118 4.90898i −1.88299 0.164735i
\(889\) 17.5143 + 30.3356i 0.587409 + 1.01742i
\(890\) 0 0
\(891\) 5.50178 + 20.5061i 0.184316 + 0.686980i
\(892\) 24.3514 40.7910i 0.815346 1.36578i
\(893\) −19.9059 + 11.4927i −0.666125 + 0.384587i
\(894\) −8.93676 18.4566i −0.298890 0.617280i
\(895\) 0 0
\(896\) −25.1312 27.8399i −0.839576 0.930064i
\(897\) −17.8153 + 52.4962i −0.594835 + 1.75280i
\(898\) −8.48960 32.6345i −0.283302 1.08903i
\(899\) 0.283722 0.00946265
\(900\) 0 0
\(901\) −0.686641 −0.0228753
\(902\) −2.37823 9.14204i −0.0791863 0.304396i
\(903\) −47.0374 + 9.36031i −1.56531 + 0.311492i
\(904\) −47.8907 + 11.7148i −1.59282 + 0.389628i
\(905\) 0 0
\(906\) −40.0600 2.91616i −1.33091 0.0968829i
\(907\) −42.3752 + 24.4653i −1.40705 + 0.812358i −0.995102 0.0988513i \(-0.968483\pi\)
−0.411943 + 0.911209i \(0.635150\pi\)
\(908\) −47.8386 28.5587i −1.58758 0.947752i
\(909\) −8.91637 21.5161i −0.295737 0.713643i
\(910\) 0 0
\(911\) −16.0978 27.8822i −0.533343 0.923778i −0.999242 0.0389396i \(-0.987602\pi\)
0.465898 0.884838i \(-0.345731\pi\)
\(912\) 3.50058 + 20.7363i 0.115916 + 0.686647i
\(913\) −3.06588 + 5.31026i −0.101466 + 0.175744i
\(914\) −15.6406 15.8705i −0.517343 0.524951i
\(915\) 0 0
\(916\) −0.488101 + 33.4361i −0.0161273 + 1.10476i
\(917\) 53.8956i 1.77979i
\(918\) 4.88313 + 4.34370i 0.161167 + 0.143363i
\(919\) 37.8553i 1.24873i 0.781133 + 0.624365i \(0.214642\pi\)
−0.781133 + 0.624365i \(0.785358\pi\)
\(920\) 0 0
\(921\) 0.540923 0.474455i 0.0178240 0.0156338i
\(922\) 10.7530 10.5972i 0.354132 0.349000i
\(923\) −25.7942 + 44.6768i −0.849026 + 1.47056i
\(924\) −17.5643 20.6246i −0.577822 0.678498i
\(925\) 0 0
\(926\) 8.66098 + 2.38859i 0.284618 + 0.0784939i
\(927\) 24.0300 31.3271i 0.789248 1.02892i
\(928\) 1.51347 + 6.60333i 0.0496822 + 0.216765i
\(929\) −14.4535 + 8.34474i −0.474205 + 0.273782i −0.717998 0.696045i \(-0.754941\pi\)
0.243794 + 0.969827i \(0.421608\pi\)
\(930\) 0 0
\(931\) 10.4868 + 6.05458i 0.343693 + 0.198431i
\(932\) −1.63675 2.93298i −0.0536135 0.0960730i
\(933\) 0.966795 0.192390i 0.0316514 0.00629855i
\(934\) −10.6234 + 2.76360i −0.347609 + 0.0904277i
\(935\) 0 0
\(936\) −37.1136 + 4.06778i −1.21310 + 0.132960i
\(937\) −41.7514 −1.36396 −0.681979 0.731372i \(-0.738880\pi\)
−0.681979 + 0.731372i \(0.738880\pi\)
\(938\) −28.7870 + 7.48870i −0.939929 + 0.244515i
\(939\) −15.6200 + 46.0273i −0.509739 + 1.50204i
\(940\) 0 0
\(941\) 9.78882 + 5.65158i 0.319106 + 0.184236i 0.650994 0.759083i \(-0.274352\pi\)
−0.331888 + 0.943319i \(0.607686\pi\)
\(942\) 23.6165 11.4352i 0.769466 0.372580i
\(943\) 17.8369 10.2982i 0.580851 0.335354i
\(944\) −4.04076 7.49595i −0.131516 0.243972i
\(945\) 0 0
\(946\) 26.8634 + 7.40858i 0.873404 + 0.240874i
\(947\) −2.56935 4.45025i −0.0834928 0.144614i 0.821255 0.570561i \(-0.193274\pi\)
−0.904748 + 0.425947i \(0.859941\pi\)
\(948\) 35.2048 6.47294i 1.14340 0.210231i
\(949\) 13.4398 23.2784i 0.436274 0.755649i
\(950\) 0 0
\(951\) 21.7709 + 7.38824i 0.705970 + 0.239580i
\(952\) −8.00564 2.33412i −0.259464 0.0756491i
\(953\) 22.9718i 0.744131i −0.928206 0.372066i \(-0.878650\pi\)
0.928206 0.372066i \(-0.121350\pi\)
\(954\) 3.25050 0.404364i 0.105239 0.0130918i
\(955\) 0 0
\(956\) 0.315917 21.6411i 0.0102175 0.699923i
\(957\) 0.955025 + 4.79919i 0.0308716 + 0.155136i
\(958\) −7.07906 7.18315i −0.228714 0.232077i
\(959\) −21.8654 + 37.8720i −0.706072 + 1.22295i
\(960\) 0 0
\(961\) −15.4719 26.7982i −0.499095 0.864457i
\(962\) 19.0211 68.9703i 0.613265 2.22369i
\(963\) 0.0986235 0.750067i 0.00317810 0.0241706i
\(964\) −18.7408 11.1879i −0.603601 0.360337i
\(965\) 0 0
\(966\) 33.1690 48.8736i 1.06719 1.57248i
\(967\) −36.5239 21.0871i −1.17453 0.678115i −0.219787 0.975548i \(-0.570536\pi\)
−0.954743 + 0.297433i \(0.903869\pi\)
\(968\) −3.65262 14.9321i −0.117400 0.479936i
\(969\) 3.08324 + 3.51519i 0.0990481 + 0.112924i
\(970\) 0 0
\(971\) 29.9678 0.961712 0.480856 0.876799i \(-0.340326\pi\)
0.480856 + 0.876799i \(0.340326\pi\)
\(972\) −25.6743 17.6870i −0.823504 0.567311i
\(973\) −21.4947 −0.689090
\(974\) −5.37946 20.6789i −0.172369 0.662596i
\(975\) 0 0
\(976\) 15.2977 + 0.446727i 0.489667 + 0.0142994i
\(977\) −32.1452 18.5590i −1.02842 0.593756i −0.111885 0.993721i \(-0.535689\pi\)
−0.916530 + 0.399965i \(0.869022\pi\)
\(978\) 1.83748 2.70747i 0.0587560 0.0865755i
\(979\) 9.56383 5.52168i 0.305661 0.176474i
\(980\) 0 0
\(981\) 0.179538 1.36545i 0.00573221 0.0435955i
\(982\) 11.0701 40.1402i 0.353262 1.28092i
\(983\) 14.3704 + 24.8903i 0.458345 + 0.793876i 0.998874 0.0474493i \(-0.0151093\pi\)
−0.540529 + 0.841325i \(0.681776\pi\)
\(984\) 11.3628 + 7.95624i 0.362232 + 0.253636i
\(985\) 0 0
\(986\) 1.05729 + 1.07284i 0.0336710 + 0.0341661i
\(987\) 8.48593 + 42.6434i 0.270110 + 1.35735i
\(988\) −26.7089 0.389897i −0.849724 0.0124043i
\(989\) 60.7584i 1.93201i
\(990\) 0 0
\(991\) 5.20653i 0.165391i −0.996575 0.0826954i \(-0.973647\pi\)
0.996575 0.0826954i \(-0.0263529\pi\)
\(992\) −0.981591 + 0.912442i −0.0311655 + 0.0289701i
\(993\) −14.0905 4.78180i −0.447149 0.151746i
\(994\) 39.1493 38.5820i 1.24174 1.22375i
\(995\) 0 0
\(996\) −1.62825 8.85568i −0.0515931 0.280603i
\(997\) 10.4918 + 18.1724i 0.332279 + 0.575525i 0.982958 0.183828i \(-0.0588490\pi\)
−0.650679 + 0.759353i \(0.725516\pi\)
\(998\) 28.4612 + 7.84924i 0.900924 + 0.248463i
\(999\) 49.6663 33.2036i 1.57137 1.05051i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.851.22 48
4.3 odd 2 inner 900.2.r.g.851.18 48
5.2 odd 4 180.2.n.d.59.15 yes 48
5.3 odd 4 180.2.n.d.59.10 yes 48
5.4 even 2 inner 900.2.r.g.851.3 48
9.2 odd 6 inner 900.2.r.g.551.18 48
15.2 even 4 540.2.n.d.179.10 48
15.8 even 4 540.2.n.d.179.15 48
20.3 even 4 180.2.n.d.59.6 48
20.7 even 4 180.2.n.d.59.19 yes 48
20.19 odd 2 inner 900.2.r.g.851.7 48
36.11 even 6 inner 900.2.r.g.551.22 48
45.2 even 12 180.2.n.d.119.6 yes 48
45.7 odd 12 540.2.n.d.359.19 48
45.29 odd 6 inner 900.2.r.g.551.7 48
45.38 even 12 180.2.n.d.119.19 yes 48
45.43 odd 12 540.2.n.d.359.6 48
60.23 odd 4 540.2.n.d.179.19 48
60.47 odd 4 540.2.n.d.179.6 48
180.7 even 12 540.2.n.d.359.15 48
180.43 even 12 540.2.n.d.359.10 48
180.47 odd 12 180.2.n.d.119.10 yes 48
180.83 odd 12 180.2.n.d.119.15 yes 48
180.119 even 6 inner 900.2.r.g.551.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.6 48 20.3 even 4
180.2.n.d.59.10 yes 48 5.3 odd 4
180.2.n.d.59.15 yes 48 5.2 odd 4
180.2.n.d.59.19 yes 48 20.7 even 4
180.2.n.d.119.6 yes 48 45.2 even 12
180.2.n.d.119.10 yes 48 180.47 odd 12
180.2.n.d.119.15 yes 48 180.83 odd 12
180.2.n.d.119.19 yes 48 45.38 even 12
540.2.n.d.179.6 48 60.47 odd 4
540.2.n.d.179.10 48 15.2 even 4
540.2.n.d.179.15 48 15.8 even 4
540.2.n.d.179.19 48 60.23 odd 4
540.2.n.d.359.6 48 45.43 odd 12
540.2.n.d.359.10 48 180.43 even 12
540.2.n.d.359.15 48 180.7 even 12
540.2.n.d.359.19 48 45.7 odd 12
900.2.r.g.551.3 48 180.119 even 6 inner
900.2.r.g.551.7 48 45.29 odd 6 inner
900.2.r.g.551.18 48 9.2 odd 6 inner
900.2.r.g.551.22 48 36.11 even 6 inner
900.2.r.g.851.3 48 5.4 even 2 inner
900.2.r.g.851.7 48 20.19 odd 2 inner
900.2.r.g.851.18 48 4.3 odd 2 inner
900.2.r.g.851.22 48 1.1 even 1 trivial