Properties

Label 900.2
Level 900
Weight 2
Dimension 9010
Nonzero newspaces 24
Newform subspaces 96
Sturm bound 86400
Trace bound 16

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 96 \)
Sturm bound: \(86400\)
Trace bound: \(16\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(900))\).

Total New Old
Modular forms 22720 9378 13342
Cusp forms 20481 9010 11471
Eisenstein series 2239 368 1871

Trace form

\( 9010 q - 21 q^{2} - 27 q^{4} - 47 q^{5} - 43 q^{6} - 7 q^{7} - 30 q^{8} - 68 q^{9} - 80 q^{10} - 35 q^{11} - 18 q^{12} - 83 q^{13} + 6 q^{14} - 12 q^{15} - 15 q^{16} - 90 q^{17} + 10 q^{18} - 44 q^{19}+ \cdots - 215 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(900))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
900.2.a \(\chi_{900}(1, \cdot)\) 900.2.a.a 1 1
900.2.a.b 1
900.2.a.c 1
900.2.a.d 1
900.2.a.e 1
900.2.a.f 1
900.2.a.g 1
900.2.a.h 1
900.2.d \(\chi_{900}(649, \cdot)\) 900.2.d.a 2 1
900.2.d.b 2
900.2.d.c 2
900.2.d.d 2
900.2.e \(\chi_{900}(251, \cdot)\) 900.2.e.a 2 1
900.2.e.b 2
900.2.e.c 2
900.2.e.d 8
900.2.e.e 8
900.2.e.f 8
900.2.e.g 8
900.2.h \(\chi_{900}(899, \cdot)\) 900.2.h.a 4 1
900.2.h.b 8
900.2.h.c 8
900.2.h.d 16
900.2.i \(\chi_{900}(301, \cdot)\) 900.2.i.a 2 2
900.2.i.b 2
900.2.i.c 6
900.2.i.d 8
900.2.i.e 8
900.2.i.f 12
900.2.j \(\chi_{900}(557, \cdot)\) 900.2.j.a 4 2
900.2.j.b 8
900.2.k \(\chi_{900}(307, \cdot)\) 900.2.k.a 2 2
900.2.k.b 2
900.2.k.c 2
900.2.k.d 2
900.2.k.e 2
900.2.k.f 8
900.2.k.g 8
900.2.k.h 8
900.2.k.i 8
900.2.k.j 8
900.2.k.k 8
900.2.k.l 8
900.2.k.m 8
900.2.k.n 12
900.2.n \(\chi_{900}(181, \cdot)\) 900.2.n.a 8 4
900.2.n.b 8
900.2.n.c 12
900.2.n.d 24
900.2.o \(\chi_{900}(299, \cdot)\) 900.2.o.a 16 2
900.2.o.b 48
900.2.o.c 48
900.2.o.d 96
900.2.r \(\chi_{900}(551, \cdot)\) 900.2.r.a 8 2
900.2.r.b 8
900.2.r.c 8
900.2.r.d 48
900.2.r.e 48
900.2.r.f 48
900.2.r.g 48
900.2.s \(\chi_{900}(49, \cdot)\) 900.2.s.a 4 2
900.2.s.b 4
900.2.s.c 12
900.2.s.d 16
900.2.v \(\chi_{900}(71, \cdot)\) 900.2.v.a 16 4
900.2.v.b 224
900.2.w \(\chi_{900}(109, \cdot)\) 900.2.w.a 8 4
900.2.w.b 16
900.2.w.c 24
900.2.z \(\chi_{900}(179, \cdot)\) 900.2.z.a 16 4
900.2.z.b 224
900.2.be \(\chi_{900}(257, \cdot)\) 900.2.be.a 4 4
900.2.be.b 4
900.2.be.c 4
900.2.be.d 4
900.2.be.e 24
900.2.be.f 32
900.2.bf \(\chi_{900}(7, \cdot)\) 900.2.bf.a 8 4
900.2.bf.b 8
900.2.bf.c 16
900.2.bf.d 64
900.2.bf.e 128
900.2.bf.f 192
900.2.bg \(\chi_{900}(61, \cdot)\) 900.2.bg.a 240 8
900.2.bj \(\chi_{900}(127, \cdot)\) 900.2.bj.a 8 8
900.2.bj.b 8
900.2.bj.c 8
900.2.bj.d 96
900.2.bj.e 224
900.2.bj.f 240
900.2.bk \(\chi_{900}(17, \cdot)\) 900.2.bk.a 80 8
900.2.bn \(\chi_{900}(59, \cdot)\) 900.2.bn.a 1408 8
900.2.bq \(\chi_{900}(169, \cdot)\) 900.2.bq.a 240 8
900.2.br \(\chi_{900}(11, \cdot)\) 900.2.br.a 1408 8
900.2.bs \(\chi_{900}(67, \cdot)\) 900.2.bs.a 2816 16
900.2.bt \(\chi_{900}(77, \cdot)\) 900.2.bt.a 480 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(900))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(900)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 27}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 2}\)