Defining parameters
Level: | \( N \) | \(=\) | \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 540.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 180 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(540, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 80 | 160 |
Cusp forms | 192 | 64 | 128 |
Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(540, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
540.2.n.a | $4$ | $4.312$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-6\) | \(-6\) | \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
540.2.n.b | $4$ | $4.312$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-6\) | \(6\) | \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
540.2.n.c | $8$ | $4.312$ | 8.0.3317760000.8 | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{4}+\beta _{5})q^{2}+(2-2\beta _{3})q^{4}+\beta _{6}q^{5}+\cdots\) |
540.2.n.d | $48$ | $4.312$ | None | \(0\) | \(0\) | \(18\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(540, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)