Properties

Label 540.2.n
Level $540$
Weight $2$
Character orbit 540.n
Rep. character $\chi_{540}(179,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $4$
Sturm bound $216$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 180 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(216\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(540, [\chi])\).

Total New Old
Modular forms 240 80 160
Cusp forms 192 64 128
Eisenstein series 48 16 32

Trace form

\( 64 q - 2 q^{4} + 6 q^{5} + 6 q^{14} - 2 q^{16} + 24 q^{20} - 2 q^{25} + 24 q^{29} - 12 q^{34} - 6 q^{40} + 12 q^{41} - 4 q^{46} - 12 q^{49} + 42 q^{50} - 78 q^{56} - 4 q^{61} - 20 q^{64} + 30 q^{65} - 16 q^{70}+ \cdots - 34 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(540, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
540.2.n.a 540.n 180.n $4$ $4.312$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 180.2.n.a \(0\) \(0\) \(-6\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
540.2.n.b 540.n 180.n $4$ $4.312$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 180.2.n.a \(0\) \(0\) \(-6\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
540.2.n.c 540.n 180.n $8$ $4.312$ 8.0.3317760000.8 \(\Q(\sqrt{-5}) \) 180.2.n.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(\beta _{4}+\beta _{5})q^{2}+(2-2\beta _{3})q^{4}+\beta _{6}q^{5}+\cdots\)
540.2.n.d 540.n 180.n $48$ $4.312$ None 180.2.n.d \(0\) \(0\) \(18\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(540, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)