Properties

Label 495.2.bj.a.442.1
Level $495$
Weight $2$
Character 495.442
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 442.1
Character \(\chi\) \(=\) 495.442
Dual form 495.2.bj.a.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.665529 - 1.30617i) q^{2} +(-0.0875924 + 0.120561i) q^{4} +(1.11862 + 1.93615i) q^{5} +(-4.16343 + 0.659422i) q^{7} +(-2.68004 - 0.424477i) q^{8} +(1.78448 - 2.74968i) q^{10} +(0.920480 + 3.18633i) q^{11} +(-0.824787 + 0.420250i) q^{13} +(3.63220 + 4.99930i) q^{14} +(1.32131 + 4.06656i) q^{16} +(-1.71765 - 0.875188i) q^{17} +(-4.39439 + 3.19271i) q^{19} +(-0.331406 - 0.0347307i) q^{20} +(3.54930 - 3.32290i) q^{22} +(-1.95998 + 1.95998i) q^{23} +(-2.49738 + 4.33164i) q^{25} +(1.09784 + 0.797627i) q^{26} +(0.285184 - 0.559706i) q^{28} +(-0.810497 - 0.588860i) q^{29} +(0.131006 - 0.403196i) q^{31} +(0.594873 - 0.594873i) q^{32} +2.82602i q^{34} +(-5.93404 - 7.32339i) q^{35} +(-0.771690 - 4.87226i) q^{37} +(7.09483 + 3.61500i) q^{38} +(-2.17610 - 5.66380i) q^{40} +(-0.339428 - 0.467182i) q^{41} +(5.05373 + 5.05373i) q^{43} +(-0.464773 - 0.168125i) q^{44} +(3.86451 + 1.25566i) q^{46} +(1.17495 + 0.186094i) q^{47} +(10.2419 - 3.32780i) q^{49} +(7.31996 + 0.379176i) q^{50} +(0.0215795 - 0.136247i) q^{52} +(4.12294 + 8.09173i) q^{53} +(-5.13956 + 5.34649i) q^{55} +11.4381 q^{56} +(-0.229745 + 1.45055i) q^{58} +(-5.47214 + 7.53175i) q^{59} +(7.40093 - 2.40471i) q^{61} +(-0.613832 + 0.0972215i) q^{62} +(6.96021 + 2.26151i) q^{64} +(-1.73629 - 1.12681i) q^{65} +(-3.05526 - 3.05526i) q^{67} +(0.255966 - 0.130421i) q^{68} +(-5.61635 + 12.6248i) q^{70} +(-2.65487 - 8.17086i) q^{71} +(-0.854195 - 5.39318i) q^{73} +(-5.85044 + 4.25059i) q^{74} -0.809447i q^{76} +(-5.93349 - 12.6591i) q^{77} +(-0.705861 + 2.17242i) q^{79} +(-6.39544 + 7.10719i) q^{80} +(-0.384322 + 0.754275i) q^{82} +(-0.902846 + 1.77193i) q^{83} +(-0.226904 - 4.30464i) q^{85} +(3.23765 - 9.96446i) q^{86} +(-1.11440 - 8.93023i) q^{88} -13.9313i q^{89} +(3.15682 - 2.29356i) q^{91} +(-0.0646171 - 0.407977i) q^{92} +(-0.538893 - 1.65854i) q^{94} +(-11.0972 - 4.93678i) q^{95} +(-2.96200 + 1.50922i) q^{97} +(-11.1630 - 11.1630i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.665529 1.30617i −0.470600 0.923605i −0.997292 0.0735483i \(-0.976568\pi\)
0.526691 0.850057i \(-0.323432\pi\)
\(3\) 0 0
\(4\) −0.0875924 + 0.120561i −0.0437962 + 0.0602803i
\(5\) 1.11862 + 1.93615i 0.500262 + 0.865874i
\(6\) 0 0
\(7\) −4.16343 + 0.659422i −1.57363 + 0.249238i −0.881375 0.472417i \(-0.843382\pi\)
−0.692253 + 0.721655i \(0.743382\pi\)
\(8\) −2.68004 0.424477i −0.947538 0.150075i
\(9\) 0 0
\(10\) 1.78448 2.74968i 0.564302 0.869525i
\(11\) 0.920480 + 3.18633i 0.277535 + 0.960716i
\(12\) 0 0
\(13\) −0.824787 + 0.420250i −0.228755 + 0.116556i −0.564612 0.825357i \(-0.690974\pi\)
0.335857 + 0.941913i \(0.390974\pi\)
\(14\) 3.63220 + 4.99930i 0.970747 + 1.33612i
\(15\) 0 0
\(16\) 1.32131 + 4.06656i 0.330326 + 1.01664i
\(17\) −1.71765 0.875188i −0.416592 0.212264i 0.233115 0.972449i \(-0.425108\pi\)
−0.649707 + 0.760185i \(0.725108\pi\)
\(18\) 0 0
\(19\) −4.39439 + 3.19271i −1.00814 + 0.732458i −0.963818 0.266560i \(-0.914113\pi\)
−0.0443230 + 0.999017i \(0.514113\pi\)
\(20\) −0.331406 0.0347307i −0.0741047 0.00776603i
\(21\) 0 0
\(22\) 3.54930 3.32290i 0.756713 0.708446i
\(23\) −1.95998 + 1.95998i −0.408685 + 0.408685i −0.881280 0.472595i \(-0.843317\pi\)
0.472595 + 0.881280i \(0.343317\pi\)
\(24\) 0 0
\(25\) −2.49738 + 4.33164i −0.499475 + 0.866328i
\(26\) 1.09784 + 0.797627i 0.215304 + 0.156428i
\(27\) 0 0
\(28\) 0.285184 0.559706i 0.0538948 0.105774i
\(29\) −0.810497 0.588860i −0.150505 0.109349i 0.509984 0.860184i \(-0.329651\pi\)
−0.660490 + 0.750835i \(0.729651\pi\)
\(30\) 0 0
\(31\) 0.131006 0.403196i 0.0235294 0.0724161i −0.938602 0.345001i \(-0.887879\pi\)
0.962132 + 0.272585i \(0.0878786\pi\)
\(32\) 0.594873 0.594873i 0.105160 0.105160i
\(33\) 0 0
\(34\) 2.82602i 0.484658i
\(35\) −5.93404 7.32339i −1.00304 1.23788i
\(36\) 0 0
\(37\) −0.771690 4.87226i −0.126865 0.800995i −0.966278 0.257501i \(-0.917101\pi\)
0.839413 0.543494i \(-0.182899\pi\)
\(38\) 7.09483 + 3.61500i 1.15093 + 0.586430i
\(39\) 0 0
\(40\) −2.17610 5.66380i −0.344071 0.895526i
\(41\) −0.339428 0.467182i −0.0530097 0.0729616i 0.781689 0.623668i \(-0.214358\pi\)
−0.834699 + 0.550707i \(0.814358\pi\)
\(42\) 0 0
\(43\) 5.05373 + 5.05373i 0.770687 + 0.770687i 0.978227 0.207540i \(-0.0665456\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(44\) −0.464773 0.168125i −0.0700672 0.0253458i
\(45\) 0 0
\(46\) 3.86451 + 1.25566i 0.569791 + 0.185136i
\(47\) 1.17495 + 0.186094i 0.171384 + 0.0271446i 0.241537 0.970392i \(-0.422349\pi\)
−0.0701524 + 0.997536i \(0.522349\pi\)
\(48\) 0 0
\(49\) 10.2419 3.32780i 1.46313 0.475400i
\(50\) 7.31996 + 0.379176i 1.03520 + 0.0536237i
\(51\) 0 0
\(52\) 0.0215795 0.136247i 0.00299254 0.0188941i
\(53\) 4.12294 + 8.09173i 0.566330 + 1.11149i 0.979615 + 0.200883i \(0.0643812\pi\)
−0.413285 + 0.910602i \(0.635619\pi\)
\(54\) 0 0
\(55\) −5.13956 + 5.34649i −0.693018 + 0.720920i
\(56\) 11.4381 1.52848
\(57\) 0 0
\(58\) −0.229745 + 1.45055i −0.0301670 + 0.190467i
\(59\) −5.47214 + 7.53175i −0.712411 + 0.980550i 0.287331 + 0.957831i \(0.407232\pi\)
−0.999742 + 0.0227186i \(0.992768\pi\)
\(60\) 0 0
\(61\) 7.40093 2.40471i 0.947591 0.307891i 0.205855 0.978583i \(-0.434002\pi\)
0.741737 + 0.670691i \(0.234002\pi\)
\(62\) −0.613832 + 0.0972215i −0.0779568 + 0.0123471i
\(63\) 0 0
\(64\) 6.96021 + 2.26151i 0.870026 + 0.282689i
\(65\) −1.73629 1.12681i −0.215361 0.139764i
\(66\) 0 0
\(67\) −3.05526 3.05526i −0.373259 0.373259i 0.495404 0.868663i \(-0.335020\pi\)
−0.868663 + 0.495404i \(0.835020\pi\)
\(68\) 0.255966 0.130421i 0.0310405 0.0158159i
\(69\) 0 0
\(70\) −5.61635 + 12.6248i −0.671283 + 1.50896i
\(71\) −2.65487 8.17086i −0.315075 0.969702i −0.975723 0.219006i \(-0.929718\pi\)
0.660648 0.750696i \(-0.270282\pi\)
\(72\) 0 0
\(73\) −0.854195 5.39318i −0.0999760 0.631224i −0.985893 0.167379i \(-0.946470\pi\)
0.885917 0.463844i \(-0.153530\pi\)
\(74\) −5.85044 + 4.25059i −0.680100 + 0.494122i
\(75\) 0 0
\(76\) 0.809447i 0.0928499i
\(77\) −5.93349 12.6591i −0.676184 1.44264i
\(78\) 0 0
\(79\) −0.705861 + 2.17242i −0.0794156 + 0.244416i −0.982880 0.184247i \(-0.941015\pi\)
0.903464 + 0.428663i \(0.141015\pi\)
\(80\) −6.39544 + 7.10719i −0.715032 + 0.794608i
\(81\) 0 0
\(82\) −0.384322 + 0.754275i −0.0424413 + 0.0832957i
\(83\) −0.902846 + 1.77193i −0.0991002 + 0.194495i −0.935234 0.354031i \(-0.884811\pi\)
0.836134 + 0.548526i \(0.184811\pi\)
\(84\) 0 0
\(85\) −0.226904 4.30464i −0.0246112 0.466904i
\(86\) 3.23765 9.96446i 0.349125 1.07450i
\(87\) 0 0
\(88\) −1.11440 8.93023i −0.118795 0.951966i
\(89\) 13.9313i 1.47671i −0.674410 0.738357i \(-0.735602\pi\)
0.674410 0.738357i \(-0.264398\pi\)
\(90\) 0 0
\(91\) 3.15682 2.29356i 0.330925 0.240431i
\(92\) −0.0646171 0.407977i −0.00673680 0.0425345i
\(93\) 0 0
\(94\) −0.538893 1.65854i −0.0555826 0.171066i
\(95\) −11.0972 4.93678i −1.13855 0.506502i
\(96\) 0 0
\(97\) −2.96200 + 1.50922i −0.300746 + 0.153238i −0.597851 0.801607i \(-0.703979\pi\)
0.297105 + 0.954845i \(0.403979\pi\)
\(98\) −11.1630 11.1630i −1.12763 1.12763i
\(99\) 0 0
\(100\) −0.303474 0.680504i −0.0303474 0.0680504i
\(101\) 12.6404 + 4.10712i 1.25777 + 0.408673i 0.860698 0.509116i \(-0.170027\pi\)
0.397069 + 0.917789i \(0.370027\pi\)
\(102\) 0 0
\(103\) −9.95825 + 1.57723i −0.981215 + 0.155409i −0.626378 0.779519i \(-0.715464\pi\)
−0.354837 + 0.934928i \(0.615464\pi\)
\(104\) 2.38885 0.776185i 0.234246 0.0761112i
\(105\) 0 0
\(106\) 7.82528 10.7706i 0.760058 1.04613i
\(107\) −0.964682 + 6.09076i −0.0932593 + 0.588816i 0.896160 + 0.443731i \(0.146346\pi\)
−0.989419 + 0.145085i \(0.953654\pi\)
\(108\) 0 0
\(109\) −19.9193 −1.90793 −0.953964 0.299922i \(-0.903039\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(110\) 10.4040 + 3.15492i 0.991980 + 0.300810i
\(111\) 0 0
\(112\) −8.18274 16.0595i −0.773197 1.51748i
\(113\) 1.89632 11.9729i 0.178391 1.12632i −0.722211 0.691673i \(-0.756874\pi\)
0.900602 0.434644i \(-0.143126\pi\)
\(114\) 0 0
\(115\) −5.98731 1.60235i −0.558319 0.149420i
\(116\) 0.141987 0.0461342i 0.0131831 0.00428346i
\(117\) 0 0
\(118\) 13.4796 + 2.13497i 1.24090 + 0.196540i
\(119\) 7.72845 + 2.51112i 0.708465 + 0.230194i
\(120\) 0 0
\(121\) −9.30543 + 5.86591i −0.845949 + 0.533265i
\(122\) −8.06650 8.06650i −0.730306 0.730306i
\(123\) 0 0
\(124\) 0.0371343 + 0.0511110i 0.00333476 + 0.00458991i
\(125\) −11.1803 + 0.0101588i −1.00000 + 0.000908633i
\(126\) 0 0
\(127\) −1.03315 0.526416i −0.0916772 0.0467119i 0.407551 0.913183i \(-0.366383\pi\)
−0.499228 + 0.866471i \(0.666383\pi\)
\(128\) −1.94151 12.2582i −0.171607 1.08348i
\(129\) 0 0
\(130\) −0.316262 + 3.01783i −0.0277380 + 0.264681i
\(131\) 14.4532i 1.26278i 0.775465 + 0.631390i \(0.217515\pi\)
−0.775465 + 0.631390i \(0.782485\pi\)
\(132\) 0 0
\(133\) 16.1904 16.1904i 1.40388 1.40388i
\(134\) −1.95734 + 6.02407i −0.169088 + 0.520400i
\(135\) 0 0
\(136\) 4.23189 + 3.07465i 0.362881 + 0.263649i
\(137\) −5.61663 + 11.0232i −0.479861 + 0.941780i 0.516479 + 0.856300i \(0.327242\pi\)
−0.996340 + 0.0854799i \(0.972758\pi\)
\(138\) 0 0
\(139\) −0.816606 0.593299i −0.0692636 0.0503229i 0.552615 0.833437i \(-0.313630\pi\)
−0.621878 + 0.783114i \(0.713630\pi\)
\(140\) 1.40269 0.0739378i 0.118549 0.00624889i
\(141\) 0 0
\(142\) −8.90567 + 8.90567i −0.747347 + 0.747347i
\(143\) −2.09826 2.24121i −0.175465 0.187420i
\(144\) 0 0
\(145\) 0.233485 2.22796i 0.0193899 0.185022i
\(146\) −6.47594 + 4.70504i −0.535952 + 0.389392i
\(147\) 0 0
\(148\) 0.654997 + 0.333737i 0.0538404 + 0.0274331i
\(149\) −0.377177 1.16083i −0.0308996 0.0950990i 0.934417 0.356180i \(-0.115921\pi\)
−0.965317 + 0.261081i \(0.915921\pi\)
\(150\) 0 0
\(151\) 0.932668 + 1.28371i 0.0758995 + 0.104467i 0.845279 0.534326i \(-0.179434\pi\)
−0.769379 + 0.638792i \(0.779434\pi\)
\(152\) 13.1324 6.69128i 1.06518 0.542734i
\(153\) 0 0
\(154\) −12.5861 + 16.1752i −1.01421 + 1.30343i
\(155\) 0.927195 0.197375i 0.0744741 0.0158535i
\(156\) 0 0
\(157\) 7.32783 + 1.16061i 0.584824 + 0.0926271i 0.441834 0.897097i \(-0.354328\pi\)
0.142991 + 0.989724i \(0.454328\pi\)
\(158\) 3.30733 0.523829i 0.263117 0.0416736i
\(159\) 0 0
\(160\) 1.81720 + 0.486328i 0.143662 + 0.0384476i
\(161\) 6.86780 9.45272i 0.541258 0.744978i
\(162\) 0 0
\(163\) 6.99546 + 13.7294i 0.547927 + 1.07537i 0.984449 + 0.175673i \(0.0562103\pi\)
−0.436522 + 0.899694i \(0.643790\pi\)
\(164\) 0.0860550 0.00671976
\(165\) 0 0
\(166\) 2.91533 0.226273
\(167\) 1.88413 + 3.69782i 0.145799 + 0.286146i 0.952344 0.305026i \(-0.0986653\pi\)
−0.806545 + 0.591172i \(0.798665\pi\)
\(168\) 0 0
\(169\) −7.13754 + 9.82399i −0.549042 + 0.755691i
\(170\) −5.47160 + 3.16124i −0.419653 + 0.242456i
\(171\) 0 0
\(172\) −1.05195 + 0.166612i −0.0802104 + 0.0127041i
\(173\) 4.27643 + 0.677320i 0.325131 + 0.0514957i 0.316867 0.948470i \(-0.397369\pi\)
0.00826456 + 0.999966i \(0.497369\pi\)
\(174\) 0 0
\(175\) 7.54127 19.6813i 0.570066 1.48777i
\(176\) −11.7412 + 7.95331i −0.885025 + 0.599503i
\(177\) 0 0
\(178\) −18.1967 + 9.27168i −1.36390 + 0.694942i
\(179\) 2.18633 + 3.00922i 0.163414 + 0.224920i 0.882869 0.469619i \(-0.155609\pi\)
−0.719456 + 0.694538i \(0.755609\pi\)
\(180\) 0 0
\(181\) 1.86849 + 5.75062i 0.138884 + 0.427440i 0.996174 0.0873933i \(-0.0278537\pi\)
−0.857290 + 0.514834i \(0.827854\pi\)
\(182\) −5.09675 2.59692i −0.377796 0.192497i
\(183\) 0 0
\(184\) 6.08481 4.42087i 0.448578 0.325911i
\(185\) 8.57022 6.94432i 0.630095 0.510557i
\(186\) 0 0
\(187\) 1.20758 6.27861i 0.0883066 0.459137i
\(188\) −0.125352 + 0.125352i −0.00914227 + 0.00914227i
\(189\) 0 0
\(190\) 0.937236 + 17.7805i 0.0679942 + 1.28993i
\(191\) −13.3930 9.73057i −0.969082 0.704079i −0.0138398 0.999904i \(-0.504405\pi\)
−0.955242 + 0.295825i \(0.904405\pi\)
\(192\) 0 0
\(193\) 7.70155 15.1151i 0.554370 1.08801i −0.428471 0.903556i \(-0.640948\pi\)
0.982841 0.184456i \(-0.0590524\pi\)
\(194\) 3.94260 + 2.86447i 0.283062 + 0.205657i
\(195\) 0 0
\(196\) −0.495912 + 1.52626i −0.0354223 + 0.109019i
\(197\) 9.63624 9.63624i 0.686554 0.686554i −0.274915 0.961469i \(-0.588650\pi\)
0.961469 + 0.274915i \(0.0886496\pi\)
\(198\) 0 0
\(199\) 19.4166i 1.37640i −0.725519 0.688202i \(-0.758400\pi\)
0.725519 0.688202i \(-0.241600\pi\)
\(200\) 8.53176 10.5489i 0.603286 0.745920i
\(201\) 0 0
\(202\) −3.04795 19.2440i −0.214453 1.35400i
\(203\) 3.76275 + 1.91722i 0.264093 + 0.134562i
\(204\) 0 0
\(205\) 0.524845 1.17978i 0.0366568 0.0823996i
\(206\) 8.68764 + 11.9575i 0.605297 + 0.833119i
\(207\) 0 0
\(208\) −2.79877 2.79877i −0.194060 0.194060i
\(209\) −14.2180 11.0632i −0.983478 0.765254i
\(210\) 0 0
\(211\) 6.07815 + 1.97491i 0.418437 + 0.135959i 0.510666 0.859779i \(-0.329399\pi\)
−0.0922284 + 0.995738i \(0.529399\pi\)
\(212\) −1.33668 0.211710i −0.0918037 0.0145403i
\(213\) 0 0
\(214\) 8.59762 2.79354i 0.587721 0.190962i
\(215\) −4.13159 + 15.4380i −0.281772 + 1.05286i
\(216\) 0 0
\(217\) −0.279559 + 1.76507i −0.0189777 + 0.119820i
\(218\) 13.2569 + 26.0181i 0.897871 + 1.76217i
\(219\) 0 0
\(220\) −0.194389 1.08794i −0.0131057 0.0733489i
\(221\) 1.78450 0.120038
\(222\) 0 0
\(223\) −2.22058 + 14.0202i −0.148701 + 0.938860i 0.794651 + 0.607066i \(0.207654\pi\)
−0.943352 + 0.331794i \(0.892346\pi\)
\(224\) −2.08444 + 2.86898i −0.139272 + 0.191692i
\(225\) 0 0
\(226\) −16.9008 + 5.49139i −1.12422 + 0.365282i
\(227\) −8.17622 + 1.29499i −0.542675 + 0.0859512i −0.421753 0.906711i \(-0.638585\pi\)
−0.120922 + 0.992662i \(0.538585\pi\)
\(228\) 0 0
\(229\) 18.6401 + 6.05655i 1.23178 + 0.400228i 0.851357 0.524587i \(-0.175780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(230\) 1.89178 + 8.88688i 0.124740 + 0.585984i
\(231\) 0 0
\(232\) 1.92221 + 1.92221i 0.126199 + 0.126199i
\(233\) −3.30844 + 1.68573i −0.216743 + 0.110436i −0.558991 0.829173i \(-0.688812\pi\)
0.342249 + 0.939609i \(0.388812\pi\)
\(234\) 0 0
\(235\) 0.954019 + 2.48306i 0.0622333 + 0.161977i
\(236\) −0.428714 1.31945i −0.0279069 0.0858887i
\(237\) 0 0
\(238\) −1.86354 11.7659i −0.120795 0.762672i
\(239\) 2.59930 1.88850i 0.168135 0.122157i −0.500536 0.865716i \(-0.666864\pi\)
0.668671 + 0.743559i \(0.266864\pi\)
\(240\) 0 0
\(241\) 25.4119i 1.63693i 0.574559 + 0.818463i \(0.305174\pi\)
−0.574559 + 0.818463i \(0.694826\pi\)
\(242\) 13.8549 + 8.25059i 0.890629 + 0.530368i
\(243\) 0 0
\(244\) −0.358352 + 1.10289i −0.0229411 + 0.0706055i
\(245\) 17.8999 + 16.1074i 1.14359 + 1.02906i
\(246\) 0 0
\(247\) 2.28270 4.48005i 0.145245 0.285059i
\(248\) −0.522250 + 1.02497i −0.0331629 + 0.0650858i
\(249\) 0 0
\(250\) 7.45411 + 14.5967i 0.471439 + 0.923177i
\(251\) −5.03867 + 15.5074i −0.318038 + 0.978820i 0.656448 + 0.754371i \(0.272058\pi\)
−0.974486 + 0.224448i \(0.927942\pi\)
\(252\) 0 0
\(253\) −8.04929 4.44104i −0.506055 0.279206i
\(254\) 1.69982i 0.106656i
\(255\) 0 0
\(256\) −2.87779 + 2.09084i −0.179862 + 0.130677i
\(257\) 2.53487 + 16.0045i 0.158121 + 0.998335i 0.931328 + 0.364182i \(0.118651\pi\)
−0.773207 + 0.634154i \(0.781349\pi\)
\(258\) 0 0
\(259\) 6.42576 + 19.7764i 0.399277 + 1.22885i
\(260\) 0.287935 0.110628i 0.0178570 0.00686086i
\(261\) 0 0
\(262\) 18.8784 9.61901i 1.16631 0.594265i
\(263\) 0.677874 + 0.677874i 0.0417995 + 0.0417995i 0.727698 0.685898i \(-0.240590\pi\)
−0.685898 + 0.727698i \(0.740590\pi\)
\(264\) 0 0
\(265\) −11.0548 + 17.0342i −0.679092 + 1.04640i
\(266\) −31.9226 10.3723i −1.95730 0.635966i
\(267\) 0 0
\(268\) 0.635961 0.100726i 0.0388475 0.00615284i
\(269\) 27.0327 8.78345i 1.64821 0.535536i 0.669860 0.742487i \(-0.266354\pi\)
0.978351 + 0.206951i \(0.0663541\pi\)
\(270\) 0 0
\(271\) 18.0744 24.8772i 1.09794 1.51118i 0.259853 0.965648i \(-0.416326\pi\)
0.838087 0.545536i \(-0.183674\pi\)
\(272\) 1.28946 8.14133i 0.0781850 0.493641i
\(273\) 0 0
\(274\) 18.1363 1.09565
\(275\) −16.1008 3.97029i −0.970917 0.239417i
\(276\) 0 0
\(277\) 13.6871 + 26.8625i 0.822379 + 1.61401i 0.788861 + 0.614571i \(0.210671\pi\)
0.0335176 + 0.999438i \(0.489329\pi\)
\(278\) −0.231477 + 1.46149i −0.0138831 + 0.0876542i
\(279\) 0 0
\(280\) 12.7949 + 22.1459i 0.764640 + 1.32347i
\(281\) −8.10210 + 2.63253i −0.483331 + 0.157044i −0.540540 0.841319i \(-0.681780\pi\)
0.0572089 + 0.998362i \(0.481780\pi\)
\(282\) 0 0
\(283\) 9.42432 + 1.49267i 0.560218 + 0.0887297i 0.430120 0.902772i \(-0.358471\pi\)
0.130097 + 0.991501i \(0.458471\pi\)
\(284\) 1.21763 + 0.395632i 0.0722530 + 0.0234764i
\(285\) 0 0
\(286\) −1.53097 + 4.23228i −0.0905280 + 0.250260i
\(287\) 1.72125 + 1.72125i 0.101602 + 0.101602i
\(288\) 0 0
\(289\) −7.80797 10.7468i −0.459292 0.632162i
\(290\) −3.06549 + 1.17780i −0.180012 + 0.0691626i
\(291\) 0 0
\(292\) 0.725025 + 0.369419i 0.0424289 + 0.0216186i
\(293\) 0.360965 + 2.27904i 0.0210878 + 0.133143i 0.995986 0.0895072i \(-0.0285292\pi\)
−0.974898 + 0.222650i \(0.928529\pi\)
\(294\) 0 0
\(295\) −20.7039 2.16972i −1.20543 0.126326i
\(296\) 13.3854i 0.778013i
\(297\) 0 0
\(298\) −1.26523 + 1.26523i −0.0732926 + 0.0732926i
\(299\) 0.792887 2.44025i 0.0458538 0.141124i
\(300\) 0 0
\(301\) −24.3734 17.7083i −1.40486 1.02069i
\(302\) 1.05603 2.07257i 0.0607676 0.119263i
\(303\) 0 0
\(304\) −18.7897 13.6515i −1.07766 0.782967i
\(305\) 12.9347 + 11.6394i 0.740639 + 0.666468i
\(306\) 0 0
\(307\) 12.4635 12.4635i 0.711327 0.711327i −0.255486 0.966813i \(-0.582235\pi\)
0.966813 + 0.255486i \(0.0822353\pi\)
\(308\) 2.04591 + 0.393494i 0.116577 + 0.0224214i
\(309\) 0 0
\(310\) −0.874881 1.07972i −0.0496899 0.0613239i
\(311\) 12.2271 8.88353i 0.693337 0.503739i −0.184419 0.982848i \(-0.559040\pi\)
0.877755 + 0.479109i \(0.159040\pi\)
\(312\) 0 0
\(313\) 23.2697 + 11.8565i 1.31528 + 0.670169i 0.963950 0.266082i \(-0.0857293\pi\)
0.351331 + 0.936251i \(0.385729\pi\)
\(314\) −3.36092 10.3438i −0.189668 0.583737i
\(315\) 0 0
\(316\) −0.200080 0.275386i −0.0112554 0.0154917i
\(317\) −25.2398 + 12.8603i −1.41761 + 0.722307i −0.983896 0.178744i \(-0.942797\pi\)
−0.433712 + 0.901051i \(0.642797\pi\)
\(318\) 0 0
\(319\) 1.13026 3.12455i 0.0632824 0.174941i
\(320\) 3.40720 + 16.0058i 0.190469 + 0.894751i
\(321\) 0 0
\(322\) −16.9176 2.67949i −0.942782 0.149322i
\(323\) 10.3423 1.63805i 0.575458 0.0911436i
\(324\) 0 0
\(325\) 0.239432 4.62220i 0.0132813 0.256394i
\(326\) 13.2773 18.2746i 0.735360 1.01214i
\(327\) 0 0
\(328\) 0.711372 + 1.39615i 0.0392790 + 0.0770893i
\(329\) −5.01454 −0.276461
\(330\) 0 0
\(331\) −24.6455 −1.35464 −0.677319 0.735690i \(-0.736858\pi\)
−0.677319 + 0.735690i \(0.736858\pi\)
\(332\) −0.134543 0.264055i −0.00738401 0.0144919i
\(333\) 0 0
\(334\) 3.57605 4.92202i 0.195673 0.269321i
\(335\) 2.49777 9.33313i 0.136468 0.509923i
\(336\) 0 0
\(337\) −30.6340 + 4.85195i −1.66874 + 0.264302i −0.918082 0.396390i \(-0.870263\pi\)
−0.750657 + 0.660692i \(0.770263\pi\)
\(338\) 17.5821 + 2.78473i 0.956339 + 0.151469i
\(339\) 0 0
\(340\) 0.538845 + 0.349698i 0.0292230 + 0.0189650i
\(341\) 1.40530 + 0.0462960i 0.0761015 + 0.00250707i
\(342\) 0 0
\(343\) −14.1559 + 7.21277i −0.764345 + 0.389453i
\(344\) −11.3990 15.6894i −0.614594 0.845916i
\(345\) 0 0
\(346\) −1.96139 6.03654i −0.105445 0.324527i
\(347\) 26.8957 + 13.7041i 1.44384 + 0.735672i 0.988009 0.154395i \(-0.0493430\pi\)
0.455829 + 0.890068i \(0.349343\pi\)
\(348\) 0 0
\(349\) 17.2865 12.5594i 0.925323 0.672287i −0.0195201 0.999809i \(-0.506214\pi\)
0.944843 + 0.327523i \(0.106214\pi\)
\(350\) −30.7262 + 3.24827i −1.64238 + 0.173627i
\(351\) 0 0
\(352\) 2.44303 + 1.34789i 0.130214 + 0.0718430i
\(353\) 2.82626 2.82626i 0.150427 0.150427i −0.627882 0.778309i \(-0.716078\pi\)
0.778309 + 0.627882i \(0.216078\pi\)
\(354\) 0 0
\(355\) 12.8502 14.2803i 0.682019 0.757921i
\(356\) 1.67956 + 1.22027i 0.0890167 + 0.0646744i
\(357\) 0 0
\(358\) 2.47550 4.85844i 0.130834 0.256777i
\(359\) 8.68908 + 6.31298i 0.458592 + 0.333187i 0.792979 0.609249i \(-0.208529\pi\)
−0.334387 + 0.942436i \(0.608529\pi\)
\(360\) 0 0
\(361\) 3.24592 9.98992i 0.170838 0.525785i
\(362\) 6.26778 6.26778i 0.329427 0.329427i
\(363\) 0 0
\(364\) 0.581487i 0.0304782i
\(365\) 9.48649 7.68677i 0.496546 0.402344i
\(366\) 0 0
\(367\) 5.41331 + 34.1783i 0.282572 + 1.78409i 0.565293 + 0.824890i \(0.308763\pi\)
−0.282721 + 0.959202i \(0.591237\pi\)
\(368\) −10.5601 5.38066i −0.550485 0.280486i
\(369\) 0 0
\(370\) −14.7742 6.57255i −0.768075 0.341690i
\(371\) −22.5015 30.9706i −1.16822 1.60791i
\(372\) 0 0
\(373\) −9.90454 9.90454i −0.512838 0.512838i 0.402557 0.915395i \(-0.368121\pi\)
−0.915395 + 0.402557i \(0.868121\pi\)
\(374\) −9.00463 + 2.60129i −0.465618 + 0.134510i
\(375\) 0 0
\(376\) −3.06993 0.997480i −0.158319 0.0514411i
\(377\) 0.915956 + 0.145073i 0.0471741 + 0.00747165i
\(378\) 0 0
\(379\) −25.2037 + 8.18919i −1.29463 + 0.420651i −0.873710 0.486447i \(-0.838292\pi\)
−0.420919 + 0.907098i \(0.638292\pi\)
\(380\) 1.56721 0.905463i 0.0803963 0.0464493i
\(381\) 0 0
\(382\) −3.79640 + 23.9695i −0.194241 + 1.22639i
\(383\) −10.9129 21.4177i −0.557622 1.09439i −0.981995 0.188907i \(-0.939505\pi\)
0.424373 0.905487i \(-0.360495\pi\)
\(384\) 0 0
\(385\) 17.8726 25.6489i 0.910872 1.30719i
\(386\) −24.8686 −1.26578
\(387\) 0 0
\(388\) 0.0774970 0.489297i 0.00393431 0.0248403i
\(389\) −4.43509 + 6.10438i −0.224868 + 0.309505i −0.906512 0.422179i \(-0.861265\pi\)
0.681644 + 0.731684i \(0.261265\pi\)
\(390\) 0 0
\(391\) 5.08193 1.65122i 0.257004 0.0835057i
\(392\) −28.8613 + 4.57119i −1.45772 + 0.230880i
\(393\) 0 0
\(394\) −18.9998 6.17342i −0.957197 0.311012i
\(395\) −4.99573 + 1.06346i −0.251362 + 0.0535083i
\(396\) 0 0
\(397\) 16.0995 + 16.0995i 0.808008 + 0.808008i 0.984332 0.176324i \(-0.0564206\pi\)
−0.176324 + 0.984332i \(0.556421\pi\)
\(398\) −25.3614 + 12.9223i −1.27125 + 0.647736i
\(399\) 0 0
\(400\) −20.9147 4.43231i −1.04573 0.221616i
\(401\) 7.46030 + 22.9604i 0.372550 + 1.14659i 0.945117 + 0.326732i \(0.105947\pi\)
−0.572568 + 0.819858i \(0.694053\pi\)
\(402\) 0 0
\(403\) 0.0613908 + 0.387606i 0.00305809 + 0.0193080i
\(404\) −1.60236 + 1.16418i −0.0797203 + 0.0579202i
\(405\) 0 0
\(406\) 6.19078i 0.307243i
\(407\) 14.8143 6.94368i 0.734319 0.344185i
\(408\) 0 0
\(409\) 1.80956 5.56925i 0.0894769 0.275382i −0.896298 0.443452i \(-0.853754\pi\)
0.985775 + 0.168070i \(0.0537536\pi\)
\(410\) −1.89030 + 0.0996406i −0.0933554 + 0.00492090i
\(411\) 0 0
\(412\) 0.682114 1.33872i 0.0336054 0.0659542i
\(413\) 17.8162 34.9663i 0.876680 1.72058i
\(414\) 0 0
\(415\) −4.44068 + 0.234075i −0.217984 + 0.0114903i
\(416\) −0.240648 + 0.740639i −0.0117987 + 0.0363128i
\(417\) 0 0
\(418\) −4.98793 + 25.9340i −0.243968 + 1.26847i
\(419\) 11.0599i 0.540311i 0.962817 + 0.270155i \(0.0870751\pi\)
−0.962817 + 0.270155i \(0.912925\pi\)
\(420\) 0 0
\(421\) −6.36944 + 4.62767i −0.310428 + 0.225539i −0.732080 0.681219i \(-0.761450\pi\)
0.421652 + 0.906758i \(0.361450\pi\)
\(422\) −1.46561 9.25349i −0.0713447 0.450453i
\(423\) 0 0
\(424\) −7.61491 23.4363i −0.369813 1.13817i
\(425\) 8.08063 5.25458i 0.391968 0.254885i
\(426\) 0 0
\(427\) −29.2275 + 14.8922i −1.41442 + 0.720682i
\(428\) −0.649807 0.649807i −0.0314096 0.0314096i
\(429\) 0 0
\(430\) 22.9144 4.87787i 1.10503 0.235232i
\(431\) 6.94552 + 2.25674i 0.334554 + 0.108703i 0.471477 0.881879i \(-0.343721\pi\)
−0.136923 + 0.990582i \(0.543721\pi\)
\(432\) 0 0
\(433\) 4.98536 0.789604i 0.239581 0.0379460i −0.0354890 0.999370i \(-0.511299\pi\)
0.275070 + 0.961424i \(0.411299\pi\)
\(434\) 2.49154 0.809550i 0.119598 0.0388596i
\(435\) 0 0
\(436\) 1.74478 2.40149i 0.0835599 0.115010i
\(437\) 2.35527 14.8706i 0.112668 0.711357i
\(438\) 0 0
\(439\) 1.29778 0.0619394 0.0309697 0.999520i \(-0.490140\pi\)
0.0309697 + 0.999520i \(0.490140\pi\)
\(440\) 16.0437 12.1472i 0.764854 0.579094i
\(441\) 0 0
\(442\) −1.18763 2.33086i −0.0564900 0.110868i
\(443\) −2.40922 + 15.2112i −0.114466 + 0.722707i 0.861980 + 0.506942i \(0.169224\pi\)
−0.976445 + 0.215764i \(0.930776\pi\)
\(444\) 0 0
\(445\) 26.9731 15.5838i 1.27865 0.738744i
\(446\) 19.7907 6.43037i 0.937115 0.304487i
\(447\) 0 0
\(448\) −30.4696 4.82591i −1.43955 0.228003i
\(449\) −11.5295 3.74615i −0.544109 0.176792i 0.0240497 0.999711i \(-0.492344\pi\)
−0.568159 + 0.822919i \(0.692344\pi\)
\(450\) 0 0
\(451\) 1.17616 1.51156i 0.0553833 0.0711766i
\(452\) 1.27736 + 1.27736i 0.0600818 + 0.0600818i
\(453\) 0 0
\(454\) 7.13299 + 9.81772i 0.334768 + 0.460768i
\(455\) 7.97198 + 3.54646i 0.373732 + 0.166261i
\(456\) 0 0
\(457\) 3.12807 + 1.59383i 0.146325 + 0.0745563i 0.525620 0.850720i \(-0.323833\pi\)
−0.379295 + 0.925276i \(0.623833\pi\)
\(458\) −4.49465 28.3781i −0.210021 1.32602i
\(459\) 0 0
\(460\) 0.717623 0.581480i 0.0334593 0.0271116i
\(461\) 5.45336i 0.253988i −0.991903 0.126994i \(-0.959467\pi\)
0.991903 0.126994i \(-0.0405329\pi\)
\(462\) 0 0
\(463\) 15.3996 15.3996i 0.715681 0.715681i −0.252037 0.967718i \(-0.581100\pi\)
0.967718 + 0.252037i \(0.0811005\pi\)
\(464\) 1.32372 4.07400i 0.0614523 0.189131i
\(465\) 0 0
\(466\) 4.40372 + 3.19949i 0.203998 + 0.148214i
\(467\) −6.66632 + 13.0834i −0.308481 + 0.605427i −0.992248 0.124273i \(-0.960340\pi\)
0.683768 + 0.729700i \(0.260340\pi\)
\(468\) 0 0
\(469\) 14.7351 + 10.7057i 0.680402 + 0.494341i
\(470\) 2.60838 2.89866i 0.120315 0.133705i
\(471\) 0 0
\(472\) 17.8626 17.8626i 0.822193 0.822193i
\(473\) −11.4510 + 20.7547i −0.526518 + 0.954303i
\(474\) 0 0
\(475\) −2.85523 27.0083i −0.131007 1.23923i
\(476\) −0.979695 + 0.711790i −0.0449043 + 0.0326249i
\(477\) 0 0
\(478\) −4.19663 2.13829i −0.191949 0.0978030i
\(479\) −1.51842 4.67321i −0.0693783 0.213524i 0.910356 0.413826i \(-0.135808\pi\)
−0.979734 + 0.200302i \(0.935808\pi\)
\(480\) 0 0
\(481\) 2.68405 + 3.69428i 0.122382 + 0.168444i
\(482\) 33.1924 16.9124i 1.51187 0.770338i
\(483\) 0 0
\(484\) 0.107888 1.63568i 0.00490399 0.0743490i
\(485\) −6.23543 4.04665i −0.283136 0.183749i
\(486\) 0 0
\(487\) 10.6054 + 1.67972i 0.480574 + 0.0761155i 0.392022 0.919956i \(-0.371776\pi\)
0.0885527 + 0.996071i \(0.471776\pi\)
\(488\) −20.8555 + 3.30319i −0.944086 + 0.149529i
\(489\) 0 0
\(490\) 9.12610 34.1004i 0.412275 1.54050i
\(491\) −1.91387 + 2.63421i −0.0863715 + 0.118880i −0.850016 0.526757i \(-0.823408\pi\)
0.763645 + 0.645637i \(0.223408\pi\)
\(492\) 0 0
\(493\) 0.876788 + 1.72079i 0.0394886 + 0.0775007i
\(494\) −7.37092 −0.331634
\(495\) 0 0
\(496\) 1.81272 0.0813935
\(497\) 16.4414 + 32.2681i 0.737498 + 1.44742i
\(498\) 0 0
\(499\) −5.25588 + 7.23410i −0.235285 + 0.323843i −0.910290 0.413971i \(-0.864142\pi\)
0.675005 + 0.737813i \(0.264142\pi\)
\(500\) 0.978087 1.34880i 0.0437414 0.0603200i
\(501\) 0 0
\(502\) 23.6088 3.73926i 1.05371 0.166891i
\(503\) −19.0954 3.02441i −0.851421 0.134852i −0.284553 0.958660i \(-0.591845\pi\)
−0.566868 + 0.823808i \(0.691845\pi\)
\(504\) 0 0
\(505\) 6.18781 + 29.0681i 0.275354 + 1.29351i
\(506\) −0.443733 + 13.4694i −0.0197263 + 0.598789i
\(507\) 0 0
\(508\) 0.153961 0.0784471i 0.00683092 0.00348053i
\(509\) 1.65845 + 2.28267i 0.0735097 + 0.101177i 0.844189 0.536046i \(-0.180083\pi\)
−0.770679 + 0.637224i \(0.780083\pi\)
\(510\) 0 0
\(511\) 7.11276 + 21.8908i 0.314650 + 0.968393i
\(512\) −17.4703 8.90156i −0.772085 0.393397i
\(513\) 0 0
\(514\) 19.2177 13.9625i 0.847656 0.615858i
\(515\) −14.1933 17.5164i −0.625430 0.771863i
\(516\) 0 0
\(517\) 0.488562 + 3.91508i 0.0214869 + 0.172185i
\(518\) 21.5550 21.5550i 0.947071 0.947071i
\(519\) 0 0
\(520\) 4.17503 + 3.75693i 0.183087 + 0.164752i
\(521\) 7.68839 + 5.58594i 0.336835 + 0.244725i 0.743325 0.668930i \(-0.233248\pi\)
−0.406491 + 0.913655i \(0.633248\pi\)
\(522\) 0 0
\(523\) −6.73563 + 13.2194i −0.294528 + 0.578045i −0.990092 0.140420i \(-0.955155\pi\)
0.695564 + 0.718465i \(0.255155\pi\)
\(524\) −1.74248 1.26599i −0.0761207 0.0553049i
\(525\) 0 0
\(526\) 0.434277 1.33657i 0.0189354 0.0582771i
\(527\) −0.577895 + 0.577895i −0.0251735 + 0.0251735i
\(528\) 0 0
\(529\) 15.3169i 0.665953i
\(530\) 29.6070 + 3.10275i 1.28605 + 0.134775i
\(531\) 0 0
\(532\) 0.533767 + 3.37007i 0.0231417 + 0.146111i
\(533\) 0.476289 + 0.242681i 0.0206304 + 0.0105117i
\(534\) 0 0
\(535\) −12.8718 + 4.94548i −0.556495 + 0.213812i
\(536\) 6.89134 + 9.48511i 0.297661 + 0.409695i
\(537\) 0 0
\(538\) −29.4638 29.4638i −1.27027 1.27027i
\(539\) 20.0309 + 29.5710i 0.862794 + 1.27371i
\(540\) 0 0
\(541\) −29.7351 9.66153i −1.27841 0.415381i −0.410392 0.911909i \(-0.634608\pi\)
−0.868021 + 0.496528i \(0.834608\pi\)
\(542\) −44.5230 7.05176i −1.91243 0.302899i
\(543\) 0 0
\(544\) −1.54241 + 0.501159i −0.0661303 + 0.0214870i
\(545\) −22.2822 38.5669i −0.954464 1.65202i
\(546\) 0 0
\(547\) 4.93799 31.1772i 0.211133 1.33304i −0.623322 0.781966i \(-0.714217\pi\)
0.834455 0.551076i \(-0.185783\pi\)
\(548\) −0.836995 1.64270i −0.0357547 0.0701725i
\(549\) 0 0
\(550\) 5.52969 + 23.6728i 0.235787 + 1.00941i
\(551\) 5.44169 0.231824
\(552\) 0 0
\(553\) 1.50626 9.51017i 0.0640528 0.404414i
\(554\) 25.9779 35.7555i 1.10370 1.51911i
\(555\) 0 0
\(556\) 0.143057 0.0464820i 0.00606696 0.00197128i
\(557\) 13.0992 2.07471i 0.555030 0.0879082i 0.127383 0.991854i \(-0.459342\pi\)
0.427648 + 0.903945i \(0.359342\pi\)
\(558\) 0 0
\(559\) −6.29208 2.04442i −0.266127 0.0864698i
\(560\) 21.9403 33.8076i 0.927149 1.42863i
\(561\) 0 0
\(562\) 8.83073 + 8.83073i 0.372502 + 0.372502i
\(563\) −26.1698 + 13.3342i −1.10292 + 0.561968i −0.908051 0.418860i \(-0.862430\pi\)
−0.194874 + 0.980828i \(0.562430\pi\)
\(564\) 0 0
\(565\) 25.3027 9.72158i 1.06449 0.408990i
\(566\) −4.32248 13.3032i −0.181687 0.559176i
\(567\) 0 0
\(568\) 3.64683 + 23.0252i 0.153018 + 0.966115i
\(569\) 17.3540 12.6084i 0.727518 0.528573i −0.161259 0.986912i \(-0.551555\pi\)
0.888777 + 0.458339i \(0.151555\pi\)
\(570\) 0 0
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) 0.453993 0.0566536i 0.0189824 0.00236881i
\(573\) 0 0
\(574\) 1.10271 3.39380i 0.0460263 0.141654i
\(575\) −3.59513 13.3848i −0.149927 0.558183i
\(576\) 0 0
\(577\) 3.03825 5.96290i 0.126484 0.248239i −0.819077 0.573683i \(-0.805514\pi\)
0.945561 + 0.325445i \(0.105514\pi\)
\(578\) −8.84070 + 17.3509i −0.367725 + 0.721700i
\(579\) 0 0
\(580\) 0.248152 + 0.223301i 0.0103040 + 0.00927207i
\(581\) 2.59048 7.97268i 0.107471 0.330763i
\(582\) 0 0
\(583\) −21.9879 + 20.5853i −0.910644 + 0.852558i
\(584\) 14.8165i 0.613112i
\(585\) 0 0
\(586\) 2.73660 1.98825i 0.113048 0.0821340i
\(587\) −5.70952 36.0485i −0.235657 1.48788i −0.767506 0.641041i \(-0.778503\pi\)
0.531849 0.846839i \(-0.321497\pi\)
\(588\) 0 0
\(589\) 0.711594 + 2.19006i 0.0293207 + 0.0902400i
\(590\) 10.9450 + 28.4869i 0.450598 + 1.17279i
\(591\) 0 0
\(592\) 18.7937 9.57587i 0.772417 0.393566i
\(593\) 26.6656 + 26.6656i 1.09502 + 1.09502i 0.994983 + 0.100040i \(0.0318971\pi\)
0.100040 + 0.994983i \(0.468103\pi\)
\(594\) 0 0
\(595\) 3.78328 + 17.7724i 0.155099 + 0.728599i
\(596\) 0.172988 + 0.0562073i 0.00708588 + 0.00230234i
\(597\) 0 0
\(598\) −3.71509 + 0.588412i −0.151921 + 0.0240620i
\(599\) −36.7124 + 11.9286i −1.50003 + 0.487388i −0.940026 0.341103i \(-0.889199\pi\)
−0.560002 + 0.828492i \(0.689199\pi\)
\(600\) 0 0
\(601\) 22.4050 30.8379i 0.913920 1.25790i −0.0518905 0.998653i \(-0.516525\pi\)
0.965810 0.259250i \(-0.0834753\pi\)
\(602\) −6.90894 + 43.6213i −0.281587 + 1.77787i
\(603\) 0 0
\(604\) −0.236459 −0.00962138
\(605\) −21.7665 11.4550i −0.884936 0.465713i
\(606\) 0 0
\(607\) 16.4492 + 32.2834i 0.667653 + 1.31034i 0.937683 + 0.347491i \(0.112966\pi\)
−0.270031 + 0.962852i \(0.587034\pi\)
\(608\) −0.714845 + 4.51336i −0.0289908 + 0.183041i
\(609\) 0 0
\(610\) 6.59462 24.6413i 0.267009 0.997698i
\(611\) −1.04729 + 0.340286i −0.0423689 + 0.0137665i
\(612\) 0 0
\(613\) 2.37960 + 0.376892i 0.0961113 + 0.0152225i 0.204305 0.978907i \(-0.434507\pi\)
−0.108194 + 0.994130i \(0.534507\pi\)
\(614\) −24.5743 7.98466i −0.991736 0.322235i
\(615\) 0 0
\(616\) 10.5285 + 36.4455i 0.424206 + 1.46843i
\(617\) 25.5598 + 25.5598i 1.02900 + 1.02900i 0.999567 + 0.0294325i \(0.00937002\pi\)
0.0294325 + 0.999567i \(0.490630\pi\)
\(618\) 0 0
\(619\) −0.537145 0.739317i −0.0215897 0.0297157i 0.798086 0.602544i \(-0.205846\pi\)
−0.819675 + 0.572828i \(0.805846\pi\)
\(620\) −0.0574196 + 0.129072i −0.00230603 + 0.00518364i
\(621\) 0 0
\(622\) −19.7409 10.0585i −0.791540 0.403310i
\(623\) 9.18661 + 58.0020i 0.368054 + 2.32380i
\(624\) 0 0
\(625\) −12.5262 21.6355i −0.501049 0.865419i
\(626\) 38.2851i 1.53018i
\(627\) 0 0
\(628\) −0.781786 + 0.781786i −0.0311967 + 0.0311967i
\(629\) −2.93865 + 9.04423i −0.117172 + 0.360617i
\(630\) 0 0
\(631\) −18.6941 13.5820i −0.744199 0.540692i 0.149824 0.988713i \(-0.452129\pi\)
−0.894023 + 0.448020i \(0.852129\pi\)
\(632\) 2.81388 5.52255i 0.111930 0.219675i
\(633\) 0 0
\(634\) 33.5956 + 24.4087i 1.33425 + 0.969392i
\(635\) −0.136480 2.58920i −0.00541606 0.102749i
\(636\) 0 0
\(637\) −7.04889 + 7.04889i −0.279287 + 0.279287i
\(638\) −4.83342 + 0.603161i −0.191357 + 0.0238794i
\(639\) 0 0
\(640\) 21.5619 17.4713i 0.852310 0.690614i
\(641\) 7.06172 5.13064i 0.278921 0.202648i −0.439525 0.898230i \(-0.644853\pi\)
0.718447 + 0.695582i \(0.244853\pi\)
\(642\) 0 0
\(643\) −28.1018 14.3186i −1.10823 0.564670i −0.198594 0.980082i \(-0.563638\pi\)
−0.909634 + 0.415412i \(0.863638\pi\)
\(644\) 0.538058 + 1.65597i 0.0212024 + 0.0652544i
\(645\) 0 0
\(646\) −9.02265 12.4186i −0.354991 0.488604i
\(647\) 12.2437 6.23845i 0.481348 0.245259i −0.196441 0.980516i \(-0.562938\pi\)
0.677789 + 0.735257i \(0.262938\pi\)
\(648\) 0 0
\(649\) −29.0356 10.5032i −1.13975 0.412288i
\(650\) −6.19675 + 2.76347i −0.243057 + 0.108392i
\(651\) 0 0
\(652\) −2.26797 0.359211i −0.0888205 0.0140678i
\(653\) 5.37414 0.851181i 0.210307 0.0333093i −0.0503921 0.998730i \(-0.516047\pi\)
0.260699 + 0.965420i \(0.416047\pi\)
\(654\) 0 0
\(655\) −27.9836 + 16.1676i −1.09341 + 0.631721i
\(656\) 1.45134 1.99759i 0.0566652 0.0779929i
\(657\) 0 0
\(658\) 3.33733 + 6.54987i 0.130102 + 0.255341i
\(659\) −42.1160 −1.64061 −0.820304 0.571928i \(-0.806195\pi\)
−0.820304 + 0.571928i \(0.806195\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 16.4023 + 32.1913i 0.637493 + 1.25115i
\(663\) 0 0
\(664\) 3.17181 4.36562i 0.123090 0.169419i
\(665\) 49.4579 + 13.2362i 1.91790 + 0.513276i
\(666\) 0 0
\(667\) 2.74272 0.434404i 0.106198 0.0168202i
\(668\) −0.610847 0.0967487i −0.0236344 0.00374332i
\(669\) 0 0
\(670\) −13.8530 + 2.94894i −0.535189 + 0.113927i
\(671\) 14.4746 + 21.3683i 0.558786 + 0.824915i
\(672\) 0 0
\(673\) −4.94179 + 2.51797i −0.190492 + 0.0970605i −0.546635 0.837371i \(-0.684092\pi\)
0.356143 + 0.934431i \(0.384092\pi\)
\(674\) 26.7253 + 36.7842i 1.02942 + 1.41687i
\(675\) 0 0
\(676\) −0.559191 1.72101i −0.0215073 0.0661928i
\(677\) 2.07893 + 1.05927i 0.0798999 + 0.0407110i 0.493484 0.869755i \(-0.335723\pi\)
−0.413584 + 0.910466i \(0.635723\pi\)
\(678\) 0 0
\(679\) 11.3369 8.23673i 0.435070 0.316097i
\(680\) −1.21911 + 11.6329i −0.0467507 + 0.446103i
\(681\) 0 0
\(682\) −0.874800 1.86638i −0.0334978 0.0714675i
\(683\) 25.0400 25.0400i 0.958127 0.958127i −0.0410307 0.999158i \(-0.513064\pi\)
0.999158 + 0.0410307i \(0.0130641\pi\)
\(684\) 0 0
\(685\) −27.6256 + 1.45618i −1.05552 + 0.0556380i
\(686\) 18.8423 + 13.6897i 0.719401 + 0.522676i
\(687\) 0 0
\(688\) −13.8738 + 27.2288i −0.528933 + 1.03809i
\(689\) −6.80110 4.94129i −0.259101 0.188248i
\(690\) 0 0
\(691\) −0.556172 + 1.71172i −0.0211578 + 0.0651170i −0.961078 0.276277i \(-0.910899\pi\)
0.939920 + 0.341394i \(0.110899\pi\)
\(692\) −0.456241 + 0.456241i −0.0173437 + 0.0173437i
\(693\) 0 0
\(694\) 44.2510i 1.67974i
\(695\) 0.235245 2.24475i 0.00892336 0.0851482i
\(696\) 0 0
\(697\) 0.174147 + 1.09952i 0.00659628 + 0.0416473i
\(698\) −27.9094 14.2205i −1.05638 0.538255i
\(699\) 0 0
\(700\) 1.71223 + 2.63311i 0.0647163 + 0.0995223i
\(701\) −10.4715 14.4128i −0.395502 0.544362i 0.564106 0.825703i \(-0.309221\pi\)
−0.959608 + 0.281340i \(0.909221\pi\)
\(702\) 0 0
\(703\) 18.9468 + 18.9468i 0.714593 + 0.714593i
\(704\) −0.799189 + 24.2592i −0.0301206 + 0.914304i
\(705\) 0 0
\(706\) −5.57255 1.81063i −0.209726 0.0681440i
\(707\) −55.3357 8.76432i −2.08111 0.329616i
\(708\) 0 0
\(709\) 9.55567 3.10483i 0.358871 0.116604i −0.124032 0.992278i \(-0.539583\pi\)
0.482903 + 0.875674i \(0.339583\pi\)
\(710\) −27.2048 7.28067i −1.02098 0.273239i
\(711\) 0 0
\(712\) −5.91351 + 37.3365i −0.221618 + 1.39924i
\(713\) 0.533487 + 1.04703i 0.0199793 + 0.0392115i
\(714\) 0 0
\(715\) 1.99218 6.56961i 0.0745034 0.245690i
\(716\) −0.554298 −0.0207151
\(717\) 0 0
\(718\) 2.46302 15.5509i 0.0919193 0.580355i
\(719\) 4.03181 5.54931i 0.150361 0.206954i −0.727191 0.686435i \(-0.759175\pi\)
0.877553 + 0.479480i \(0.159175\pi\)
\(720\) 0 0
\(721\) 40.4204 13.1334i 1.50533 0.489113i
\(722\) −15.2088 + 2.40884i −0.566014 + 0.0896478i
\(723\) 0 0
\(724\) −0.856964 0.278444i −0.0318488 0.0103483i
\(725\) 4.57485 2.04017i 0.169906 0.0757702i
\(726\) 0 0
\(727\) −25.2212 25.2212i −0.935401 0.935401i 0.0626351 0.998036i \(-0.480050\pi\)
−0.998036 + 0.0626351i \(0.980050\pi\)
\(728\) −9.43398 + 4.80685i −0.349647 + 0.178154i
\(729\) 0 0
\(730\) −16.3538 7.27525i −0.605281 0.269269i
\(731\) −4.25759 13.1035i −0.157473 0.484651i
\(732\) 0 0
\(733\) 1.20620 + 7.61562i 0.0445519 + 0.281289i 0.999899 0.0141956i \(-0.00451876\pi\)
−0.955347 + 0.295485i \(0.904519\pi\)
\(734\) 41.0401 29.8174i 1.51482 1.10058i
\(735\) 0 0
\(736\) 2.33188i 0.0859543i
\(737\) 6.92277 12.5474i 0.255004 0.462189i
\(738\) 0 0
\(739\) −12.6089 + 38.8062i −0.463825 + 1.42751i 0.396629 + 0.917979i \(0.370180\pi\)
−0.860454 + 0.509528i \(0.829820\pi\)
\(740\) 0.0865259 + 1.64150i 0.00318075 + 0.0603427i
\(741\) 0 0
\(742\) −25.4776 + 50.0027i −0.935313 + 1.83566i
\(743\) −20.1411 + 39.5290i −0.738904 + 1.45018i 0.148368 + 0.988932i \(0.452598\pi\)
−0.887271 + 0.461248i \(0.847402\pi\)
\(744\) 0 0
\(745\) 1.82563 2.02880i 0.0668859 0.0743296i
\(746\) −6.34530 + 19.5288i −0.232318 + 0.715001i
\(747\) 0 0
\(748\) 0.651178 + 0.695544i 0.0238094 + 0.0254316i
\(749\) 25.9946i 0.949821i
\(750\) 0 0
\(751\) 10.6518 7.73896i 0.388688 0.282399i −0.376229 0.926527i \(-0.622780\pi\)
0.764918 + 0.644128i \(0.222780\pi\)
\(752\) 0.795708 + 5.02390i 0.0290165 + 0.183203i
\(753\) 0 0
\(754\) −0.420104 1.29295i −0.0152993 0.0470864i
\(755\) −1.44215 + 3.24177i −0.0524853 + 0.117980i
\(756\) 0 0
\(757\) −17.7060 + 9.02166i −0.643535 + 0.327898i −0.745121 0.666929i \(-0.767608\pi\)
0.101586 + 0.994827i \(0.467608\pi\)
\(758\) 27.4703 + 27.4703i 0.997768 + 0.997768i
\(759\) 0 0
\(760\) 27.6455 + 17.9413i 1.00281 + 0.650799i
\(761\) −16.8706 5.48158i −0.611558 0.198707i −0.0131694 0.999913i \(-0.504192\pi\)
−0.598389 + 0.801206i \(0.704192\pi\)
\(762\) 0 0
\(763\) 82.9328 13.1353i 3.00237 0.475528i
\(764\) 2.34625 0.762341i 0.0848842 0.0275805i
\(765\) 0 0
\(766\) −20.7124 + 28.5082i −0.748371 + 1.03004i
\(767\) 1.34813 8.51175i 0.0486781 0.307342i
\(768\) 0 0
\(769\) −33.4001 −1.20444 −0.602218 0.798331i \(-0.705716\pi\)
−0.602218 + 0.798331i \(0.705716\pi\)
\(770\) −45.3966 6.27467i −1.63598 0.226124i
\(771\) 0 0
\(772\) 1.14769 + 2.25247i 0.0413064 + 0.0810683i
\(773\) 5.96974 37.6915i 0.214717 1.35567i −0.611021 0.791614i \(-0.709241\pi\)
0.825738 0.564054i \(-0.190759\pi\)
\(774\) 0 0
\(775\) 1.41933 + 1.57440i 0.0509837 + 0.0565542i
\(776\) 8.57893 2.78746i 0.307966 0.100064i
\(777\) 0 0
\(778\) 10.9251 + 1.73036i 0.391683 + 0.0620365i
\(779\) 2.98315 + 0.969285i 0.106882 + 0.0347282i
\(780\) 0 0
\(781\) 23.5913 15.9804i 0.844163 0.571824i
\(782\) −5.53895 5.53895i −0.198072 0.198072i
\(783\) 0 0
\(784\) 27.0654 + 37.2523i 0.966621 + 1.33044i
\(785\) 5.94993 + 15.4861i 0.212362 + 0.552722i
\(786\) 0 0
\(787\) 32.7403 + 16.6820i 1.16706 + 0.594649i 0.926614 0.376013i \(-0.122705\pi\)
0.240450 + 0.970662i \(0.422705\pi\)
\(788\) 0.317689 + 2.00581i 0.0113172 + 0.0714541i
\(789\) 0 0
\(790\) 4.71386 + 5.81753i 0.167712 + 0.206978i
\(791\) 51.0989i 1.81687i
\(792\) 0 0
\(793\) −5.09361 + 5.09361i −0.180879 + 0.180879i
\(794\) 10.3140 31.7434i 0.366032 1.12653i
\(795\) 0 0
\(796\) 2.34087 + 1.70074i 0.0829700 + 0.0602812i
\(797\) 9.14395 17.9460i 0.323895 0.635680i −0.670441 0.741963i \(-0.733895\pi\)
0.994336 + 0.106283i \(0.0338949\pi\)
\(798\) 0 0
\(799\) −1.85529 1.34795i −0.0656355 0.0476870i
\(800\) 1.09115 + 4.06240i 0.0385781 + 0.143627i
\(801\) 0 0
\(802\) 25.0253 25.0253i 0.883674 0.883674i
\(803\) 16.3982 7.68606i 0.578679 0.271235i
\(804\) 0 0
\(805\) 25.9844 + 2.72311i 0.915829 + 0.0959770i
\(806\) 0.465424 0.338150i 0.0163939 0.0119108i
\(807\) 0 0
\(808\) −32.1334 16.3728i −1.13045 0.575993i
\(809\) 16.0484 + 49.3920i 0.564233 + 1.73653i 0.670220 + 0.742162i \(0.266200\pi\)
−0.105987 + 0.994367i \(0.533800\pi\)
\(810\) 0 0
\(811\) −23.0252 31.6914i −0.808523 1.11284i −0.991550 0.129728i \(-0.958590\pi\)
0.183027 0.983108i \(-0.441410\pi\)
\(812\) −0.560729 + 0.285706i −0.0196777 + 0.0100263i
\(813\) 0 0
\(814\) −18.9290 14.7289i −0.663462 0.516247i
\(815\) −18.7569 + 28.9022i −0.657025 + 1.01240i
\(816\) 0 0
\(817\) −38.3431 6.07296i −1.34146 0.212466i
\(818\) −8.47873 + 1.34290i −0.296452 + 0.0469533i
\(819\) 0 0
\(820\) 0.0962628 + 0.166616i 0.00336164 + 0.00581847i
\(821\) 14.6926 20.2226i 0.512775 0.705774i −0.471609 0.881808i \(-0.656327\pi\)
0.984384 + 0.176034i \(0.0563268\pi\)
\(822\) 0 0
\(823\) 10.4310 + 20.4719i 0.363600 + 0.713606i 0.998246 0.0591972i \(-0.0188541\pi\)
−0.634646 + 0.772803i \(0.718854\pi\)
\(824\) 27.3580 0.953062
\(825\) 0 0
\(826\) −57.5294 −2.00170
\(827\) 2.51391 + 4.93382i 0.0874171 + 0.171566i 0.930576 0.366099i \(-0.119307\pi\)
−0.843159 + 0.537664i \(0.819307\pi\)
\(828\) 0 0
\(829\) 8.80126 12.1139i 0.305680 0.420733i −0.628348 0.777933i \(-0.716268\pi\)
0.934028 + 0.357200i \(0.116268\pi\)
\(830\) 3.26114 + 5.64452i 0.113196 + 0.195924i
\(831\) 0 0
\(832\) −6.69109 + 1.05976i −0.231972 + 0.0367407i
\(833\) −20.5045 3.24759i −0.710439 0.112522i
\(834\) 0 0
\(835\) −5.05192 + 7.78443i −0.174829 + 0.269391i
\(836\) 2.57917 0.745079i 0.0892023 0.0257691i
\(837\) 0 0
\(838\) 14.4461 7.36068i 0.499034 0.254270i
\(839\) 7.40356 + 10.1901i 0.255599 + 0.351802i 0.917462 0.397823i \(-0.130234\pi\)
−0.661863 + 0.749625i \(0.730234\pi\)
\(840\) 0 0
\(841\) −8.65134 26.6261i −0.298322 0.918141i
\(842\) 10.2836 + 5.23975i 0.354396 + 0.180574i
\(843\) 0 0
\(844\) −0.770496 + 0.559798i −0.0265216 + 0.0192691i
\(845\) −27.0049 2.83006i −0.928998 0.0973572i
\(846\) 0 0
\(847\) 34.8744 30.5585i 1.19830 1.05000i
\(848\) −27.4579 + 27.4579i −0.942907 + 0.942907i
\(849\) 0 0
\(850\) −12.2413 7.05763i −0.419873 0.242075i
\(851\) 11.0621 + 8.03706i 0.379203 + 0.275507i
\(852\) 0 0
\(853\) −22.5965 + 44.3481i −0.773689 + 1.51845i 0.0794926 + 0.996835i \(0.474670\pi\)
−0.853181 + 0.521614i \(0.825330\pi\)
\(854\) 38.9035 + 28.2651i 1.33125 + 0.967211i
\(855\) 0 0
\(856\) 5.17078 15.9140i 0.176734 0.543930i
\(857\) −21.2860 + 21.2860i −0.727117 + 0.727117i −0.970044 0.242927i \(-0.921892\pi\)
0.242927 + 0.970044i \(0.421892\pi\)
\(858\) 0 0
\(859\) 9.31402i 0.317790i −0.987295 0.158895i \(-0.949207\pi\)
0.987295 0.158895i \(-0.0507932\pi\)
\(860\) −1.49932 1.85036i −0.0511263 0.0630967i
\(861\) 0 0
\(862\) −1.67475 10.5740i −0.0570424 0.360151i
\(863\) −31.5320 16.0664i −1.07336 0.546905i −0.174285 0.984695i \(-0.555761\pi\)
−0.899077 + 0.437790i \(0.855761\pi\)
\(864\) 0 0
\(865\) 3.47231 + 9.03749i 0.118062 + 0.307284i
\(866\) −4.34927 5.98625i −0.147794 0.203421i
\(867\) 0 0
\(868\) −0.188310 0.188310i −0.00639166 0.00639166i
\(869\) −7.57178 0.249443i −0.256855 0.00846176i
\(870\) 0 0
\(871\) 3.80391 + 1.23597i 0.128891 + 0.0418791i
\(872\) 53.3847 + 8.45531i 1.80783 + 0.286333i
\(873\) 0 0
\(874\) −20.9911 + 6.82042i −0.710034 + 0.230704i
\(875\) 46.5418 7.41486i 1.57340 0.250668i
\(876\) 0 0
\(877\) −3.41955 + 21.5902i −0.115470 + 0.729048i 0.860225 + 0.509915i \(0.170323\pi\)
−0.975695 + 0.219133i \(0.929677\pi\)
\(878\) −0.863707 1.69512i −0.0291487 0.0572076i
\(879\) 0 0
\(880\) −28.5327 13.8360i −0.961839 0.466411i
\(881\) −46.4810 −1.56599 −0.782993 0.622031i \(-0.786308\pi\)
−0.782993 + 0.622031i \(0.786308\pi\)
\(882\) 0 0
\(883\) 4.36822 27.5798i 0.147002 0.928135i −0.798376 0.602159i \(-0.794307\pi\)
0.945378 0.325976i \(-0.105693\pi\)
\(884\) −0.156308 + 0.215140i −0.00525721 + 0.00723593i
\(885\) 0 0
\(886\) 21.4719 6.97665i 0.721363 0.234385i
\(887\) 6.95351 1.10133i 0.233476 0.0369790i −0.0385999 0.999255i \(-0.512290\pi\)
0.272076 + 0.962276i \(0.412290\pi\)
\(888\) 0 0
\(889\) 4.64858 + 1.51041i 0.155908 + 0.0506577i
\(890\) −38.3066 24.8601i −1.28404 0.833313i
\(891\) 0 0
\(892\) −1.49577 1.49577i −0.0500822 0.0500822i
\(893\) −5.75734 + 2.93351i −0.192662 + 0.0981662i
\(894\) 0 0
\(895\) −3.38064 + 7.59923i −0.113002 + 0.254014i
\(896\) 16.1666 + 49.7558i 0.540090 + 1.66223i
\(897\) 0 0
\(898\) 2.78007 + 17.5527i 0.0927721 + 0.585740i
\(899\) −0.343606 + 0.249644i −0.0114599 + 0.00832611i
\(900\) 0 0
\(901\) 17.5071i 0.583247i
\(902\) −2.75713 0.530284i −0.0918024 0.0176565i
\(903\) 0 0
\(904\) −10.1645 + 31.2830i −0.338065 + 1.04046i
\(905\) −9.04395 + 10.0504i −0.300631 + 0.334088i
\(906\) 0 0
\(907\) 13.4148 26.3281i 0.445433 0.874211i −0.553706 0.832712i \(-0.686787\pi\)
0.999139 0.0414984i \(-0.0132131\pi\)
\(908\) 0.560050 1.09916i 0.0185859 0.0364769i
\(909\) 0 0
\(910\) −0.673287 12.7731i −0.0223193 0.423423i
\(911\) −5.23886 + 16.1236i −0.173571 + 0.534198i −0.999565 0.0294813i \(-0.990614\pi\)
0.825994 + 0.563679i \(0.190614\pi\)
\(912\) 0 0
\(913\) −6.47702 1.24574i −0.214358 0.0412279i
\(914\) 5.14655i 0.170233i
\(915\) 0 0
\(916\) −2.36292 + 1.71676i −0.0780729 + 0.0567233i
\(917\) −9.53075 60.1748i −0.314733 1.98715i
\(918\) 0 0
\(919\) −1.55222 4.77725i −0.0512030 0.157587i 0.922185 0.386748i \(-0.126402\pi\)
−0.973388 + 0.229161i \(0.926402\pi\)
\(920\) 15.3661 + 6.83585i 0.506605 + 0.225371i
\(921\) 0 0
\(922\) −7.12304 + 3.62937i −0.234585 + 0.119527i
\(923\) 5.62351 + 5.62351i 0.185100 + 0.185100i
\(924\) 0 0
\(925\) 23.0321 + 8.82519i 0.757290 + 0.290170i
\(926\) −30.3635 9.86569i −0.997805 0.324207i
\(927\) 0 0
\(928\) −0.832439 + 0.131845i −0.0273262 + 0.00432804i
\(929\) −11.2348 + 3.65041i −0.368602 + 0.119766i −0.487460 0.873145i \(-0.662077\pi\)
0.118858 + 0.992911i \(0.462077\pi\)
\(930\) 0 0
\(931\) −34.3822 + 47.3231i −1.12683 + 1.55095i
\(932\) 0.0865609 0.546524i 0.00283540 0.0179020i
\(933\) 0 0
\(934\) 21.5258 0.704346
\(935\) 13.5072 4.68533i 0.441731 0.153227i
\(936\) 0 0
\(937\) −1.04060 2.04229i −0.0339949 0.0667187i 0.873384 0.487032i \(-0.161920\pi\)
−0.907379 + 0.420313i \(0.861920\pi\)
\(938\) 4.17683 26.3715i 0.136378 0.861060i
\(939\) 0 0
\(940\) −0.382923 0.102480i −0.0124896 0.00334252i
\(941\) −1.68653 + 0.547988i −0.0549794 + 0.0178639i −0.336378 0.941727i \(-0.609202\pi\)
0.281398 + 0.959591i \(0.409202\pi\)
\(942\) 0 0
\(943\) 1.58094 + 0.250397i 0.0514826 + 0.00815404i
\(944\) −37.8587 12.3010i −1.23219 0.400364i
\(945\) 0 0
\(946\) 34.7303 + 1.14415i 1.12918 + 0.0371994i
\(947\) 8.63289 + 8.63289i 0.280531 + 0.280531i 0.833321 0.552790i \(-0.186437\pi\)
−0.552790 + 0.833321i \(0.686437\pi\)
\(948\) 0 0
\(949\) 2.97101 + 4.08925i 0.0964431 + 0.132743i
\(950\) −33.3773 + 21.7042i −1.08290 + 0.704178i
\(951\) 0 0
\(952\) −19.6466 10.0105i −0.636752 0.324441i
\(953\) −2.88376 18.2074i −0.0934143 0.589794i −0.989344 0.145598i \(-0.953489\pi\)
0.895930 0.444196i \(-0.146511\pi\)
\(954\) 0 0
\(955\) 3.85821 36.8157i 0.124849 1.19133i
\(956\) 0.478792i 0.0154852i
\(957\) 0 0
\(958\) −5.09348 + 5.09348i −0.164563 + 0.164563i
\(959\) 16.1154 49.5982i 0.520395 1.60161i
\(960\) 0 0
\(961\) 24.9341 + 18.1157i 0.804327 + 0.584377i
\(962\) 3.03906 5.96448i 0.0979831 0.192303i
\(963\) 0 0
\(964\) −3.06368 2.22589i −0.0986743 0.0716911i
\(965\) 37.8803 1.99673i 1.21941 0.0642770i
\(966\) 0 0
\(967\) 9.49113 9.49113i 0.305214 0.305214i −0.537836 0.843050i \(-0.680758\pi\)
0.843050 + 0.537836i \(0.180758\pi\)
\(968\) 27.4289 11.7709i 0.881598 0.378333i
\(969\) 0 0
\(970\) −1.13577 + 10.8377i −0.0364675 + 0.347979i
\(971\) 41.4379 30.1064i 1.32981 0.966161i 0.330053 0.943963i \(-0.392933\pi\)
0.999754 0.0221983i \(-0.00706650\pi\)
\(972\) 0 0
\(973\) 3.79111 + 1.93167i 0.121538 + 0.0619265i
\(974\) −4.86416 14.9703i −0.155858 0.479681i
\(975\) 0 0
\(976\) 19.5578 + 26.9190i 0.626029 + 0.861655i
\(977\) −12.9020 + 6.57391i −0.412772 + 0.210318i −0.648030 0.761615i \(-0.724407\pi\)
0.235257 + 0.971933i \(0.424407\pi\)
\(978\) 0 0
\(979\) 44.3897 12.8235i 1.41870 0.409840i
\(980\) −3.50981 + 0.747144i −0.112117 + 0.0238666i
\(981\) 0 0
\(982\) 4.71447 + 0.746699i 0.150445 + 0.0238281i
\(983\) 56.8388 9.00238i 1.81288 0.287131i 0.844304 0.535865i \(-0.180014\pi\)
0.968572 + 0.248734i \(0.0800143\pi\)
\(984\) 0 0
\(985\) 29.4365 + 7.87794i 0.937926 + 0.251012i
\(986\) 1.66413 2.29048i 0.0529967 0.0729437i
\(987\) 0 0
\(988\) 0.340170 + 0.667621i 0.0108222 + 0.0212399i
\(989\) −19.8105 −0.629936
\(990\) 0 0
\(991\) 13.1102 0.416458 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(992\) −0.161918 0.317782i −0.00514090 0.0100896i
\(993\) 0 0
\(994\) 31.2055 42.9507i 0.989779 1.36231i
\(995\) 37.5934 21.7198i 1.19179 0.688563i
\(996\) 0 0
\(997\) 2.22714 0.352744i 0.0705343 0.0111715i −0.121068 0.992644i \(-0.538632\pi\)
0.191602 + 0.981473i \(0.438632\pi\)
\(998\) 12.9469 + 2.05059i 0.409828 + 0.0649104i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.442.1 32
3.2 odd 2 55.2.l.a.2.4 32
5.3 odd 4 inner 495.2.bj.a.343.1 32
11.6 odd 10 inner 495.2.bj.a.127.1 32
12.11 even 2 880.2.cm.a.497.3 32
15.2 even 4 275.2.bm.b.68.1 32
15.8 even 4 55.2.l.a.13.4 yes 32
15.14 odd 2 275.2.bm.b.57.1 32
33.2 even 10 605.2.m.d.602.1 32
33.5 odd 10 605.2.m.e.457.1 32
33.8 even 10 605.2.m.c.282.1 32
33.14 odd 10 605.2.m.d.282.4 32
33.17 even 10 55.2.l.a.17.4 yes 32
33.20 odd 10 605.2.m.c.602.4 32
33.26 odd 10 605.2.e.b.362.4 32
33.29 even 10 605.2.e.b.362.13 32
33.32 even 2 605.2.m.e.112.1 32
55.28 even 20 inner 495.2.bj.a.28.1 32
60.23 odd 4 880.2.cm.a.673.3 32
132.83 odd 10 880.2.cm.a.17.3 32
165.8 odd 20 605.2.m.c.403.4 32
165.17 odd 20 275.2.bm.b.193.1 32
165.38 even 20 605.2.m.e.578.1 32
165.53 even 20 605.2.m.c.118.1 32
165.68 odd 20 605.2.m.d.118.4 32
165.83 odd 20 55.2.l.a.28.4 yes 32
165.98 odd 4 605.2.m.e.233.1 32
165.113 even 20 605.2.m.d.403.1 32
165.128 odd 20 605.2.e.b.483.4 32
165.149 even 10 275.2.bm.b.182.1 32
165.158 even 20 605.2.e.b.483.13 32
660.83 even 20 880.2.cm.a.193.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 3.2 odd 2
55.2.l.a.13.4 yes 32 15.8 even 4
55.2.l.a.17.4 yes 32 33.17 even 10
55.2.l.a.28.4 yes 32 165.83 odd 20
275.2.bm.b.57.1 32 15.14 odd 2
275.2.bm.b.68.1 32 15.2 even 4
275.2.bm.b.182.1 32 165.149 even 10
275.2.bm.b.193.1 32 165.17 odd 20
495.2.bj.a.28.1 32 55.28 even 20 inner
495.2.bj.a.127.1 32 11.6 odd 10 inner
495.2.bj.a.343.1 32 5.3 odd 4 inner
495.2.bj.a.442.1 32 1.1 even 1 trivial
605.2.e.b.362.4 32 33.26 odd 10
605.2.e.b.362.13 32 33.29 even 10
605.2.e.b.483.4 32 165.128 odd 20
605.2.e.b.483.13 32 165.158 even 20
605.2.m.c.118.1 32 165.53 even 20
605.2.m.c.282.1 32 33.8 even 10
605.2.m.c.403.4 32 165.8 odd 20
605.2.m.c.602.4 32 33.20 odd 10
605.2.m.d.118.4 32 165.68 odd 20
605.2.m.d.282.4 32 33.14 odd 10
605.2.m.d.403.1 32 165.113 even 20
605.2.m.d.602.1 32 33.2 even 10
605.2.m.e.112.1 32 33.32 even 2
605.2.m.e.233.1 32 165.98 odd 4
605.2.m.e.457.1 32 33.5 odd 10
605.2.m.e.578.1 32 165.38 even 20
880.2.cm.a.17.3 32 132.83 odd 10
880.2.cm.a.193.3 32 660.83 even 20
880.2.cm.a.497.3 32 12.11 even 2
880.2.cm.a.673.3 32 60.23 odd 4