L(s) = 1 | + (−0.665 − 1.30i)2-s + (−0.0875 + 0.120i)4-s + (1.11 + 1.93i)5-s + (−4.16 + 0.659i)7-s + (−2.68 − 0.424i)8-s + (1.78 − 2.74i)10-s + (0.920 + 3.18i)11-s + (−0.824 + 0.420i)13-s + (3.63 + 4.99i)14-s + (1.32 + 4.06i)16-s + (−1.71 − 0.875i)17-s + (−4.39 + 3.19i)19-s + (−0.331 − 0.0347i)20-s + (3.54 − 3.32i)22-s + (−1.95 + 1.95i)23-s + ⋯ |
L(s) = 1 | + (−0.470 − 0.923i)2-s + (−0.0437 + 0.0602i)4-s + (0.500 + 0.865i)5-s + (−1.57 + 0.249i)7-s + (−0.947 − 0.150i)8-s + (0.564 − 0.869i)10-s + (0.277 + 0.960i)11-s + (−0.228 + 0.116i)13-s + (0.970 + 1.33i)14-s + (0.330 + 1.01i)16-s + (−0.416 − 0.212i)17-s + (−1.00 + 0.732i)19-s + (−0.0741 − 0.00776i)20-s + (0.756 − 0.708i)22-s + (−0.408 + 0.408i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.231 - 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.231 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.384932 + 0.303937i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.384932 + 0.303937i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.11 - 1.93i)T \) |
| 11 | \( 1 + (-0.920 - 3.18i)T \) |
good | 2 | \( 1 + (0.665 + 1.30i)T + (-1.17 + 1.61i)T^{2} \) |
| 7 | \( 1 + (4.16 - 0.659i)T + (6.65 - 2.16i)T^{2} \) |
| 13 | \( 1 + (0.824 - 0.420i)T + (7.64 - 10.5i)T^{2} \) |
| 17 | \( 1 + (1.71 + 0.875i)T + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (4.39 - 3.19i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (1.95 - 1.95i)T - 23iT^{2} \) |
| 29 | \( 1 + (0.810 + 0.588i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.131 + 0.403i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.771 + 4.87i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (0.339 + 0.467i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-5.05 - 5.05i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.17 - 0.186i)T + (44.6 + 14.5i)T^{2} \) |
| 53 | \( 1 + (-4.12 - 8.09i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (5.47 - 7.53i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-7.40 + 2.40i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (3.05 + 3.05i)T + 67iT^{2} \) |
| 71 | \( 1 + (2.65 + 8.17i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (0.854 + 5.39i)T + (-69.4 + 22.5i)T^{2} \) |
| 79 | \( 1 + (0.705 - 2.17i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.902 - 1.77i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + 13.9iT - 89T^{2} \) |
| 97 | \( 1 + (2.96 - 1.50i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85644726392440833728586904112, −10.21792475862988219419529528921, −9.583177439596917230999560717514, −9.041626484736504959830257022167, −7.35932005169061530885077515115, −6.43791845289729731287022965930, −5.88552130997724601416691818427, −3.95151603920713481396652976399, −2.84240882948133792157368236870, −1.98774119170315219977306418399,
0.31291262220054531562811908072, 2.66765905067187923321853071276, 3.95264506314316954968669197163, 5.49437320946730199342611305466, 6.36327691687863857007720427004, 6.85604750824920627496099915842, 8.234434193072979993297901996668, 8.857417044690429557845291725119, 9.539505793061348942031137612647, 10.47182492968122977069973840510