Properties

Label 275.2.bm.b.68.1
Level $275$
Weight $2$
Character 275.68
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 68.1
Character \(\chi\) \(=\) 275.68
Dual form 275.2.bm.b.182.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30617 + 0.665529i) q^{2} +(0.822224 + 0.130227i) q^{3} +(0.0875924 - 0.120561i) q^{4} +(-1.16064 + 0.377114i) q^{6} +(-0.659422 - 4.16343i) q^{7} +(0.424477 - 2.68004i) q^{8} +(-2.19408 - 0.712899i) q^{9} +(-0.920480 - 3.18633i) q^{11} +(0.0877208 - 0.0877208i) q^{12} +(0.420250 + 0.824787i) q^{13} +(3.63220 + 4.99930i) q^{14} +(1.32131 + 4.06656i) q^{16} +(-0.875188 + 1.71765i) q^{17} +(3.34030 - 0.529052i) q^{18} +(4.39439 - 3.19271i) q^{19} -3.50915i q^{21} +(3.32290 + 3.54930i) q^{22} +(-1.95998 - 1.95998i) q^{23} +(0.698030 - 2.14832i) q^{24} +(-1.09784 - 0.797627i) q^{26} +(-3.93640 - 2.00570i) q^{27} +(-0.559706 - 0.285184i) q^{28} +(-0.810497 - 0.588860i) q^{29} +(0.131006 - 0.403196i) q^{31} +(-0.594873 - 0.594873i) q^{32} +(-0.341892 - 2.73975i) q^{33} -2.82602i q^{34} +(-0.278132 + 0.202075i) q^{36} +(4.87226 - 0.771690i) q^{37} +(-3.61500 + 7.09483i) q^{38} +(0.238130 + 0.732888i) q^{39} +(0.339428 + 0.467182i) q^{41} +(2.33544 + 4.58356i) q^{42} +(5.05373 - 5.05373i) q^{43} +(-0.464773 - 0.168125i) q^{44} +(3.86451 + 1.25566i) q^{46} +(0.186094 - 1.17495i) q^{47} +(0.556831 + 3.51569i) q^{48} +(-10.2419 + 3.32780i) q^{49} +(-0.943286 + 1.29832i) q^{51} +(0.136247 + 0.0215795i) q^{52} +(-8.09173 + 4.12294i) q^{53} +6.47647 q^{54} -11.4381 q^{56} +(4.02895 - 2.05285i) q^{57} +(1.45055 + 0.229745i) q^{58} +(-5.47214 + 7.53175i) q^{59} +(7.40093 - 2.40471i) q^{61} +(0.0972215 + 0.613832i) q^{62} +(-1.52128 + 9.60498i) q^{63} +(-6.96021 - 2.26151i) q^{64} +(2.26996 + 3.35105i) q^{66} +(3.05526 - 3.05526i) q^{67} +(0.130421 + 0.255966i) q^{68} +(-1.35630 - 1.86679i) q^{69} +(2.65487 + 8.17086i) q^{71} +(-2.84193 + 5.57761i) q^{72} +(-5.39318 + 0.854195i) q^{73} +(-5.85044 + 4.25059i) q^{74} -0.809447i q^{76} +(-12.6591 + 5.93349i) q^{77} +(-0.798797 - 0.798797i) q^{78} +(0.705861 - 2.17242i) q^{79} +(2.62377 + 1.90628i) q^{81} +(-0.754275 - 0.384322i) q^{82} +(-1.77193 - 0.902846i) q^{83} +(-0.423065 - 0.307374i) q^{84} +(-3.23765 + 9.96446i) q^{86} +(-0.589724 - 0.589724i) q^{87} +(-8.93023 + 1.11440i) q^{88} -13.9313i q^{89} +(3.15682 - 2.29356i) q^{91} +(-0.407977 + 0.0646171i) q^{92} +(0.160224 - 0.314457i) q^{93} +(0.538893 + 1.65854i) q^{94} +(-0.411650 - 0.566587i) q^{96} +(-1.50922 - 2.96200i) q^{97} +(11.1630 - 11.1630i) q^{98} +(-0.251929 + 7.64727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30617 + 0.665529i −0.923605 + 0.470600i −0.850057 0.526691i \(-0.823432\pi\)
−0.0735483 + 0.997292i \(0.523432\pi\)
\(3\) 0.822224 + 0.130227i 0.474711 + 0.0751869i 0.389206 0.921151i \(-0.372750\pi\)
0.0855054 + 0.996338i \(0.472750\pi\)
\(4\) 0.0875924 0.120561i 0.0437962 0.0602803i
\(5\) 0 0
\(6\) −1.16064 + 0.377114i −0.473829 + 0.153956i
\(7\) −0.659422 4.16343i −0.249238 1.57363i −0.721655 0.692253i \(-0.756618\pi\)
0.472417 0.881375i \(-0.343382\pi\)
\(8\) 0.424477 2.68004i 0.150075 0.947538i
\(9\) −2.19408 0.712899i −0.731359 0.237633i
\(10\) 0 0
\(11\) −0.920480 3.18633i −0.277535 0.960716i
\(12\) 0.0877208 0.0877208i 0.0253228 0.0253228i
\(13\) 0.420250 + 0.824787i 0.116556 + 0.228755i 0.941913 0.335857i \(-0.109026\pi\)
−0.825357 + 0.564612i \(0.809026\pi\)
\(14\) 3.63220 + 4.99930i 0.970747 + 1.33612i
\(15\) 0 0
\(16\) 1.32131 + 4.06656i 0.330326 + 1.01664i
\(17\) −0.875188 + 1.71765i −0.212264 + 0.416592i −0.972449 0.233115i \(-0.925108\pi\)
0.760185 + 0.649707i \(0.225108\pi\)
\(18\) 3.34030 0.529052i 0.787317 0.124699i
\(19\) 4.39439 3.19271i 1.00814 0.732458i 0.0443230 0.999017i \(-0.485887\pi\)
0.963818 + 0.266560i \(0.0858869\pi\)
\(20\) 0 0
\(21\) 3.50915i 0.765758i
\(22\) 3.32290 + 3.54930i 0.708446 + 0.756713i
\(23\) −1.95998 1.95998i −0.408685 0.408685i 0.472595 0.881280i \(-0.343317\pi\)
−0.881280 + 0.472595i \(0.843317\pi\)
\(24\) 0.698030 2.14832i 0.142485 0.438523i
\(25\) 0 0
\(26\) −1.09784 0.797627i −0.215304 0.156428i
\(27\) −3.93640 2.00570i −0.757561 0.385996i
\(28\) −0.559706 0.285184i −0.105774 0.0538948i
\(29\) −0.810497 0.588860i −0.150505 0.109349i 0.509984 0.860184i \(-0.329651\pi\)
−0.660490 + 0.750835i \(0.729651\pi\)
\(30\) 0 0
\(31\) 0.131006 0.403196i 0.0235294 0.0724161i −0.938602 0.345001i \(-0.887879\pi\)
0.962132 + 0.272585i \(0.0878786\pi\)
\(32\) −0.594873 0.594873i −0.105160 0.105160i
\(33\) −0.341892 2.73975i −0.0595158 0.476929i
\(34\) 2.82602i 0.484658i
\(35\) 0 0
\(36\) −0.278132 + 0.202075i −0.0463553 + 0.0336791i
\(37\) 4.87226 0.771690i 0.800995 0.126865i 0.257501 0.966278i \(-0.417101\pi\)
0.543494 + 0.839413i \(0.317101\pi\)
\(38\) −3.61500 + 7.09483i −0.586430 + 1.15093i
\(39\) 0.238130 + 0.732888i 0.0381313 + 0.117356i
\(40\) 0 0
\(41\) 0.339428 + 0.467182i 0.0530097 + 0.0729616i 0.834699 0.550707i \(-0.185642\pi\)
−0.781689 + 0.623668i \(0.785642\pi\)
\(42\) 2.33544 + 4.58356i 0.360366 + 0.707258i
\(43\) 5.05373 5.05373i 0.770687 0.770687i −0.207540 0.978227i \(-0.566546\pi\)
0.978227 + 0.207540i \(0.0665456\pi\)
\(44\) −0.464773 0.168125i −0.0700672 0.0253458i
\(45\) 0 0
\(46\) 3.86451 + 1.25566i 0.569791 + 0.185136i
\(47\) 0.186094 1.17495i 0.0271446 0.171384i −0.970392 0.241537i \(-0.922349\pi\)
0.997536 + 0.0701524i \(0.0223486\pi\)
\(48\) 0.556831 + 3.51569i 0.0803717 + 0.507447i
\(49\) −10.2419 + 3.32780i −1.46313 + 0.475400i
\(50\) 0 0
\(51\) −0.943286 + 1.29832i −0.132086 + 0.181801i
\(52\) 0.136247 + 0.0215795i 0.0188941 + 0.00299254i
\(53\) −8.09173 + 4.12294i −1.11149 + 0.566330i −0.910602 0.413285i \(-0.864381\pi\)
−0.200883 + 0.979615i \(0.564381\pi\)
\(54\) 6.47647 0.881337
\(55\) 0 0
\(56\) −11.4381 −1.52848
\(57\) 4.02895 2.05285i 0.533647 0.271907i
\(58\) 1.45055 + 0.229745i 0.190467 + 0.0301670i
\(59\) −5.47214 + 7.53175i −0.712411 + 0.980550i 0.287331 + 0.957831i \(0.407232\pi\)
−0.999742 + 0.0227186i \(0.992768\pi\)
\(60\) 0 0
\(61\) 7.40093 2.40471i 0.947591 0.307891i 0.205855 0.978583i \(-0.434002\pi\)
0.741737 + 0.670691i \(0.234002\pi\)
\(62\) 0.0972215 + 0.613832i 0.0123471 + 0.0779568i
\(63\) −1.52128 + 9.60498i −0.191663 + 1.21011i
\(64\) −6.96021 2.26151i −0.870026 0.282689i
\(65\) 0 0
\(66\) 2.26996 + 3.35105i 0.279412 + 0.412486i
\(67\) 3.05526 3.05526i 0.373259 0.373259i −0.495404 0.868663i \(-0.664980\pi\)
0.868663 + 0.495404i \(0.164980\pi\)
\(68\) 0.130421 + 0.255966i 0.0158159 + 0.0310405i
\(69\) −1.35630 1.86679i −0.163280 0.224735i
\(70\) 0 0
\(71\) 2.65487 + 8.17086i 0.315075 + 0.969702i 0.975723 + 0.219006i \(0.0702816\pi\)
−0.660648 + 0.750696i \(0.729718\pi\)
\(72\) −2.84193 + 5.57761i −0.334925 + 0.657328i
\(73\) −5.39318 + 0.854195i −0.631224 + 0.0999760i −0.463844 0.885917i \(-0.653530\pi\)
−0.167379 + 0.985893i \(0.553530\pi\)
\(74\) −5.85044 + 4.25059i −0.680100 + 0.494122i
\(75\) 0 0
\(76\) 0.809447i 0.0928499i
\(77\) −12.6591 + 5.93349i −1.44264 + 0.676184i
\(78\) −0.798797 0.798797i −0.0904460 0.0904460i
\(79\) 0.705861 2.17242i 0.0794156 0.244416i −0.903464 0.428663i \(-0.858985\pi\)
0.982880 + 0.184247i \(0.0589847\pi\)
\(80\) 0 0
\(81\) 2.62377 + 1.90628i 0.291530 + 0.211809i
\(82\) −0.754275 0.384322i −0.0832957 0.0424413i
\(83\) −1.77193 0.902846i −0.194495 0.0991002i 0.354031 0.935234i \(-0.384811\pi\)
−0.548526 + 0.836134i \(0.684811\pi\)
\(84\) −0.423065 0.307374i −0.0461601 0.0335373i
\(85\) 0 0
\(86\) −3.23765 + 9.96446i −0.349125 + 1.07450i
\(87\) −0.589724 0.589724i −0.0632250 0.0632250i
\(88\) −8.93023 + 1.11440i −0.951966 + 0.118795i
\(89\) 13.9313i 1.47671i −0.674410 0.738357i \(-0.735602\pi\)
0.674410 0.738357i \(-0.264398\pi\)
\(90\) 0 0
\(91\) 3.15682 2.29356i 0.330925 0.240431i
\(92\) −0.407977 + 0.0646171i −0.0425345 + 0.00673680i
\(93\) 0.160224 0.314457i 0.0166144 0.0326076i
\(94\) 0.538893 + 1.65854i 0.0555826 + 0.171066i
\(95\) 0 0
\(96\) −0.411650 0.566587i −0.0420138 0.0578271i
\(97\) −1.50922 2.96200i −0.153238 0.300746i 0.801607 0.597851i \(-0.203979\pi\)
−0.954845 + 0.297105i \(0.903979\pi\)
\(98\) 11.1630 11.1630i 1.12763 1.12763i
\(99\) −0.251929 + 7.64727i −0.0253199 + 0.768579i
\(100\) 0 0
\(101\) −12.6404 4.10712i −1.25777 0.408673i −0.397069 0.917789i \(-0.629973\pi\)
−0.860698 + 0.509116i \(0.829973\pi\)
\(102\) 0.368025 2.32362i 0.0364399 0.230073i
\(103\) 1.57723 + 9.95825i 0.155409 + 0.981215i 0.934928 + 0.354837i \(0.115464\pi\)
−0.779519 + 0.626378i \(0.784536\pi\)
\(104\) 2.38885 0.776185i 0.234246 0.0761112i
\(105\) 0 0
\(106\) 7.82528 10.7706i 0.760058 1.04613i
\(107\) 6.09076 + 0.964682i 0.588816 + 0.0932593i 0.443731 0.896160i \(-0.353654\pi\)
0.145085 + 0.989419i \(0.453654\pi\)
\(108\) −0.586606 + 0.298891i −0.0564462 + 0.0287608i
\(109\) 19.9193 1.90793 0.953964 0.299922i \(-0.0969607\pi\)
0.953964 + 0.299922i \(0.0969607\pi\)
\(110\) 0 0
\(111\) 4.10659 0.389780
\(112\) 16.0595 8.18274i 1.51748 0.773197i
\(113\) 11.9729 + 1.89632i 1.12632 + 0.178391i 0.691673 0.722211i \(-0.256874\pi\)
0.434644 + 0.900602i \(0.356874\pi\)
\(114\) −3.89628 + 5.36277i −0.364920 + 0.502269i
\(115\) 0 0
\(116\) −0.141987 + 0.0461342i −0.0131831 + 0.00428346i
\(117\) −0.334071 2.10924i −0.0308849 0.194999i
\(118\) 2.13497 13.4796i 0.196540 1.24090i
\(119\) 7.72845 + 2.51112i 0.708465 + 0.230194i
\(120\) 0 0
\(121\) −9.30543 + 5.86591i −0.845949 + 0.533265i
\(122\) −8.06650 + 8.06650i −0.730306 + 0.730306i
\(123\) 0.218246 + 0.428331i 0.0196785 + 0.0386213i
\(124\) −0.0371343 0.0511110i −0.00333476 0.00458991i
\(125\) 0 0
\(126\) −4.40534 13.5582i −0.392459 1.20786i
\(127\) 0.526416 1.03315i 0.0467119 0.0916772i −0.866471 0.499228i \(-0.833617\pi\)
0.913183 + 0.407551i \(0.133617\pi\)
\(128\) 12.2582 1.94151i 1.08348 0.171607i
\(129\) 4.81343 3.49716i 0.423799 0.307908i
\(130\) 0 0
\(131\) 14.4532i 1.26278i −0.775465 0.631390i \(-0.782485\pi\)
0.775465 0.631390i \(-0.217515\pi\)
\(132\) −0.360253 0.198763i −0.0313560 0.0173001i
\(133\) −16.1904 16.1904i −1.40388 1.40388i
\(134\) −1.95734 + 6.02407i −0.169088 + 0.520400i
\(135\) 0 0
\(136\) 4.23189 + 3.07465i 0.362881 + 0.263649i
\(137\) 11.0232 + 5.61663i 0.941780 + 0.479861i 0.856300 0.516479i \(-0.172758\pi\)
0.0854799 + 0.996340i \(0.472758\pi\)
\(138\) 3.01397 + 1.53570i 0.256566 + 0.130727i
\(139\) 0.816606 + 0.593299i 0.0692636 + 0.0503229i 0.621878 0.783114i \(-0.286370\pi\)
−0.552615 + 0.833437i \(0.686370\pi\)
\(140\) 0 0
\(141\) 0.306022 0.941839i 0.0257717 0.0793172i
\(142\) −8.90567 8.90567i −0.747347 0.747347i
\(143\) 2.24121 2.09826i 0.187420 0.175465i
\(144\) 9.86430i 0.822025i
\(145\) 0 0
\(146\) 6.47594 4.70504i 0.535952 0.389392i
\(147\) −8.85451 + 1.40242i −0.730308 + 0.115669i
\(148\) 0.333737 0.654997i 0.0274331 0.0538404i
\(149\) −0.377177 1.16083i −0.0308996 0.0950990i 0.934417 0.356180i \(-0.115921\pi\)
−0.965317 + 0.261081i \(0.915921\pi\)
\(150\) 0 0
\(151\) 0.932668 + 1.28371i 0.0758995 + 0.104467i 0.845279 0.534326i \(-0.179434\pi\)
−0.769379 + 0.638792i \(0.779434\pi\)
\(152\) −6.69128 13.1324i −0.542734 1.06518i
\(153\) 3.14474 3.14474i 0.254237 0.254237i
\(154\) 12.5861 16.1752i 1.01421 1.30343i
\(155\) 0 0
\(156\) 0.109216 + 0.0354863i 0.00874425 + 0.00284118i
\(157\) −1.16061 + 7.32783i −0.0926271 + 0.584824i 0.897097 + 0.441834i \(0.145672\pi\)
−0.989724 + 0.142991i \(0.954328\pi\)
\(158\) 0.523829 + 3.30733i 0.0416736 + 0.263117i
\(159\) −7.19014 + 2.33622i −0.570215 + 0.185274i
\(160\) 0 0
\(161\) −6.86780 + 9.45272i −0.541258 + 0.744978i
\(162\) −4.69579 0.743741i −0.368936 0.0584338i
\(163\) 13.7294 6.99546i 1.07537 0.547927i 0.175673 0.984449i \(-0.443790\pi\)
0.899694 + 0.436522i \(0.143790\pi\)
\(164\) 0.0860550 0.00671976
\(165\) 0 0
\(166\) 2.91533 0.226273
\(167\) 3.69782 1.88413i 0.286146 0.145799i −0.305026 0.952344i \(-0.598665\pi\)
0.591172 + 0.806545i \(0.298665\pi\)
\(168\) −9.40466 1.48955i −0.725585 0.114921i
\(169\) 7.13754 9.82399i 0.549042 0.755691i
\(170\) 0 0
\(171\) −11.9177 + 3.87229i −0.911369 + 0.296122i
\(172\) −0.166612 1.05195i −0.0127041 0.0802104i
\(173\) −0.677320 + 4.27643i −0.0514957 + 0.325131i 0.948470 + 0.316867i \(0.102631\pi\)
−0.999966 + 0.00826456i \(0.997369\pi\)
\(174\) 1.16276 + 0.377804i 0.0881487 + 0.0286412i
\(175\) 0 0
\(176\) 11.7412 7.95331i 0.885025 0.599503i
\(177\) −5.48016 + 5.48016i −0.411914 + 0.411914i
\(178\) 9.27168 + 18.1967i 0.694942 + 1.36390i
\(179\) 2.18633 + 3.00922i 0.163414 + 0.224920i 0.882869 0.469619i \(-0.155609\pi\)
−0.719456 + 0.694538i \(0.755609\pi\)
\(180\) 0 0
\(181\) 1.86849 + 5.75062i 0.138884 + 0.427440i 0.996174 0.0873933i \(-0.0278537\pi\)
−0.857290 + 0.514834i \(0.827854\pi\)
\(182\) −2.59692 + 5.09675i −0.192497 + 0.377796i
\(183\) 6.39838 1.01340i 0.472982 0.0749129i
\(184\) −6.08481 + 4.42087i −0.448578 + 0.325911i
\(185\) 0 0
\(186\) 0.517369i 0.0379353i
\(187\) 6.27861 + 1.20758i 0.459137 + 0.0883066i
\(188\) −0.125352 0.125352i −0.00914227 0.00914227i
\(189\) −5.75482 + 17.7115i −0.418602 + 1.28832i
\(190\) 0 0
\(191\) 13.3930 + 9.73057i 0.969082 + 0.704079i 0.955242 0.295825i \(-0.0955945\pi\)
0.0138398 + 0.999904i \(0.495595\pi\)
\(192\) −5.42834 2.76588i −0.391757 0.199610i
\(193\) −15.1151 7.70155i −1.08801 0.554370i −0.184456 0.982841i \(-0.559052\pi\)
−0.903556 + 0.428471i \(0.859052\pi\)
\(194\) 3.94260 + 2.86447i 0.283062 + 0.205657i
\(195\) 0 0
\(196\) −0.495912 + 1.52626i −0.0354223 + 0.109019i
\(197\) −9.63624 9.63624i −0.686554 0.686554i 0.274915 0.961469i \(-0.411350\pi\)
−0.961469 + 0.274915i \(0.911350\pi\)
\(198\) −4.76042 10.1563i −0.338308 0.721779i
\(199\) 19.4166i 1.37640i 0.725519 + 0.688202i \(0.241600\pi\)
−0.725519 + 0.688202i \(0.758400\pi\)
\(200\) 0 0
\(201\) 2.90999 2.11423i 0.205255 0.149126i
\(202\) 19.2440 3.04795i 1.35400 0.214453i
\(203\) −1.91722 + 3.76275i −0.134562 + 0.264093i
\(204\) 0.0739017 + 0.227446i 0.00517416 + 0.0159244i
\(205\) 0 0
\(206\) −8.68764 11.9575i −0.605297 0.833119i
\(207\) 2.90309 + 5.69763i 0.201778 + 0.396012i
\(208\) −2.79877 + 2.79877i −0.194060 + 0.194060i
\(209\) −14.2180 11.0632i −0.983478 0.765254i
\(210\) 0 0
\(211\) 6.07815 + 1.97491i 0.418437 + 0.135959i 0.510666 0.859779i \(-0.329399\pi\)
−0.0922284 + 0.995738i \(0.529399\pi\)
\(212\) −0.211710 + 1.33668i −0.0145403 + 0.0918037i
\(213\) 1.11883 + 7.06401i 0.0766609 + 0.484018i
\(214\) −8.59762 + 2.79354i −0.587721 + 0.190962i
\(215\) 0 0
\(216\) −7.04626 + 9.69835i −0.479437 + 0.659889i
\(217\) −1.76507 0.279559i −0.119820 0.0189777i
\(218\) −26.0181 + 13.2569i −1.76217 + 0.897871i
\(219\) −4.54564 −0.307166
\(220\) 0 0
\(221\) −1.78450 −0.120038
\(222\) −5.36392 + 2.73305i −0.360003 + 0.183430i
\(223\) 14.0202 + 2.22058i 0.938860 + 0.148701i 0.607066 0.794651i \(-0.292346\pi\)
0.331794 + 0.943352i \(0.392346\pi\)
\(224\) −2.08444 + 2.86898i −0.139272 + 0.191692i
\(225\) 0 0
\(226\) −16.9008 + 5.49139i −1.12422 + 0.365282i
\(227\) 1.29499 + 8.17622i 0.0859512 + 0.542675i 0.992662 + 0.120922i \(0.0385850\pi\)
−0.906711 + 0.421753i \(0.861415\pi\)
\(228\) 0.105412 0.665546i 0.00698109 0.0440769i
\(229\) −18.6401 6.05655i −1.23178 0.400228i −0.380418 0.924815i \(-0.624220\pi\)
−0.851357 + 0.524587i \(0.824220\pi\)
\(230\) 0 0
\(231\) −11.1813 + 3.23010i −0.735676 + 0.212525i
\(232\) −1.92221 + 1.92221i −0.126199 + 0.126199i
\(233\) −1.68573 3.30844i −0.110436 0.216743i 0.829173 0.558991i \(-0.188812\pi\)
−0.939609 + 0.342249i \(0.888812\pi\)
\(234\) 1.84012 + 2.53270i 0.120292 + 0.165568i
\(235\) 0 0
\(236\) 0.428714 + 1.31945i 0.0279069 + 0.0858887i
\(237\) 0.863285 1.69429i 0.0560764 0.110056i
\(238\) −11.7659 + 1.86354i −0.762672 + 0.120795i
\(239\) 2.59930 1.88850i 0.168135 0.122157i −0.500536 0.865716i \(-0.666864\pi\)
0.668671 + 0.743559i \(0.266864\pi\)
\(240\) 0 0
\(241\) 25.4119i 1.63693i 0.574559 + 0.818463i \(0.305174\pi\)
−0.574559 + 0.818463i \(0.694826\pi\)
\(242\) 8.25059 13.8549i 0.530368 0.890629i
\(243\) 11.2809 + 11.2809i 0.723671 + 0.723671i
\(244\) 0.358352 1.10289i 0.0229411 0.0706055i
\(245\) 0 0
\(246\) −0.570133 0.414226i −0.0363504 0.0264101i
\(247\) 4.48005 + 2.28270i 0.285059 + 0.145245i
\(248\) −1.02497 0.522250i −0.0650858 0.0331629i
\(249\) −1.33935 0.973096i −0.0848780 0.0616674i
\(250\) 0 0
\(251\) 5.03867 15.5074i 0.318038 0.978820i −0.656448 0.754371i \(-0.727942\pi\)
0.974486 0.224448i \(-0.0720580\pi\)
\(252\) 1.02473 + 1.02473i 0.0645519 + 0.0645519i
\(253\) −4.44104 + 8.04929i −0.279206 + 0.506055i
\(254\) 1.69982i 0.106656i
\(255\) 0 0
\(256\) −2.87779 + 2.09084i −0.179862 + 0.130677i
\(257\) 16.0045 2.53487i 0.998335 0.158121i 0.364182 0.931328i \(-0.381349\pi\)
0.634154 + 0.773207i \(0.281349\pi\)
\(258\) −3.95972 + 7.77139i −0.246521 + 0.483825i
\(259\) −6.42576 19.7764i −0.399277 1.22885i
\(260\) 0 0
\(261\) 1.35849 + 1.86981i 0.0840887 + 0.115738i
\(262\) 9.61901 + 18.8784i 0.594265 + 1.16631i
\(263\) −0.677874 + 0.677874i −0.0417995 + 0.0417995i −0.727698 0.685898i \(-0.759410\pi\)
0.685898 + 0.727698i \(0.259410\pi\)
\(264\) −7.48778 0.246675i −0.460841 0.0151818i
\(265\) 0 0
\(266\) 31.9226 + 10.3723i 1.95730 + 0.635966i
\(267\) 1.81424 11.4546i 0.111030 0.701013i
\(268\) −0.100726 0.635961i −0.00615284 0.0388475i
\(269\) 27.0327 8.78345i 1.64821 0.535536i 0.669860 0.742487i \(-0.266354\pi\)
0.978351 + 0.206951i \(0.0663541\pi\)
\(270\) 0 0
\(271\) 18.0744 24.8772i 1.09794 1.51118i 0.259853 0.965648i \(-0.416326\pi\)
0.838087 0.545536i \(-0.183674\pi\)
\(272\) −8.14133 1.28946i −0.493641 0.0781850i
\(273\) 2.89430 1.47472i 0.175171 0.0892540i
\(274\) −18.1363 −1.09565
\(275\) 0 0
\(276\) −0.343863 −0.0206981
\(277\) −26.8625 + 13.6871i −1.61401 + 0.822379i −0.614571 + 0.788861i \(0.710671\pi\)
−0.999438 + 0.0335176i \(0.989329\pi\)
\(278\) −1.46149 0.231477i −0.0876542 0.0138831i
\(279\) −0.574875 + 0.791248i −0.0344169 + 0.0473708i
\(280\) 0 0
\(281\) 8.10210 2.63253i 0.483331 0.157044i −0.0572089 0.998362i \(-0.518220\pi\)
0.540540 + 0.841319i \(0.318220\pi\)
\(282\) 0.227103 + 1.43387i 0.0135238 + 0.0853859i
\(283\) 1.49267 9.42432i 0.0887297 0.560218i −0.902772 0.430120i \(-0.858471\pi\)
0.991501 0.130097i \(-0.0415289\pi\)
\(284\) 1.21763 + 0.395632i 0.0722530 + 0.0234764i
\(285\) 0 0
\(286\) −1.53097 + 4.23228i −0.0905280 + 0.250260i
\(287\) 1.72125 1.72125i 0.101602 0.101602i
\(288\) 0.881112 + 1.72928i 0.0519200 + 0.101899i
\(289\) 7.80797 + 10.7468i 0.459292 + 0.632162i
\(290\) 0 0
\(291\) −0.855180 2.63197i −0.0501315 0.154289i
\(292\) −0.369419 + 0.725025i −0.0216186 + 0.0424289i
\(293\) −2.27904 + 0.360965i −0.133143 + 0.0210878i −0.222650 0.974898i \(-0.571471\pi\)
0.0895072 + 0.995986i \(0.471471\pi\)
\(294\) 10.6322 7.72474i 0.620082 0.450516i
\(295\) 0 0
\(296\) 13.3854i 0.778013i
\(297\) −2.76744 + 14.3889i −0.160583 + 0.834928i
\(298\) 1.26523 + 1.26523i 0.0732926 + 0.0732926i
\(299\) 0.792887 2.44025i 0.0458538 0.141124i
\(300\) 0 0
\(301\) −24.3734 17.7083i −1.40486 1.02069i
\(302\) −2.07257 1.05603i −0.119263 0.0607676i
\(303\) −9.85838 5.02310i −0.566349 0.288569i
\(304\) 18.7897 + 13.6515i 1.07766 + 0.782967i
\(305\) 0 0
\(306\) −2.01466 + 6.20050i −0.115171 + 0.354459i
\(307\) 12.4635 + 12.4635i 0.711327 + 0.711327i 0.966813 0.255486i \(-0.0822353\pi\)
−0.255486 + 0.966813i \(0.582235\pi\)
\(308\) −0.393494 + 2.04591i −0.0224214 + 0.116577i
\(309\) 8.39331i 0.477479i
\(310\) 0 0
\(311\) −12.2271 + 8.88353i −0.693337 + 0.503739i −0.877755 0.479109i \(-0.840960\pi\)
0.184419 + 0.982848i \(0.440960\pi\)
\(312\) 2.06525 0.327104i 0.116922 0.0185186i
\(313\) 11.8565 23.2697i 0.670169 1.31528i −0.266082 0.963950i \(-0.585729\pi\)
0.936251 0.351331i \(-0.114271\pi\)
\(314\) −3.36092 10.3438i −0.189668 0.583737i
\(315\) 0 0
\(316\) −0.200080 0.275386i −0.0112554 0.0154917i
\(317\) 12.8603 + 25.2398i 0.722307 + 1.41761i 0.901051 + 0.433712i \(0.142797\pi\)
−0.178744 + 0.983896i \(0.557203\pi\)
\(318\) 7.83675 7.83675i 0.439463 0.439463i
\(319\) −1.13026 + 3.12455i −0.0632824 + 0.174941i
\(320\) 0 0
\(321\) 4.88234 + 1.58637i 0.272506 + 0.0885425i
\(322\) 2.67949 16.9176i 0.149322 0.942782i
\(323\) 1.63805 + 10.3423i 0.0911436 + 0.575458i
\(324\) 0.459645 0.149348i 0.0255358 0.00829710i
\(325\) 0 0
\(326\) −13.2773 + 18.2746i −0.735360 + 1.01214i
\(327\) 16.3782 + 2.59405i 0.905714 + 0.143451i
\(328\) 1.39615 0.711372i 0.0770893 0.0392790i
\(329\) −5.01454 −0.276461
\(330\) 0 0
\(331\) −24.6455 −1.35464 −0.677319 0.735690i \(-0.736858\pi\)
−0.677319 + 0.735690i \(0.736858\pi\)
\(332\) −0.264055 + 0.134543i −0.0144919 + 0.00738401i
\(333\) −11.2403 1.78028i −0.615962 0.0975588i
\(334\) −3.57605 + 4.92202i −0.195673 + 0.269321i
\(335\) 0 0
\(336\) 14.2702 4.63665i 0.778501 0.252950i
\(337\) −4.85195 30.6340i −0.264302 1.66874i −0.660692 0.750657i \(-0.729737\pi\)
0.396390 0.918082i \(-0.370263\pi\)
\(338\) −2.78473 + 17.5821i −0.151469 + 0.956339i
\(339\) 9.59746 + 3.11840i 0.521263 + 0.169369i
\(340\) 0 0
\(341\) −1.40530 0.0462960i −0.0761015 0.00250707i
\(342\) 12.9895 12.9895i 0.702390 0.702390i
\(343\) 7.21277 + 14.1559i 0.389453 + 0.764345i
\(344\) −11.3990 15.6894i −0.614594 0.845916i
\(345\) 0 0
\(346\) −1.96139 6.03654i −0.105445 0.324527i
\(347\) 13.7041 26.8957i 0.735672 1.44384i −0.154395 0.988009i \(-0.549343\pi\)
0.890068 0.455829i \(-0.150657\pi\)
\(348\) −0.122753 + 0.0194421i −0.00658024 + 0.00104221i
\(349\) −17.2865 + 12.5594i −0.925323 + 0.672287i −0.944843 0.327523i \(-0.893786\pi\)
0.0195201 + 0.999809i \(0.493786\pi\)
\(350\) 0 0
\(351\) 4.08959i 0.218286i
\(352\) −1.34789 + 2.44303i −0.0718430 + 0.130214i
\(353\) 2.82626 + 2.82626i 0.150427 + 0.150427i 0.778309 0.627882i \(-0.216078\pi\)
−0.627882 + 0.778309i \(0.716078\pi\)
\(354\) 3.51084 10.8053i 0.186599 0.574293i
\(355\) 0 0
\(356\) −1.67956 1.22027i −0.0890167 0.0646744i
\(357\) 6.02750 + 3.07116i 0.319009 + 0.162543i
\(358\) −4.85844 2.47550i −0.256777 0.130834i
\(359\) 8.68908 + 6.31298i 0.458592 + 0.333187i 0.792979 0.609249i \(-0.208529\pi\)
−0.334387 + 0.942436i \(0.608529\pi\)
\(360\) 0 0
\(361\) 3.24592 9.98992i 0.170838 0.525785i
\(362\) −6.26778 6.26778i −0.329427 0.329427i
\(363\) −8.41505 + 3.61127i −0.441676 + 0.189542i
\(364\) 0.581487i 0.0304782i
\(365\) 0 0
\(366\) −7.68295 + 5.58199i −0.401594 + 0.291775i
\(367\) −34.1783 + 5.41331i −1.78409 + 0.282572i −0.959202 0.282721i \(-0.908763\pi\)
−0.824890 + 0.565293i \(0.808763\pi\)
\(368\) 5.38066 10.5601i 0.280486 0.550485i
\(369\) −0.411677 1.26701i −0.0214310 0.0659579i
\(370\) 0 0
\(371\) 22.5015 + 30.9706i 1.16822 + 1.60791i
\(372\) −0.0238767 0.0468606i −0.00123795 0.00242961i
\(373\) −9.90454 + 9.90454i −0.512838 + 0.512838i −0.915395 0.402557i \(-0.868121\pi\)
0.402557 + 0.915395i \(0.368121\pi\)
\(374\) −9.00463 + 2.60129i −0.465618 + 0.134510i
\(375\) 0 0
\(376\) −3.06993 0.997480i −0.158319 0.0514411i
\(377\) 0.145073 0.915956i 0.00747165 0.0471741i
\(378\) −4.27073 26.9643i −0.219663 1.38690i
\(379\) 25.2037 8.18919i 1.29463 0.420651i 0.420919 0.907098i \(-0.361708\pi\)
0.873710 + 0.486447i \(0.161708\pi\)
\(380\) 0 0
\(381\) 0.567376 0.780926i 0.0290676 0.0400081i
\(382\) −23.9695 3.79640i −1.22639 0.194241i
\(383\) 21.4177 10.9129i 1.09439 0.557622i 0.188907 0.981995i \(-0.439505\pi\)
0.905487 + 0.424373i \(0.139505\pi\)
\(384\) 10.3318 0.527243
\(385\) 0 0
\(386\) 24.8686 1.26578
\(387\) −14.6911 + 7.48548i −0.746789 + 0.380508i
\(388\) −0.489297 0.0774970i −0.0248403 0.00393431i
\(389\) −4.43509 + 6.10438i −0.224868 + 0.309505i −0.906512 0.422179i \(-0.861265\pi\)
0.681644 + 0.731684i \(0.261265\pi\)
\(390\) 0 0
\(391\) 5.08193 1.65122i 0.257004 0.0835057i
\(392\) 4.57119 + 28.8613i 0.230880 + 1.45772i
\(393\) 1.88220 11.8838i 0.0949445 0.599456i
\(394\) 18.9998 + 6.17342i 0.957197 + 0.311012i
\(395\) 0 0
\(396\) 0.899892 + 0.700215i 0.0452213 + 0.0351871i
\(397\) −16.0995 + 16.0995i −0.808008 + 0.808008i −0.984332 0.176324i \(-0.943579\pi\)
0.176324 + 0.984332i \(0.443579\pi\)
\(398\) −12.9223 25.3614i −0.647736 1.27125i
\(399\) −11.2037 15.4205i −0.560886 0.771993i
\(400\) 0 0
\(401\) −7.46030 22.9604i −0.372550 1.14659i −0.945117 0.326732i \(-0.894053\pi\)
0.572568 0.819858i \(-0.305947\pi\)
\(402\) −2.39387 + 4.69823i −0.119395 + 0.234327i
\(403\) 0.387606 0.0613908i 0.0193080 0.00305809i
\(404\) −1.60236 + 1.16418i −0.0797203 + 0.0579202i
\(405\) 0 0
\(406\) 6.19078i 0.307243i
\(407\) −6.94368 14.8143i −0.344185 0.734319i
\(408\) 3.07915 + 3.07915i 0.152441 + 0.152441i
\(409\) −1.80956 + 5.56925i −0.0894769 + 0.275382i −0.985775 0.168070i \(-0.946246\pi\)
0.896298 + 0.443452i \(0.146246\pi\)
\(410\) 0 0
\(411\) 8.33214 + 6.05365i 0.410994 + 0.298605i
\(412\) 1.33872 + 0.682114i 0.0659542 + 0.0336054i
\(413\) 34.9663 + 17.8162i 1.72058 + 0.876680i
\(414\) −7.58387 5.51001i −0.372727 0.270802i
\(415\) 0 0
\(416\) 0.240648 0.740639i 0.0117987 0.0363128i
\(417\) 0.594169 + 0.594169i 0.0290966 + 0.0290966i
\(418\) 25.9340 + 4.98793i 1.26847 + 0.243968i
\(419\) 11.0599i 0.540311i 0.962817 + 0.270155i \(0.0870751\pi\)
−0.962817 + 0.270155i \(0.912925\pi\)
\(420\) 0 0
\(421\) −6.36944 + 4.62767i −0.310428 + 0.225539i −0.732080 0.681219i \(-0.761450\pi\)
0.421652 + 0.906758i \(0.361450\pi\)
\(422\) −9.25349 + 1.46561i −0.450453 + 0.0713447i
\(423\) −1.24593 + 2.44527i −0.0605790 + 0.118893i
\(424\) 7.61491 + 23.4363i 0.369813 + 1.13817i
\(425\) 0 0
\(426\) −6.16269 8.48222i −0.298583 0.410965i
\(427\) −14.8922 29.2275i −0.720682 1.41442i
\(428\) 0.649807 0.649807i 0.0314096 0.0314096i
\(429\) 2.11603 1.43337i 0.102163 0.0692037i
\(430\) 0 0
\(431\) −6.94552 2.25674i −0.334554 0.108703i 0.136923 0.990582i \(-0.456279\pi\)
−0.471477 + 0.881879i \(0.656279\pi\)
\(432\) 2.95510 18.6577i 0.142177 0.897671i
\(433\) −0.789604 4.98536i −0.0379460 0.239581i 0.961424 0.275070i \(-0.0887011\pi\)
−0.999370 + 0.0354890i \(0.988701\pi\)
\(434\) 2.49154 0.809550i 0.119598 0.0388596i
\(435\) 0 0
\(436\) 1.74478 2.40149i 0.0835599 0.115010i
\(437\) −14.8706 2.35527i −0.711357 0.112668i
\(438\) 5.93740 3.02525i 0.283700 0.144552i
\(439\) −1.29778 −0.0619394 −0.0309697 0.999520i \(-0.509860\pi\)
−0.0309697 + 0.999520i \(0.509860\pi\)
\(440\) 0 0
\(441\) 24.8439 1.18304
\(442\) 2.33086 1.18763i 0.110868 0.0564900i
\(443\) −15.2112 2.40922i −0.722707 0.114466i −0.215764 0.976445i \(-0.569224\pi\)
−0.506942 + 0.861980i \(0.669224\pi\)
\(444\) 0.359706 0.495092i 0.0170709 0.0234960i
\(445\) 0 0
\(446\) −19.7907 + 6.43037i −0.937115 + 0.304487i
\(447\) −0.158952 1.00358i −0.00751816 0.0474678i
\(448\) −4.82591 + 30.4696i −0.228003 + 1.43955i
\(449\) −11.5295 3.74615i −0.544109 0.176792i 0.0240497 0.999711i \(-0.492344\pi\)
−0.568159 + 0.822919i \(0.692344\pi\)
\(450\) 0 0
\(451\) 1.17616 1.51156i 0.0553833 0.0711766i
\(452\) 1.27736 1.27736i 0.0600818 0.0600818i
\(453\) 0.599688 + 1.17695i 0.0281758 + 0.0552981i
\(454\) −7.13299 9.81772i −0.334768 0.460768i
\(455\) 0 0
\(456\) −3.79153 11.6691i −0.177555 0.546458i
\(457\) −1.59383 + 3.12807i −0.0745563 + 0.146325i −0.925276 0.379295i \(-0.876167\pi\)
0.850720 + 0.525620i \(0.176167\pi\)
\(458\) 28.3781 4.49465i 1.32602 0.210021i
\(459\) 6.89018 5.00601i 0.321606 0.233660i
\(460\) 0 0
\(461\) 5.45336i 0.253988i 0.991903 + 0.126994i \(0.0405329\pi\)
−0.991903 + 0.126994i \(0.959467\pi\)
\(462\) 12.4550 11.6606i 0.579460 0.542498i
\(463\) −15.3996 15.3996i −0.715681 0.715681i 0.252037 0.967718i \(-0.418900\pi\)
−0.967718 + 0.252037i \(0.918900\pi\)
\(464\) 1.32372 4.07400i 0.0614523 0.189131i
\(465\) 0 0
\(466\) 4.40372 + 3.19949i 0.203998 + 0.148214i
\(467\) 13.0834 + 6.66632i 0.605427 + 0.308481i 0.729700 0.683768i \(-0.239660\pi\)
−0.124273 + 0.992248i \(0.539660\pi\)
\(468\) −0.283553 0.144478i −0.0131073 0.00667848i
\(469\) −14.7351 10.7057i −0.680402 0.494341i
\(470\) 0 0
\(471\) −1.90857 + 5.87397i −0.0879422 + 0.270658i
\(472\) 17.8626 + 17.8626i 0.822193 + 0.822193i
\(473\) −20.7547 11.4510i −0.954303 0.526518i
\(474\) 2.78758i 0.128038i
\(475\) 0 0
\(476\) 0.979695 0.711790i 0.0449043 0.0326249i
\(477\) 20.6931 3.27747i 0.947473 0.150065i
\(478\) −2.13829 + 4.19663i −0.0978030 + 0.191949i
\(479\) −1.51842 4.67321i −0.0693783 0.213524i 0.910356 0.413826i \(-0.135808\pi\)
−0.979734 + 0.200302i \(0.935808\pi\)
\(480\) 0 0
\(481\) 2.68405 + 3.69428i 0.122382 + 0.168444i
\(482\) −16.9124 33.1924i −0.770338 1.51187i
\(483\) −6.87787 + 6.87787i −0.312954 + 0.312954i
\(484\) −0.107888 + 1.63568i −0.00490399 + 0.0743490i
\(485\) 0 0
\(486\) −22.2426 7.22706i −1.00895 0.327826i
\(487\) −1.67972 + 10.6054i −0.0761155 + 0.480574i 0.919956 + 0.392022i \(0.128224\pi\)
−0.996071 + 0.0885527i \(0.971776\pi\)
\(488\) −3.30319 20.8555i −0.149529 0.944086i
\(489\) 12.1996 3.96390i 0.551686 0.179254i
\(490\) 0 0
\(491\) 1.91387 2.63421i 0.0863715 0.118880i −0.763645 0.645637i \(-0.776592\pi\)
0.850016 + 0.526757i \(0.176592\pi\)
\(492\) 0.0707565 + 0.0112067i 0.00318995 + 0.000505238i
\(493\) 1.72079 0.876788i 0.0775007 0.0394886i
\(494\) −7.37092 −0.331634
\(495\) 0 0
\(496\) 1.81272 0.0813935
\(497\) 32.2681 16.4414i 1.44742 0.737498i
\(498\) 2.39705 + 0.379656i 0.107414 + 0.0170128i
\(499\) 5.25588 7.23410i 0.235285 0.323843i −0.675005 0.737813i \(-0.735858\pi\)
0.910290 + 0.413971i \(0.135858\pi\)
\(500\) 0 0
\(501\) 3.28580 1.06762i 0.146799 0.0476978i
\(502\) 3.73926 + 23.6088i 0.166891 + 1.05371i
\(503\) 3.02441 19.0954i 0.134852 0.851421i −0.823808 0.566868i \(-0.808155\pi\)
0.958660 0.284553i \(-0.0918451\pi\)
\(504\) 25.0960 + 8.15419i 1.11787 + 0.363217i
\(505\) 0 0
\(506\) 0.443733 13.4694i 0.0197263 0.598789i
\(507\) 7.14801 7.14801i 0.317454 0.317454i
\(508\) −0.0784471 0.153961i −0.00348053 0.00683092i
\(509\) 1.65845 + 2.28267i 0.0735097 + 0.101177i 0.844189 0.536046i \(-0.180083\pi\)
−0.770679 + 0.637224i \(0.780083\pi\)
\(510\) 0 0
\(511\) 7.11276 + 21.8908i 0.314650 + 0.968393i
\(512\) −8.90156 + 17.4703i −0.393397 + 0.772085i
\(513\) −23.7017 + 3.75398i −1.04645 + 0.165742i
\(514\) −19.2177 + 13.9625i −0.847656 + 0.615858i
\(515\) 0 0
\(516\) 0.886635i 0.0390319i
\(517\) −3.91508 + 0.488562i −0.172185 + 0.0214869i
\(518\) 21.5550 + 21.5550i 0.947071 + 0.947071i
\(519\) −1.11382 + 3.42798i −0.0488912 + 0.150472i
\(520\) 0 0
\(521\) −7.68839 5.58594i −0.336835 0.244725i 0.406491 0.913655i \(-0.366752\pi\)
−0.743325 + 0.668930i \(0.766752\pi\)
\(522\) −3.01884 1.53818i −0.132131 0.0673241i
\(523\) 13.2194 + 6.73563i 0.578045 + 0.294528i 0.718465 0.695564i \(-0.244845\pi\)
−0.140420 + 0.990092i \(0.544845\pi\)
\(524\) −1.74248 1.26599i −0.0761207 0.0553049i
\(525\) 0 0
\(526\) 0.434277 1.33657i 0.0189354 0.0582771i
\(527\) 0.577895 + 0.577895i 0.0251735 + 0.0251735i
\(528\) 10.6896 5.01037i 0.465206 0.218049i
\(529\) 15.3169i 0.665953i
\(530\) 0 0
\(531\) 17.3757 12.6242i 0.754039 0.547842i
\(532\) −3.37007 + 0.533767i −0.146111 + 0.0231417i
\(533\) −0.242681 + 0.476289i −0.0105117 + 0.0206304i
\(534\) 5.25369 + 16.1692i 0.227349 + 0.699709i
\(535\) 0 0
\(536\) −6.89134 9.48511i −0.297661 0.409695i
\(537\) 1.40577 + 2.75897i 0.0606633 + 0.119058i
\(538\) −29.4638 + 29.4638i −1.27027 + 1.27027i
\(539\) 20.0309 + 29.5710i 0.862794 + 1.27371i
\(540\) 0 0
\(541\) −29.7351 9.66153i −1.27841 0.415381i −0.410392 0.911909i \(-0.634608\pi\)
−0.868021 + 0.496528i \(0.834608\pi\)
\(542\) −7.05176 + 44.5230i −0.302899 + 1.91243i
\(543\) 0.787429 + 4.97163i 0.0337918 + 0.213353i
\(544\) 1.54241 0.501159i 0.0661303 0.0214870i
\(545\) 0 0
\(546\) −2.79899 + 3.85248i −0.119786 + 0.164871i
\(547\) 31.1772 + 4.93799i 1.33304 + 0.211133i 0.781966 0.623322i \(-0.214217\pi\)
0.551076 + 0.834455i \(0.314217\pi\)
\(548\) 1.64270 0.836995i 0.0701725 0.0357547i
\(549\) −17.9525 −0.766194
\(550\) 0 0
\(551\) −5.44169 −0.231824
\(552\) −5.57880 + 2.84254i −0.237449 + 0.120987i
\(553\) −9.51017 1.50626i −0.404414 0.0640528i
\(554\) 25.9779 35.7555i 1.10370 1.51911i
\(555\) 0 0
\(556\) 0.143057 0.0464820i 0.00606696 0.00197128i
\(557\) −2.07471 13.0992i −0.0879082 0.555030i −0.991854 0.127383i \(-0.959342\pi\)
0.903945 0.427648i \(-0.140658\pi\)
\(558\) 0.224289 1.41610i 0.00949491 0.0599485i
\(559\) 6.29208 + 2.04442i 0.266127 + 0.0864698i
\(560\) 0 0
\(561\) 5.00516 + 1.81054i 0.211318 + 0.0764412i
\(562\) −8.83073 + 8.83073i −0.372502 + 0.372502i
\(563\) −13.3342 26.1698i −0.561968 1.10292i −0.980828 0.194874i \(-0.937570\pi\)
0.418860 0.908051i \(-0.362430\pi\)
\(564\) −0.0867434 0.119392i −0.00365256 0.00502731i
\(565\) 0 0
\(566\) 4.32248 + 13.3032i 0.181687 + 0.559176i
\(567\) 6.20650 12.1809i 0.260648 0.511551i
\(568\) 23.0252 3.64683i 0.966115 0.153018i
\(569\) 17.3540 12.6084i 0.727518 0.528573i −0.161259 0.986912i \(-0.551555\pi\)
0.888777 + 0.458339i \(0.151555\pi\)
\(570\) 0 0
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) −0.0566536 0.453993i −0.00236881 0.0189824i
\(573\) 9.74484 + 9.74484i 0.407097 + 0.407097i
\(574\) −1.10271 + 3.39380i −0.0460263 + 0.141654i
\(575\) 0 0
\(576\) 13.6590 + 9.92385i 0.569125 + 0.413494i
\(577\) 5.96290 + 3.03825i 0.248239 + 0.126484i 0.573683 0.819077i \(-0.305514\pi\)
−0.325445 + 0.945561i \(0.605514\pi\)
\(578\) −17.3509 8.84070i −0.721700 0.367725i
\(579\) −11.4251 8.30081i −0.474810 0.344970i
\(580\) 0 0
\(581\) −2.59048 + 7.97268i −0.107471 + 0.330763i
\(582\) 2.86867 + 2.86867i 0.118910 + 0.118910i
\(583\) 20.5853 + 21.9879i 0.852558 + 0.910644i
\(584\) 14.8165i 0.613112i
\(585\) 0 0
\(586\) 2.73660 1.98825i 0.113048 0.0821340i
\(587\) −36.0485 + 5.70952i −1.48788 + 0.235657i −0.846839 0.531849i \(-0.821497\pi\)
−0.641041 + 0.767506i \(0.721497\pi\)
\(588\) −0.606512 + 1.19035i −0.0250121 + 0.0490890i
\(589\) −0.711594 2.19006i −0.0293207 0.0902400i
\(590\) 0 0
\(591\) −6.66825 9.17805i −0.274295 0.377535i
\(592\) 9.57587 + 18.7937i 0.393566 + 0.772417i
\(593\) −26.6656 + 26.6656i −1.09502 + 1.09502i −0.100040 + 0.994983i \(0.531897\pi\)
−0.994983 + 0.100040i \(0.968103\pi\)
\(594\) −5.96146 20.6362i −0.244602 0.846714i
\(595\) 0 0
\(596\) −0.172988 0.0562073i −0.00708588 0.00230234i
\(597\) −2.52857 + 15.9648i −0.103487 + 0.653394i
\(598\) 0.588412 + 3.71509i 0.0240620 + 0.151921i
\(599\) −36.7124 + 11.9286i −1.50003 + 0.487388i −0.940026 0.341103i \(-0.889199\pi\)
−0.560002 + 0.828492i \(0.689199\pi\)
\(600\) 0 0
\(601\) 22.4050 30.8379i 0.913920 1.25790i −0.0518905 0.998653i \(-0.516525\pi\)
0.965810 0.259250i \(-0.0834753\pi\)
\(602\) 43.6213 + 6.90894i 1.77787 + 0.281587i
\(603\) −8.88156 + 4.52538i −0.361685 + 0.184288i
\(604\) 0.236459 0.00962138
\(605\) 0 0
\(606\) 16.2198 0.658884
\(607\) −32.2834 + 16.4492i −1.31034 + 0.667653i −0.962852 0.270031i \(-0.912966\pi\)
−0.347491 + 0.937683i \(0.612966\pi\)
\(608\) −4.51336 0.714845i −0.183041 0.0289908i
\(609\) −2.06640 + 2.84415i −0.0837346 + 0.115251i
\(610\) 0 0
\(611\) 1.04729 0.340286i 0.0423689 0.0137665i
\(612\) −0.103676 0.654587i −0.00419087 0.0264601i
\(613\) 0.376892 2.37960i 0.0152225 0.0961113i −0.978907 0.204305i \(-0.934507\pi\)
0.994130 + 0.108194i \(0.0345066\pi\)
\(614\) −24.5743 7.98466i −0.991736 0.322235i
\(615\) 0 0
\(616\) 10.5285 + 36.4455i 0.424206 + 1.46843i
\(617\) 25.5598 25.5598i 1.02900 1.02900i 0.0294325 0.999567i \(-0.490630\pi\)
0.999567 0.0294325i \(-0.00937002\pi\)
\(618\) −5.58599 10.9631i −0.224701 0.441001i
\(619\) 0.537145 + 0.739317i 0.0215897 + 0.0297157i 0.819675 0.572828i \(-0.194154\pi\)
−0.798086 + 0.602544i \(0.794154\pi\)
\(620\) 0 0
\(621\) 3.78415 + 11.6464i 0.151853 + 0.467355i
\(622\) 10.0585 19.7409i 0.403310 0.791540i
\(623\) −58.0020 + 9.18661i −2.32380 + 0.368054i
\(624\) −2.66569 + 1.93674i −0.106713 + 0.0775316i
\(625\) 0 0
\(626\) 38.2851i 1.53018i
\(627\) −10.2496 10.9480i −0.409331 0.437219i
\(628\) 0.781786 + 0.781786i 0.0311967 + 0.0311967i
\(629\) −2.93865 + 9.04423i −0.117172 + 0.360617i
\(630\) 0 0
\(631\) −18.6941 13.5820i −0.744199 0.540692i 0.149824 0.988713i \(-0.452129\pi\)
−0.894023 + 0.448020i \(0.852129\pi\)
\(632\) −5.52255 2.81388i −0.219675 0.111930i
\(633\) 4.74042 + 2.41536i 0.188415 + 0.0960020i
\(634\) −33.5956 24.4087i −1.33425 0.969392i
\(635\) 0 0
\(636\) −0.348145 + 1.07148i −0.0138049 + 0.0424870i
\(637\) −7.04889 7.04889i −0.279287 0.279287i
\(638\) −0.603161 4.83342i −0.0238794 0.191357i
\(639\) 19.8201i 0.784072i
\(640\) 0 0
\(641\) −7.06172 + 5.13064i −0.278921 + 0.202648i −0.718447 0.695582i \(-0.755147\pi\)
0.439525 + 0.898230i \(0.355147\pi\)
\(642\) −7.43296 + 1.17727i −0.293356 + 0.0464630i
\(643\) −14.3186 + 28.1018i −0.564670 + 1.10823i 0.415412 + 0.909634i \(0.363638\pi\)
−0.980082 + 0.198594i \(0.936362\pi\)
\(644\) 0.538058 + 1.65597i 0.0212024 + 0.0652544i
\(645\) 0 0
\(646\) −9.02265 12.4186i −0.354991 0.488604i
\(647\) −6.23845 12.2437i −0.245259 0.481348i 0.735257 0.677789i \(-0.237062\pi\)
−0.980516 + 0.196441i \(0.937062\pi\)
\(648\) 6.22265 6.22265i 0.244449 0.244449i
\(649\) 29.0356 + 10.5032i 1.13975 + 0.412288i
\(650\) 0 0
\(651\) −1.41487 0.459720i −0.0554532 0.0180178i
\(652\) 0.359211 2.26797i 0.0140678 0.0888205i
\(653\) 0.851181 + 5.37414i 0.0333093 + 0.210307i 0.998730 0.0503921i \(-0.0160471\pi\)
−0.965420 + 0.260699i \(0.916047\pi\)
\(654\) −23.1192 + 7.51187i −0.904030 + 0.293737i
\(655\) 0 0
\(656\) −1.45134 + 1.99759i −0.0566652 + 0.0779929i
\(657\) 12.4420 + 1.97062i 0.485408 + 0.0768812i
\(658\) 6.54987 3.33733i 0.255341 0.130102i
\(659\) −42.1160 −1.64061 −0.820304 0.571928i \(-0.806195\pi\)
−0.820304 + 0.571928i \(0.806195\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 32.1913 16.4023i 1.25115 0.637493i
\(663\) −1.46726 0.232390i −0.0569835 0.00902529i
\(664\) −3.17181 + 4.36562i −0.123090 + 0.169419i
\(665\) 0 0
\(666\) 15.8666 5.15536i 0.614817 0.199766i
\(667\) 0.434404 + 2.74272i 0.0168202 + 0.106198i
\(668\) 0.0967487 0.610847i 0.00374332 0.0236344i
\(669\) 11.2385 + 3.65162i 0.434507 + 0.141180i
\(670\) 0 0
\(671\) −14.4746 21.3683i −0.558786 0.824915i
\(672\) −2.08750 + 2.08750i −0.0805269 + 0.0805269i
\(673\) 2.51797 + 4.94179i 0.0970605 + 0.190492i 0.934431 0.356143i \(-0.115908\pi\)
−0.837371 + 0.546635i \(0.815908\pi\)
\(674\) 26.7253 + 36.7842i 1.02942 + 1.41687i
\(675\) 0 0
\(676\) −0.559191 1.72101i −0.0215073 0.0661928i
\(677\) 1.05927 2.07893i 0.0407110 0.0798999i −0.869755 0.493484i \(-0.835723\pi\)
0.910466 + 0.413584i \(0.135723\pi\)
\(678\) −14.6114 + 2.31421i −0.561146 + 0.0888767i
\(679\) −11.3369 + 8.23673i −0.435070 + 0.316097i
\(680\) 0 0
\(681\) 6.89132i 0.264076i
\(682\) 1.86638 0.874800i 0.0714675 0.0334978i
\(683\) 25.0400 + 25.0400i 0.958127 + 0.958127i 0.999158 0.0410307i \(-0.0130641\pi\)
−0.0410307 + 0.999158i \(0.513064\pi\)
\(684\) −0.577053 + 1.77599i −0.0220642 + 0.0679066i
\(685\) 0 0
\(686\) −18.8423 13.6897i −0.719401 0.522676i
\(687\) −14.5376 7.40730i −0.554646 0.282606i
\(688\) 27.2288 + 13.8738i 1.03809 + 0.528933i
\(689\) −6.80110 4.94129i −0.259101 0.188248i
\(690\) 0 0
\(691\) −0.556172 + 1.71172i −0.0211578 + 0.0651170i −0.961078 0.276277i \(-0.910899\pi\)
0.939920 + 0.341394i \(0.110899\pi\)
\(692\) 0.456241 + 0.456241i 0.0173437 + 0.0173437i
\(693\) 32.0050 3.99389i 1.21577 0.151715i
\(694\) 44.2510i 1.67974i
\(695\) 0 0
\(696\) −1.83081 + 1.33016i −0.0693967 + 0.0504196i
\(697\) −1.09952 + 0.174147i −0.0416473 + 0.00659628i
\(698\) 14.2205 27.9094i 0.538255 1.05638i
\(699\) −0.955200 2.93980i −0.0361290 0.111194i
\(700\) 0 0
\(701\) 10.4715 + 14.4128i 0.395502 + 0.544362i 0.959608 0.281340i \(-0.0907790\pi\)
−0.564106 + 0.825703i \(0.690779\pi\)
\(702\) 2.72174 + 5.34171i 0.102725 + 0.201610i
\(703\) 18.9468 18.9468i 0.714593 0.714593i
\(704\) −0.799189 + 24.2592i −0.0301206 + 0.914304i
\(705\) 0 0
\(706\) −5.57255 1.81063i −0.209726 0.0681440i
\(707\) −8.76432 + 55.3357i −0.329616 + 2.08111i
\(708\) 0.180671 + 1.14071i 0.00679003 + 0.0428706i
\(709\) −9.55567 + 3.10483i −0.358871 + 0.116604i −0.482903 0.875674i \(-0.660417\pi\)
0.124032 + 0.992278i \(0.460417\pi\)
\(710\) 0 0
\(711\) −3.09743 + 4.26324i −0.116163 + 0.159884i
\(712\) −37.3365 5.91351i −1.39924 0.221618i
\(713\) −1.04703 + 0.533487i −0.0392115 + 0.0199793i
\(714\) −9.91691 −0.371131
\(715\) 0 0
\(716\) 0.554298 0.0207151
\(717\) 2.38314 1.21427i 0.0890001 0.0453478i
\(718\) −15.5509 2.46302i −0.580355 0.0919193i
\(719\) 4.03181 5.54931i 0.150361 0.206954i −0.727191 0.686435i \(-0.759175\pi\)
0.877553 + 0.479480i \(0.159175\pi\)
\(720\) 0 0
\(721\) 40.4204 13.1334i 1.50533 0.489113i
\(722\) 2.40884 + 15.2088i 0.0896478 + 0.566014i
\(723\) −3.30933 + 20.8943i −0.123075 + 0.777067i
\(724\) 0.856964 + 0.278444i 0.0318488 + 0.0103483i
\(725\) 0 0
\(726\) 8.58812 10.3174i 0.318735 0.382915i
\(727\) 25.2212 25.2212i 0.935401 0.935401i −0.0626351 0.998036i \(-0.519950\pi\)
0.998036 + 0.0626351i \(0.0199504\pi\)
\(728\) −4.80685 9.43398i −0.178154 0.349647i
\(729\) 2.08750 + 2.87320i 0.0773149 + 0.106415i
\(730\) 0 0
\(731\) 4.25759 + 13.1035i 0.157473 + 0.484651i
\(732\) 0.438272 0.860158i 0.0161990 0.0317924i
\(733\) 7.61562 1.20620i 0.281289 0.0445519i −0.0141956 0.999899i \(-0.504519\pi\)
0.295485 + 0.955347i \(0.404519\pi\)
\(734\) 41.0401 29.8174i 1.51482 1.10058i
\(735\) 0 0
\(736\) 2.33188i 0.0859543i
\(737\) −12.5474 6.92277i −0.462189 0.255004i
\(738\) 1.38095 + 1.38095i 0.0508336 + 0.0508336i
\(739\) 12.6089 38.8062i 0.463825 1.42751i −0.396629 0.917979i \(-0.629820\pi\)
0.860454 0.509528i \(-0.170180\pi\)
\(740\) 0 0
\(741\) 3.38633 + 2.46031i 0.124400 + 0.0903819i
\(742\) −50.0027 25.4776i −1.83566 0.935313i
\(743\) −39.5290 20.1411i −1.45018 0.738904i −0.461248 0.887271i \(-0.652598\pi\)
−0.988932 + 0.148368i \(0.952598\pi\)
\(744\) −0.774746 0.562886i −0.0284036 0.0206364i
\(745\) 0 0
\(746\) 6.34530 19.5288i 0.232318 0.715001i
\(747\) 3.24412 + 3.24412i 0.118696 + 0.118696i
\(748\) 0.695544 0.651178i 0.0254316 0.0238094i
\(749\) 25.9946i 0.949821i
\(750\) 0 0
\(751\) 10.6518 7.73896i 0.388688 0.282399i −0.376229 0.926527i \(-0.622780\pi\)
0.764918 + 0.644128i \(0.222780\pi\)
\(752\) 5.02390 0.795708i 0.183203 0.0290165i
\(753\) 6.16240 12.0944i 0.224570 0.440744i
\(754\) 0.420104 + 1.29295i 0.0152993 + 0.0470864i
\(755\) 0 0
\(756\) 1.63123 + 2.24520i 0.0593274 + 0.0816571i
\(757\) −9.02166 17.7060i −0.327898 0.643535i 0.666929 0.745121i \(-0.267608\pi\)
−0.994827 + 0.101586i \(0.967608\pi\)
\(758\) −27.4703 + 27.4703i −0.997768 + 0.997768i
\(759\) −4.69977 + 6.03997i −0.170591 + 0.219237i
\(760\) 0 0
\(761\) 16.8706 + 5.48158i 0.611558 + 0.198707i 0.598389 0.801206i \(-0.295808\pi\)
0.0131694 + 0.999913i \(0.495808\pi\)
\(762\) −0.221363 + 1.39763i −0.00801914 + 0.0506309i
\(763\) −13.1353 82.9328i −0.475528 3.00237i
\(764\) 2.34625 0.762341i 0.0848842 0.0275805i
\(765\) 0 0
\(766\) −20.7124 + 28.5082i −0.748371 + 1.03004i
\(767\) −8.51175 1.34813i −0.307342 0.0486781i
\(768\) −2.63847 + 1.34437i −0.0952076 + 0.0485107i
\(769\) 33.4001 1.20444 0.602218 0.798331i \(-0.294284\pi\)
0.602218 + 0.798331i \(0.294284\pi\)
\(770\) 0 0
\(771\) 13.4894 0.485810
\(772\) −2.25247 + 1.14769i −0.0810683 + 0.0413064i
\(773\) 37.6915 + 5.96974i 1.35567 + 0.214717i 0.791614 0.611021i \(-0.209241\pi\)
0.564054 + 0.825738i \(0.309241\pi\)
\(774\) 14.2073 19.5547i 0.510671 0.702878i
\(775\) 0 0
\(776\) −8.57893 + 2.78746i −0.307966 + 0.100064i
\(777\) −2.70797 17.0975i −0.0971480 0.613369i
\(778\) 1.73036 10.9251i 0.0620365 0.391683i
\(779\) 2.98315 + 0.969285i 0.106882 + 0.0347282i
\(780\) 0 0
\(781\) 23.5913 15.9804i 0.844163 0.571824i
\(782\) −5.53895 + 5.53895i −0.198072 + 0.198072i
\(783\) 2.00936 + 3.94360i 0.0718088 + 0.140933i
\(784\) −27.0654 37.2523i −0.966621 1.33044i
\(785\) 0 0
\(786\) 5.45050 + 16.7749i 0.194413 + 0.598341i
\(787\) −16.6820 + 32.7403i −0.594649 + 1.16706i 0.376013 + 0.926614i \(0.377295\pi\)
−0.970662 + 0.240450i \(0.922705\pi\)
\(788\) −2.00581 + 0.317689i −0.0714541 + 0.0113172i
\(789\) −0.645642 + 0.469086i −0.0229855 + 0.0166999i
\(790\) 0 0
\(791\) 51.0989i 1.81687i
\(792\) 20.3881 + 3.92127i 0.724458 + 0.139336i
\(793\) 5.09361 + 5.09361i 0.180879 + 0.180879i
\(794\) 10.3140 31.7434i 0.366032 1.12653i
\(795\) 0 0
\(796\) 2.34087 + 1.70074i 0.0829700 + 0.0602812i
\(797\) −17.9460 9.14395i −0.635680 0.323895i 0.106283 0.994336i \(-0.466105\pi\)
−0.741963 + 0.670441i \(0.766105\pi\)
\(798\) 24.8968 + 12.6855i 0.881337 + 0.449063i
\(799\) 1.85529 + 1.34795i 0.0656355 + 0.0476870i
\(800\) 0 0
\(801\) −9.93160 + 30.5663i −0.350916 + 1.08001i
\(802\) 25.0253 + 25.0253i 0.883674 + 0.883674i
\(803\) 7.68606 + 16.3982i 0.271235 + 0.578679i
\(804\) 0.536020i 0.0189040i
\(805\) 0 0
\(806\) −0.465424 + 0.338150i −0.0163939 + 0.0119108i
\(807\) 23.3708 3.70156i 0.822690 0.130301i
\(808\) −16.3728 + 32.1334i −0.575993 + 1.13045i
\(809\) 16.0484 + 49.3920i 0.564233 + 1.73653i 0.670220 + 0.742162i \(0.266200\pi\)
−0.105987 + 0.994367i \(0.533800\pi\)
\(810\) 0 0
\(811\) −23.0252 31.6914i −0.808523 1.11284i −0.991550 0.129728i \(-0.958590\pi\)
0.183027 0.983108i \(-0.441410\pi\)
\(812\) 0.285706 + 0.560729i 0.0100263 + 0.0196777i
\(813\) 18.1009 18.1009i 0.634826 0.634826i
\(814\) 18.9290 + 14.7289i 0.663462 + 0.516247i
\(815\) 0 0
\(816\) −6.52607 2.12045i −0.228458 0.0742306i
\(817\) 6.07296 38.3431i 0.212466 1.34146i
\(818\) −1.34290 8.47873i −0.0469533 0.296452i
\(819\) −8.56139 + 2.78176i −0.299159 + 0.0972027i
\(820\) 0 0
\(821\) −14.6926 + 20.2226i −0.512775 + 0.705774i −0.984384 0.176034i \(-0.943673\pi\)
0.471609 + 0.881808i \(0.343673\pi\)
\(822\) −14.9121 2.36185i −0.520120 0.0823789i
\(823\) 20.4719 10.4310i 0.713606 0.363600i −0.0591972 0.998246i \(-0.518854\pi\)
0.772803 + 0.634646i \(0.218854\pi\)
\(824\) 27.3580 0.953062
\(825\) 0 0
\(826\) −57.5294 −2.00170
\(827\) 4.93382 2.51391i 0.171566 0.0874171i −0.366099 0.930576i \(-0.619307\pi\)
0.537664 + 0.843159i \(0.319307\pi\)
\(828\) 0.941197 + 0.149071i 0.0327089 + 0.00518057i
\(829\) −8.80126 + 12.1139i −0.305680 + 0.420733i −0.934028 0.357200i \(-0.883732\pi\)
0.628348 + 0.777933i \(0.283732\pi\)
\(830\) 0 0
\(831\) −23.8694 + 7.75564i −0.828020 + 0.269040i
\(832\) −1.05976 6.69109i −0.0367407 0.231972i
\(833\) 3.24759 20.5045i 0.112522 0.710439i
\(834\) −1.17153 0.380652i −0.0405666 0.0131809i
\(835\) 0 0
\(836\) −2.57917 + 0.745079i −0.0892023 + 0.0257691i
\(837\) −1.32438 + 1.32438i −0.0457773 + 0.0457773i
\(838\) −7.36068 14.4461i −0.254270 0.499034i
\(839\) 7.40356 + 10.1901i 0.255599 + 0.351802i 0.917462 0.397823i \(-0.130234\pi\)
−0.661863 + 0.749625i \(0.730234\pi\)
\(840\) 0 0
\(841\) −8.65134 26.6261i −0.298322 0.918141i
\(842\) 5.23975 10.2836i 0.180574 0.354396i
\(843\) 7.00457 1.10941i 0.241250 0.0382103i
\(844\) 0.770496 0.559798i 0.0265216 0.0192691i
\(845\) 0 0
\(846\) 4.02315i 0.138319i
\(847\) 30.5585 + 34.8744i 1.05000 + 1.19830i
\(848\) −27.4579 27.4579i −0.942907 0.942907i
\(849\) 2.45461 7.55451i 0.0842420 0.259270i
\(850\) 0 0
\(851\) −11.0621 8.03706i −0.379203 0.275507i
\(852\) 0.949642 + 0.483867i 0.0325342 + 0.0165770i
\(853\) 44.3481 + 22.5965i 1.51845 + 0.773689i 0.996835 0.0794926i \(-0.0253300\pi\)
0.521614 + 0.853181i \(0.325330\pi\)
\(854\) 38.9035 + 28.2651i 1.33125 + 0.967211i
\(855\) 0 0
\(856\) 5.17078 15.9140i 0.176734 0.543930i
\(857\) 21.2860 + 21.2860i 0.727117 + 0.727117i 0.970044 0.242927i \(-0.0781077\pi\)
−0.242927 + 0.970044i \(0.578108\pi\)
\(858\) −1.80996 + 3.28051i −0.0617909 + 0.111995i
\(859\) 9.31402i 0.317790i 0.987295 + 0.158895i \(0.0507932\pi\)
−0.987295 + 0.158895i \(0.949207\pi\)
\(860\) 0 0
\(861\) 1.63941 1.19110i 0.0558709 0.0405926i
\(862\) 10.5740 1.67475i 0.360151 0.0570424i
\(863\) 16.0664 31.5320i 0.546905 1.07336i −0.437790 0.899077i \(-0.644239\pi\)
0.984695 0.174285i \(-0.0557613\pi\)
\(864\) 1.14852 + 3.53479i 0.0390735 + 0.120256i
\(865\) 0 0
\(866\) 4.34927 + 5.98625i 0.147794 + 0.203421i
\(867\) 5.02038 + 9.85305i 0.170501 + 0.334627i
\(868\) −0.188310 + 0.188310i −0.00639166 + 0.00639166i
\(869\) −7.57178 0.249443i −0.256855 0.00846176i
\(870\) 0 0
\(871\) 3.80391 + 1.23597i 0.128891 + 0.0418791i
\(872\) 8.45531 53.3847i 0.286333 1.80783i
\(873\) 1.19973 + 7.57478i 0.0406046 + 0.256368i
\(874\) 20.9911 6.82042i 0.710034 0.230704i
\(875\) 0 0
\(876\) −0.398163 + 0.548025i −0.0134527 + 0.0185160i
\(877\) −21.5902 3.41955i −0.729048 0.115470i −0.219133 0.975695i \(-0.570323\pi\)
−0.509915 + 0.860225i \(0.670323\pi\)
\(878\) 1.69512 0.863707i 0.0572076 0.0291487i
\(879\) −1.92089 −0.0647901
\(880\) 0 0
\(881\) 46.4810 1.56599 0.782993 0.622031i \(-0.213692\pi\)
0.782993 + 0.622031i \(0.213692\pi\)
\(882\) −32.4505 + 16.5344i −1.09267 + 0.556741i
\(883\) −27.5798 4.36822i −0.928135 0.147002i −0.325976 0.945378i \(-0.605693\pi\)
−0.602159 + 0.798376i \(0.705693\pi\)
\(884\) −0.156308 + 0.215140i −0.00525721 + 0.00723593i
\(885\) 0 0
\(886\) 21.4719 6.97665i 0.721363 0.234385i
\(887\) −1.10133 6.95351i −0.0369790 0.233476i 0.962276 0.272076i \(-0.0877102\pi\)
−0.999255 + 0.0385999i \(0.987710\pi\)
\(888\) 1.74315 11.0058i 0.0584963 0.369331i
\(889\) −4.64858 1.51041i −0.155908 0.0506577i
\(890\) 0 0
\(891\) 3.65892 10.1149i 0.122578 0.338862i
\(892\) 1.49577 1.49577i 0.0500822 0.0500822i
\(893\) −2.93351 5.75734i −0.0981662 0.192662i
\(894\) 0.875532 + 1.20507i 0.0292822 + 0.0403035i
\(895\) 0 0
\(896\) −16.1666 49.7558i −0.540090 1.66223i
\(897\) 0.969718 1.90318i 0.0323780 0.0635453i
\(898\) 17.5527 2.78007i 0.585740 0.0927721i
\(899\) −0.343606 + 0.249644i −0.0114599 + 0.00832611i
\(900\) 0 0
\(901\) 17.5071i 0.583247i
\(902\) −0.530284 + 2.75713i −0.0176565 + 0.0918024i
\(903\) −17.7343 17.7343i −0.590160 0.590160i
\(904\) 10.1645 31.2830i 0.338065 1.04046i
\(905\) 0 0
\(906\) −1.56659 1.13820i −0.0520466 0.0378141i
\(907\) 26.3281 + 13.4148i 0.874211 + 0.445433i 0.832712 0.553706i \(-0.186787\pi\)
0.0414984 + 0.999139i \(0.486787\pi\)
\(908\) 1.09916 + 0.560050i 0.0364769 + 0.0185859i
\(909\) 24.8061 + 18.0227i 0.822765 + 0.597774i
\(910\) 0 0
\(911\) 5.23886 16.1236i 0.173571 0.534198i −0.825994 0.563679i \(-0.809386\pi\)
0.999565 + 0.0294813i \(0.00938555\pi\)
\(912\) 13.6715 + 13.6715i 0.452709 + 0.452709i
\(913\) −1.24574 + 6.47702i −0.0412279 + 0.214358i
\(914\) 5.14655i 0.170233i
\(915\) 0 0
\(916\) −2.36292 + 1.71676i −0.0780729 + 0.0567233i
\(917\) −60.1748 + 9.53075i −1.98715 + 0.314733i
\(918\) −5.66813 + 11.1243i −0.187076 + 0.367158i
\(919\) 1.55222 + 4.77725i 0.0512030 + 0.157587i 0.973388 0.229161i \(-0.0735983\pi\)
−0.922185 + 0.386748i \(0.873598\pi\)
\(920\) 0 0
\(921\) 8.62467 + 11.8708i 0.284193 + 0.391158i
\(922\) −3.62937 7.12304i −0.119527 0.234585i
\(923\) −5.62351 + 5.62351i −0.185100 + 0.185100i
\(924\) −0.589975 + 1.63096i −0.0194087 + 0.0536545i
\(925\) 0 0
\(926\) 30.3635 + 9.86569i 0.997805 + 0.324207i
\(927\) 3.63865 22.9736i 0.119509 0.754551i
\(928\) 0.131845 + 0.832439i 0.00432804 + 0.0273262i
\(929\) −11.2348 + 3.65041i −0.368602 + 0.119766i −0.487460 0.873145i \(-0.662077\pi\)
0.118858 + 0.992911i \(0.462077\pi\)
\(930\) 0 0
\(931\) −34.3822 + 47.3231i −1.12683 + 1.55095i
\(932\) −0.546524 0.0865609i −0.0179020 0.00283540i
\(933\) −11.2103 + 5.71194i −0.367009 + 0.187001i
\(934\) −21.5258 −0.704346
\(935\) 0 0
\(936\) −5.79466 −0.189405
\(937\) 2.04229 1.04060i 0.0667187 0.0339949i −0.420313 0.907379i \(-0.638080\pi\)
0.487032 + 0.873384i \(0.338080\pi\)
\(938\) 26.3715 + 4.17683i 0.861060 + 0.136378i
\(939\) 12.7791 17.5889i 0.417029 0.573991i
\(940\) 0 0
\(941\) 1.68653 0.547988i 0.0549794 0.0178639i −0.281398 0.959591i \(-0.590798\pi\)
0.336378 + 0.941727i \(0.390798\pi\)
\(942\) −1.41638 8.94264i −0.0461480 0.291367i
\(943\) 0.250397 1.58094i 0.00815404 0.0514826i
\(944\) −37.8587 12.3010i −1.23219 0.400364i
\(945\) 0 0
\(946\) 34.7303 + 1.14415i 1.12918 + 0.0371994i
\(947\) 8.63289 8.63289i 0.280531 0.280531i −0.552790 0.833321i \(-0.686437\pi\)
0.833321 + 0.552790i \(0.186437\pi\)
\(948\) −0.128648 0.252485i −0.00417828 0.00820033i
\(949\) −2.97101 4.08925i −0.0964431 0.132743i
\(950\) 0 0
\(951\) 7.28714 + 22.4275i 0.236302 + 0.727262i
\(952\) 10.0105 19.6466i 0.324441 0.636752i
\(953\) 18.2074 2.88376i 0.589794 0.0934143i 0.145598 0.989344i \(-0.453489\pi\)
0.444196 + 0.895930i \(0.353489\pi\)
\(954\) −24.8476 + 18.0528i −0.804470 + 0.584482i
\(955\) 0 0
\(956\) 0.478792i 0.0154852i
\(957\) −1.33623 + 2.42189i −0.0431941 + 0.0782884i
\(958\) 5.09348 + 5.09348i 0.164563 + 0.164563i
\(959\) 16.1154 49.5982i 0.520395 1.60161i
\(960\) 0 0
\(961\) 24.9341 + 18.1157i 0.804327 + 0.584377i
\(962\) −5.96448 3.03906i −0.192303 0.0979831i
\(963\) −12.6759 6.45868i −0.408474 0.208128i
\(964\) 3.06368 + 2.22589i 0.0986743 + 0.0716911i
\(965\) 0 0
\(966\) 4.40628 13.5611i 0.141770 0.436322i
\(967\) 9.49113 + 9.49113i 0.305214 + 0.305214i 0.843050 0.537836i \(-0.180758\pi\)
−0.537836 + 0.843050i \(0.680758\pi\)
\(968\) 11.7709 + 27.4289i 0.378333 + 0.881598i
\(969\) 8.71697i 0.280029i
\(970\) 0 0
\(971\) −41.4379 + 30.1064i −1.32981 + 0.966161i −0.330053 + 0.943963i \(0.607067\pi\)
−0.999754 + 0.0221983i \(0.992933\pi\)
\(972\) 2.34815 0.371911i 0.0753171 0.0119291i
\(973\) 1.93167 3.79111i 0.0619265 0.121538i
\(974\) −4.86416 14.9703i −0.155858 0.479681i
\(975\) 0 0
\(976\) 19.5578 + 26.9190i 0.626029 + 0.861655i
\(977\) 6.57391 + 12.9020i 0.210318 + 0.412772i 0.971933 0.235257i \(-0.0755933\pi\)
−0.761615 + 0.648030i \(0.775593\pi\)
\(978\) −13.2967 + 13.2967i −0.425183 + 0.425183i
\(979\) −44.3897 + 12.8235i −1.41870 + 0.409840i
\(980\) 0 0
\(981\) −43.7046 14.2005i −1.39538 0.453386i
\(982\) −0.746699 + 4.71447i −0.0238281 + 0.150445i
\(983\) 9.00238 + 56.8388i 0.287131 + 1.81288i 0.535865 + 0.844304i \(0.319986\pi\)
−0.248734 + 0.968572i \(0.580014\pi\)
\(984\) 1.24059 0.403091i 0.0395484 0.0128501i
\(985\) 0 0
\(986\) −1.66413 + 2.29048i −0.0529967 + 0.0729437i
\(987\) −4.12308 0.653031i −0.131239 0.0207862i
\(988\) 0.667621 0.340170i 0.0212399 0.0108222i
\(989\) −19.8105 −0.629936
\(990\) 0 0
\(991\) 13.1102 0.416458 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(992\) −0.317782 + 0.161918i −0.0100896 + 0.00514090i
\(993\) −20.2641 3.20952i −0.643062 0.101851i
\(994\) −31.2055 + 42.9507i −0.989779 + 1.36231i
\(995\) 0 0
\(996\) −0.234634 + 0.0762372i −0.00743466 + 0.00241567i
\(997\) 0.352744 + 2.22714i 0.0111715 + 0.0705343i 0.992644 0.121068i \(-0.0386318\pi\)
−0.981473 + 0.191602i \(0.938632\pi\)
\(998\) −2.05059 + 12.9469i −0.0649104 + 0.409828i
\(999\) −20.7269 6.73459i −0.655772 0.213073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.68.1 32
5.2 odd 4 inner 275.2.bm.b.57.1 32
5.3 odd 4 55.2.l.a.2.4 32
5.4 even 2 55.2.l.a.13.4 yes 32
11.6 odd 10 inner 275.2.bm.b.193.1 32
15.8 even 4 495.2.bj.a.442.1 32
15.14 odd 2 495.2.bj.a.343.1 32
20.3 even 4 880.2.cm.a.497.3 32
20.19 odd 2 880.2.cm.a.673.3 32
55.3 odd 20 605.2.m.d.282.4 32
55.4 even 10 605.2.e.b.483.13 32
55.8 even 20 605.2.m.c.282.1 32
55.9 even 10 605.2.m.c.118.1 32
55.13 even 20 605.2.m.d.602.1 32
55.14 even 10 605.2.m.d.403.1 32
55.17 even 20 inner 275.2.bm.b.182.1 32
55.18 even 20 605.2.e.b.362.13 32
55.19 odd 10 605.2.m.c.403.4 32
55.24 odd 10 605.2.m.d.118.4 32
55.28 even 20 55.2.l.a.17.4 yes 32
55.29 odd 10 605.2.e.b.483.4 32
55.38 odd 20 605.2.m.e.457.1 32
55.39 odd 10 55.2.l.a.28.4 yes 32
55.43 even 4 605.2.m.e.112.1 32
55.48 odd 20 605.2.e.b.362.4 32
55.49 even 10 605.2.m.e.578.1 32
55.53 odd 20 605.2.m.c.602.4 32
55.54 odd 2 605.2.m.e.233.1 32
165.83 odd 20 495.2.bj.a.127.1 32
165.149 even 10 495.2.bj.a.28.1 32
220.39 even 10 880.2.cm.a.193.3 32
220.83 odd 20 880.2.cm.a.17.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 5.3 odd 4
55.2.l.a.13.4 yes 32 5.4 even 2
55.2.l.a.17.4 yes 32 55.28 even 20
55.2.l.a.28.4 yes 32 55.39 odd 10
275.2.bm.b.57.1 32 5.2 odd 4 inner
275.2.bm.b.68.1 32 1.1 even 1 trivial
275.2.bm.b.182.1 32 55.17 even 20 inner
275.2.bm.b.193.1 32 11.6 odd 10 inner
495.2.bj.a.28.1 32 165.149 even 10
495.2.bj.a.127.1 32 165.83 odd 20
495.2.bj.a.343.1 32 15.14 odd 2
495.2.bj.a.442.1 32 15.8 even 4
605.2.e.b.362.4 32 55.48 odd 20
605.2.e.b.362.13 32 55.18 even 20
605.2.e.b.483.4 32 55.29 odd 10
605.2.e.b.483.13 32 55.4 even 10
605.2.m.c.118.1 32 55.9 even 10
605.2.m.c.282.1 32 55.8 even 20
605.2.m.c.403.4 32 55.19 odd 10
605.2.m.c.602.4 32 55.53 odd 20
605.2.m.d.118.4 32 55.24 odd 10
605.2.m.d.282.4 32 55.3 odd 20
605.2.m.d.403.1 32 55.14 even 10
605.2.m.d.602.1 32 55.13 even 20
605.2.m.e.112.1 32 55.43 even 4
605.2.m.e.233.1 32 55.54 odd 2
605.2.m.e.457.1 32 55.38 odd 20
605.2.m.e.578.1 32 55.49 even 10
880.2.cm.a.17.3 32 220.83 odd 20
880.2.cm.a.193.3 32 220.39 even 10
880.2.cm.a.497.3 32 20.3 even 4
880.2.cm.a.673.3 32 20.19 odd 2