Properties

Label 275.2
Level 275
Weight 2
Dimension 2536
Nonzero newspaces 21
Newform subspaces 52
Sturm bound 12000
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 21 \)
Newform subspaces: \( 52 \)
Sturm bound: \(12000\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(275))\).

Total New Old
Modular forms 3280 2904 376
Cusp forms 2721 2536 185
Eisenstein series 559 368 191

Trace form

\( 2536 q - 51 q^{2} - 53 q^{3} - 59 q^{4} - 70 q^{5} - 98 q^{6} - 66 q^{7} - 85 q^{8} - 81 q^{9} - 90 q^{10} - 104 q^{11} - 186 q^{12} - 78 q^{13} - 108 q^{14} - 100 q^{15} - 129 q^{16} - 76 q^{17} - 103 q^{18}+ \cdots + 179 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
275.2.a \(\chi_{275}(1, \cdot)\) 275.2.a.a 1 1
275.2.a.b 1
275.2.a.c 2
275.2.a.d 2
275.2.a.e 2
275.2.a.f 2
275.2.a.g 2
275.2.a.h 4
275.2.b \(\chi_{275}(199, \cdot)\) 275.2.b.a 2 1
275.2.b.b 2
275.2.b.c 4
275.2.b.d 4
275.2.b.e 4
275.2.e \(\chi_{275}(32, \cdot)\) 275.2.e.a 4 2
275.2.e.b 4
275.2.e.c 8
275.2.e.d 16
275.2.g \(\chi_{275}(16, \cdot)\) 275.2.g.a 112 4
275.2.h \(\chi_{275}(26, \cdot)\) 275.2.h.a 8 4
275.2.h.b 8
275.2.h.c 16
275.2.h.d 16
275.2.h.e 16
275.2.i \(\chi_{275}(56, \cdot)\) 275.2.i.a 44 4
275.2.i.b 60
275.2.j \(\chi_{275}(81, \cdot)\) 275.2.j.a 112 4
275.2.k \(\chi_{275}(36, \cdot)\) 275.2.k.a 4 4
275.2.k.b 4
275.2.k.c 4
275.2.k.d 100
275.2.l \(\chi_{275}(31, \cdot)\) 275.2.l.a 4 4
275.2.l.b 4
275.2.l.c 4
275.2.l.d 100
275.2.n \(\chi_{275}(104, \cdot)\) 275.2.n.a 112 4
275.2.t \(\chi_{275}(14, \cdot)\) 275.2.t.a 112 4
275.2.y \(\chi_{275}(34, \cdot)\) 275.2.y.a 40 4
275.2.y.b 56
275.2.z \(\chi_{275}(49, \cdot)\) 275.2.z.a 16 4
275.2.z.b 16
275.2.z.c 32
275.2.ba \(\chi_{275}(4, \cdot)\) 275.2.ba.a 112 4
275.2.bb \(\chi_{275}(9, \cdot)\) 275.2.bb.a 112 4
275.2.bf \(\chi_{275}(28, \cdot)\) 275.2.bf.a 224 8
275.2.bg \(\chi_{275}(13, \cdot)\) 275.2.bg.a 224 8
275.2.bl \(\chi_{275}(17, \cdot)\) 275.2.bl.a 224 8
275.2.bm \(\chi_{275}(7, \cdot)\) 275.2.bm.a 32 8
275.2.bm.b 32
275.2.bm.c 64
275.2.bn \(\chi_{275}(2, \cdot)\) 275.2.bn.a 224 8
275.2.bo \(\chi_{275}(87, \cdot)\) 275.2.bo.a 16 8
275.2.bo.b 208

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(275))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(275)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 1}\)