Defining parameters
Level: | \( N \) | = | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 21 \) | ||
Newform subspaces: | \( 52 \) | ||
Sturm bound: | \(12000\) | ||
Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(275))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3280 | 2904 | 376 |
Cusp forms | 2721 | 2536 | 185 |
Eisenstein series | 559 | 368 | 191 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(275))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(275)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 1}\)