Properties

Label 275.2.bm.b.57.1
Level $275$
Weight $2$
Character 275.57
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 57.1
Character \(\chi\) \(=\) 275.57
Dual form 275.2.bm.b.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.665529 - 1.30617i) q^{2} +(0.130227 - 0.822224i) q^{3} +(-0.0875924 + 0.120561i) q^{4} +(-1.16064 + 0.377114i) q^{6} +(4.16343 - 0.659422i) q^{7} +(-2.68004 - 0.424477i) q^{8} +(2.19408 + 0.712899i) q^{9} +(-0.920480 - 3.18633i) q^{11} +(0.0877208 + 0.0877208i) q^{12} +(0.824787 - 0.420250i) q^{13} +(-3.63220 - 4.99930i) q^{14} +(1.32131 + 4.06656i) q^{16} +(-1.71765 - 0.875188i) q^{17} +(-0.529052 - 3.34030i) q^{18} +(-4.39439 + 3.19271i) q^{19} -3.50915i q^{21} +(-3.54930 + 3.32290i) q^{22} +(-1.95998 + 1.95998i) q^{23} +(-0.698030 + 2.14832i) q^{24} +(-1.09784 - 0.797627i) q^{26} +(2.00570 - 3.93640i) q^{27} +(-0.285184 + 0.559706i) q^{28} +(0.810497 + 0.588860i) q^{29} +(0.131006 - 0.403196i) q^{31} +(0.594873 - 0.594873i) q^{32} +(-2.73975 + 0.341892i) q^{33} +2.82602i q^{34} +(-0.278132 + 0.202075i) q^{36} +(0.771690 + 4.87226i) q^{37} +(7.09483 + 3.61500i) q^{38} +(-0.238130 - 0.732888i) q^{39} +(0.339428 + 0.467182i) q^{41} +(-4.58356 + 2.33544i) q^{42} +(-5.05373 - 5.05373i) q^{43} +(0.464773 + 0.168125i) q^{44} +(3.86451 + 1.25566i) q^{46} +(1.17495 + 0.186094i) q^{47} +(3.51569 - 0.556831i) q^{48} +(10.2419 - 3.32780i) q^{49} +(-0.943286 + 1.29832i) q^{51} +(-0.0215795 + 0.136247i) q^{52} +(4.12294 + 8.09173i) q^{53} -6.47647 q^{54} -11.4381 q^{56} +(2.05285 + 4.02895i) q^{57} +(0.229745 - 1.45055i) q^{58} +(5.47214 - 7.53175i) q^{59} +(7.40093 - 2.40471i) q^{61} +(-0.613832 + 0.0972215i) q^{62} +(9.60498 + 1.52128i) q^{63} +(6.96021 + 2.26151i) q^{64} +(2.26996 + 3.35105i) q^{66} +(3.05526 + 3.05526i) q^{67} +(0.255966 - 0.130421i) q^{68} +(1.35630 + 1.86679i) q^{69} +(2.65487 + 8.17086i) q^{71} +(-5.57761 - 2.84193i) q^{72} +(0.854195 + 5.39318i) q^{73} +(5.85044 - 4.25059i) q^{74} -0.809447i q^{76} +(-5.93349 - 12.6591i) q^{77} +(-0.798797 + 0.798797i) q^{78} +(-0.705861 + 2.17242i) q^{79} +(2.62377 + 1.90628i) q^{81} +(0.384322 - 0.754275i) q^{82} +(-0.902846 + 1.77193i) q^{83} +(0.423065 + 0.307374i) q^{84} +(-3.23765 + 9.96446i) q^{86} +(0.589724 - 0.589724i) q^{87} +(1.11440 + 8.93023i) q^{88} +13.9313i q^{89} +(3.15682 - 2.29356i) q^{91} +(-0.0646171 - 0.407977i) q^{92} +(-0.314457 - 0.160224i) q^{93} +(-0.538893 - 1.65854i) q^{94} +(-0.411650 - 0.566587i) q^{96} +(2.96200 - 1.50922i) q^{97} +(-11.1630 - 11.1630i) q^{98} +(0.251929 - 7.64727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.665529 1.30617i −0.470600 0.923605i −0.997292 0.0735483i \(-0.976568\pi\)
0.526691 0.850057i \(-0.323432\pi\)
\(3\) 0.130227 0.822224i 0.0751869 0.474711i −0.921151 0.389206i \(-0.872750\pi\)
0.996338 0.0855054i \(-0.0272505\pi\)
\(4\) −0.0875924 + 0.120561i −0.0437962 + 0.0602803i
\(5\) 0 0
\(6\) −1.16064 + 0.377114i −0.473829 + 0.153956i
\(7\) 4.16343 0.659422i 1.57363 0.249238i 0.692253 0.721655i \(-0.256618\pi\)
0.881375 + 0.472417i \(0.156618\pi\)
\(8\) −2.68004 0.424477i −0.947538 0.150075i
\(9\) 2.19408 + 0.712899i 0.731359 + 0.237633i
\(10\) 0 0
\(11\) −0.920480 3.18633i −0.277535 0.960716i
\(12\) 0.0877208 + 0.0877208i 0.0253228 + 0.0253228i
\(13\) 0.824787 0.420250i 0.228755 0.116556i −0.335857 0.941913i \(-0.609026\pi\)
0.564612 + 0.825357i \(0.309026\pi\)
\(14\) −3.63220 4.99930i −0.970747 1.33612i
\(15\) 0 0
\(16\) 1.32131 + 4.06656i 0.330326 + 1.01664i
\(17\) −1.71765 0.875188i −0.416592 0.212264i 0.233115 0.972449i \(-0.425108\pi\)
−0.649707 + 0.760185i \(0.725108\pi\)
\(18\) −0.529052 3.34030i −0.124699 0.787317i
\(19\) −4.39439 + 3.19271i −1.00814 + 0.732458i −0.963818 0.266560i \(-0.914113\pi\)
−0.0443230 + 0.999017i \(0.514113\pi\)
\(20\) 0 0
\(21\) 3.50915i 0.765758i
\(22\) −3.54930 + 3.32290i −0.756713 + 0.708446i
\(23\) −1.95998 + 1.95998i −0.408685 + 0.408685i −0.881280 0.472595i \(-0.843317\pi\)
0.472595 + 0.881280i \(0.343317\pi\)
\(24\) −0.698030 + 2.14832i −0.142485 + 0.438523i
\(25\) 0 0
\(26\) −1.09784 0.797627i −0.215304 0.156428i
\(27\) 2.00570 3.93640i 0.385996 0.757561i
\(28\) −0.285184 + 0.559706i −0.0538948 + 0.105774i
\(29\) 0.810497 + 0.588860i 0.150505 + 0.109349i 0.660490 0.750835i \(-0.270349\pi\)
−0.509984 + 0.860184i \(0.670349\pi\)
\(30\) 0 0
\(31\) 0.131006 0.403196i 0.0235294 0.0724161i −0.938602 0.345001i \(-0.887879\pi\)
0.962132 + 0.272585i \(0.0878786\pi\)
\(32\) 0.594873 0.594873i 0.105160 0.105160i
\(33\) −2.73975 + 0.341892i −0.476929 + 0.0595158i
\(34\) 2.82602i 0.484658i
\(35\) 0 0
\(36\) −0.278132 + 0.202075i −0.0463553 + 0.0336791i
\(37\) 0.771690 + 4.87226i 0.126865 + 0.800995i 0.966278 + 0.257501i \(0.0828990\pi\)
−0.839413 + 0.543494i \(0.817101\pi\)
\(38\) 7.09483 + 3.61500i 1.15093 + 0.586430i
\(39\) −0.238130 0.732888i −0.0381313 0.117356i
\(40\) 0 0
\(41\) 0.339428 + 0.467182i 0.0530097 + 0.0729616i 0.834699 0.550707i \(-0.185642\pi\)
−0.781689 + 0.623668i \(0.785642\pi\)
\(42\) −4.58356 + 2.33544i −0.707258 + 0.360366i
\(43\) −5.05373 5.05373i −0.770687 0.770687i 0.207540 0.978227i \(-0.433454\pi\)
−0.978227 + 0.207540i \(0.933454\pi\)
\(44\) 0.464773 + 0.168125i 0.0700672 + 0.0253458i
\(45\) 0 0
\(46\) 3.86451 + 1.25566i 0.569791 + 0.185136i
\(47\) 1.17495 + 0.186094i 0.171384 + 0.0271446i 0.241537 0.970392i \(-0.422349\pi\)
−0.0701524 + 0.997536i \(0.522349\pi\)
\(48\) 3.51569 0.556831i 0.507447 0.0803717i
\(49\) 10.2419 3.32780i 1.46313 0.475400i
\(50\) 0 0
\(51\) −0.943286 + 1.29832i −0.132086 + 0.181801i
\(52\) −0.0215795 + 0.136247i −0.00299254 + 0.0188941i
\(53\) 4.12294 + 8.09173i 0.566330 + 1.11149i 0.979615 + 0.200883i \(0.0643812\pi\)
−0.413285 + 0.910602i \(0.635619\pi\)
\(54\) −6.47647 −0.881337
\(55\) 0 0
\(56\) −11.4381 −1.52848
\(57\) 2.05285 + 4.02895i 0.271907 + 0.533647i
\(58\) 0.229745 1.45055i 0.0301670 0.190467i
\(59\) 5.47214 7.53175i 0.712411 0.980550i −0.287331 0.957831i \(-0.592768\pi\)
0.999742 0.0227186i \(-0.00723217\pi\)
\(60\) 0 0
\(61\) 7.40093 2.40471i 0.947591 0.307891i 0.205855 0.978583i \(-0.434002\pi\)
0.741737 + 0.670691i \(0.234002\pi\)
\(62\) −0.613832 + 0.0972215i −0.0779568 + 0.0123471i
\(63\) 9.60498 + 1.52128i 1.21011 + 0.191663i
\(64\) 6.96021 + 2.26151i 0.870026 + 0.282689i
\(65\) 0 0
\(66\) 2.26996 + 3.35105i 0.279412 + 0.412486i
\(67\) 3.05526 + 3.05526i 0.373259 + 0.373259i 0.868663 0.495404i \(-0.164980\pi\)
−0.495404 + 0.868663i \(0.664980\pi\)
\(68\) 0.255966 0.130421i 0.0310405 0.0158159i
\(69\) 1.35630 + 1.86679i 0.163280 + 0.224735i
\(70\) 0 0
\(71\) 2.65487 + 8.17086i 0.315075 + 0.969702i 0.975723 + 0.219006i \(0.0702816\pi\)
−0.660648 + 0.750696i \(0.729718\pi\)
\(72\) −5.57761 2.84193i −0.657328 0.334925i
\(73\) 0.854195 + 5.39318i 0.0999760 + 0.631224i 0.985893 + 0.167379i \(0.0535304\pi\)
−0.885917 + 0.463844i \(0.846470\pi\)
\(74\) 5.85044 4.25059i 0.680100 0.494122i
\(75\) 0 0
\(76\) 0.809447i 0.0928499i
\(77\) −5.93349 12.6591i −0.676184 1.44264i
\(78\) −0.798797 + 0.798797i −0.0904460 + 0.0904460i
\(79\) −0.705861 + 2.17242i −0.0794156 + 0.244416i −0.982880 0.184247i \(-0.941015\pi\)
0.903464 + 0.428663i \(0.141015\pi\)
\(80\) 0 0
\(81\) 2.62377 + 1.90628i 0.291530 + 0.211809i
\(82\) 0.384322 0.754275i 0.0424413 0.0832957i
\(83\) −0.902846 + 1.77193i −0.0991002 + 0.194495i −0.935234 0.354031i \(-0.884811\pi\)
0.836134 + 0.548526i \(0.184811\pi\)
\(84\) 0.423065 + 0.307374i 0.0461601 + 0.0335373i
\(85\) 0 0
\(86\) −3.23765 + 9.96446i −0.349125 + 1.07450i
\(87\) 0.589724 0.589724i 0.0632250 0.0632250i
\(88\) 1.11440 + 8.93023i 0.118795 + 0.951966i
\(89\) 13.9313i 1.47671i 0.674410 + 0.738357i \(0.264398\pi\)
−0.674410 + 0.738357i \(0.735602\pi\)
\(90\) 0 0
\(91\) 3.15682 2.29356i 0.330925 0.240431i
\(92\) −0.0646171 0.407977i −0.00673680 0.0425345i
\(93\) −0.314457 0.160224i −0.0326076 0.0166144i
\(94\) −0.538893 1.65854i −0.0555826 0.171066i
\(95\) 0 0
\(96\) −0.411650 0.566587i −0.0420138 0.0578271i
\(97\) 2.96200 1.50922i 0.300746 0.153238i −0.297105 0.954845i \(-0.596021\pi\)
0.597851 + 0.801607i \(0.296021\pi\)
\(98\) −11.1630 11.1630i −1.12763 1.12763i
\(99\) 0.251929 7.64727i 0.0253199 0.768579i
\(100\) 0 0
\(101\) −12.6404 4.10712i −1.25777 0.408673i −0.397069 0.917789i \(-0.629973\pi\)
−0.860698 + 0.509116i \(0.829973\pi\)
\(102\) 2.32362 + 0.368025i 0.230073 + 0.0364399i
\(103\) 9.95825 1.57723i 0.981215 0.155409i 0.354837 0.934928i \(-0.384536\pi\)
0.626378 + 0.779519i \(0.284536\pi\)
\(104\) −2.38885 + 0.776185i −0.234246 + 0.0761112i
\(105\) 0 0
\(106\) 7.82528 10.7706i 0.760058 1.04613i
\(107\) −0.964682 + 6.09076i −0.0932593 + 0.588816i 0.896160 + 0.443731i \(0.146346\pi\)
−0.989419 + 0.145085i \(0.953654\pi\)
\(108\) 0.298891 + 0.586606i 0.0287608 + 0.0564462i
\(109\) −19.9193 −1.90793 −0.953964 0.299922i \(-0.903039\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(110\) 0 0
\(111\) 4.10659 0.389780
\(112\) 8.18274 + 16.0595i 0.773197 + 1.51748i
\(113\) 1.89632 11.9729i 0.178391 1.12632i −0.722211 0.691673i \(-0.756874\pi\)
0.900602 0.434644i \(-0.143126\pi\)
\(114\) 3.89628 5.36277i 0.364920 0.502269i
\(115\) 0 0
\(116\) −0.141987 + 0.0461342i −0.0131831 + 0.00428346i
\(117\) 2.10924 0.334071i 0.194999 0.0308849i
\(118\) −13.4796 2.13497i −1.24090 0.196540i
\(119\) −7.72845 2.51112i −0.708465 0.230194i
\(120\) 0 0
\(121\) −9.30543 + 5.86591i −0.845949 + 0.533265i
\(122\) −8.06650 8.06650i −0.730306 0.730306i
\(123\) 0.428331 0.218246i 0.0386213 0.0196785i
\(124\) 0.0371343 + 0.0511110i 0.00333476 + 0.00458991i
\(125\) 0 0
\(126\) −4.40534 13.5582i −0.392459 1.20786i
\(127\) 1.03315 + 0.526416i 0.0916772 + 0.0467119i 0.499228 0.866471i \(-0.333617\pi\)
−0.407551 + 0.913183i \(0.633617\pi\)
\(128\) −1.94151 12.2582i −0.171607 1.08348i
\(129\) −4.81343 + 3.49716i −0.423799 + 0.307908i
\(130\) 0 0
\(131\) 14.4532i 1.26278i −0.775465 0.631390i \(-0.782485\pi\)
0.775465 0.631390i \(-0.217515\pi\)
\(132\) 0.198763 0.360253i 0.0173001 0.0313560i
\(133\) −16.1904 + 16.1904i −1.40388 + 1.40388i
\(134\) 1.95734 6.02407i 0.169088 0.520400i
\(135\) 0 0
\(136\) 4.23189 + 3.07465i 0.362881 + 0.263649i
\(137\) −5.61663 + 11.0232i −0.479861 + 0.941780i 0.516479 + 0.856300i \(0.327242\pi\)
−0.996340 + 0.0854799i \(0.972758\pi\)
\(138\) 1.53570 3.01397i 0.130727 0.256566i
\(139\) −0.816606 0.593299i −0.0692636 0.0503229i 0.552615 0.833437i \(-0.313630\pi\)
−0.621878 + 0.783114i \(0.713630\pi\)
\(140\) 0 0
\(141\) 0.306022 0.941839i 0.0257717 0.0793172i
\(142\) 8.90567 8.90567i 0.747347 0.747347i
\(143\) −2.09826 2.24121i −0.175465 0.187420i
\(144\) 9.86430i 0.822025i
\(145\) 0 0
\(146\) 6.47594 4.70504i 0.535952 0.389392i
\(147\) −1.40242 8.85451i −0.115669 0.730308i
\(148\) −0.654997 0.333737i −0.0538404 0.0274331i
\(149\) 0.377177 + 1.16083i 0.0308996 + 0.0950990i 0.965317 0.261081i \(-0.0840790\pi\)
−0.934417 + 0.356180i \(0.884079\pi\)
\(150\) 0 0
\(151\) 0.932668 + 1.28371i 0.0758995 + 0.104467i 0.845279 0.534326i \(-0.179434\pi\)
−0.769379 + 0.638792i \(0.779434\pi\)
\(152\) 13.1324 6.69128i 1.06518 0.542734i
\(153\) −3.14474 3.14474i −0.254237 0.254237i
\(154\) −12.5861 + 16.1752i −1.01421 + 1.30343i
\(155\) 0 0
\(156\) 0.109216 + 0.0354863i 0.00874425 + 0.00284118i
\(157\) −7.32783 1.16061i −0.584824 0.0926271i −0.142991 0.989724i \(-0.545672\pi\)
−0.441834 + 0.897097i \(0.645672\pi\)
\(158\) 3.30733 0.523829i 0.263117 0.0416736i
\(159\) 7.19014 2.33622i 0.570215 0.185274i
\(160\) 0 0
\(161\) −6.86780 + 9.45272i −0.541258 + 0.744978i
\(162\) 0.743741 4.69579i 0.0584338 0.368936i
\(163\) −6.99546 13.7294i −0.547927 1.07537i −0.984449 0.175673i \(-0.943790\pi\)
0.436522 0.899694i \(-0.356210\pi\)
\(164\) −0.0860550 −0.00671976
\(165\) 0 0
\(166\) 2.91533 0.226273
\(167\) 1.88413 + 3.69782i 0.145799 + 0.286146i 0.952344 0.305026i \(-0.0986653\pi\)
−0.806545 + 0.591172i \(0.798665\pi\)
\(168\) −1.48955 + 9.40466i −0.114921 + 0.725585i
\(169\) −7.13754 + 9.82399i −0.549042 + 0.755691i
\(170\) 0 0
\(171\) −11.9177 + 3.87229i −0.911369 + 0.296122i
\(172\) 1.05195 0.166612i 0.0802104 0.0127041i
\(173\) 4.27643 + 0.677320i 0.325131 + 0.0514957i 0.316867 0.948470i \(-0.397369\pi\)
0.00826456 + 0.999966i \(0.497369\pi\)
\(174\) −1.16276 0.377804i −0.0881487 0.0286412i
\(175\) 0 0
\(176\) 11.7412 7.95331i 0.885025 0.599503i
\(177\) −5.48016 5.48016i −0.411914 0.411914i
\(178\) 18.1967 9.27168i 1.36390 0.694942i
\(179\) −2.18633 3.00922i −0.163414 0.224920i 0.719456 0.694538i \(-0.244391\pi\)
−0.882869 + 0.469619i \(0.844391\pi\)
\(180\) 0 0
\(181\) 1.86849 + 5.75062i 0.138884 + 0.427440i 0.996174 0.0873933i \(-0.0278537\pi\)
−0.857290 + 0.514834i \(0.827854\pi\)
\(182\) −5.09675 2.59692i −0.377796 0.192497i
\(183\) −1.01340 6.39838i −0.0749129 0.472982i
\(184\) 6.08481 4.42087i 0.448578 0.325911i
\(185\) 0 0
\(186\) 0.517369i 0.0379353i
\(187\) −1.20758 + 6.27861i −0.0883066 + 0.459137i
\(188\) −0.125352 + 0.125352i −0.00914227 + 0.00914227i
\(189\) 5.75482 17.7115i 0.418602 1.28832i
\(190\) 0 0
\(191\) 13.3930 + 9.73057i 0.969082 + 0.704079i 0.955242 0.295825i \(-0.0955945\pi\)
0.0138398 + 0.999904i \(0.495595\pi\)
\(192\) 2.76588 5.42834i 0.199610 0.391757i
\(193\) −7.70155 + 15.1151i −0.554370 + 1.08801i 0.428471 + 0.903556i \(0.359052\pi\)
−0.982841 + 0.184456i \(0.940948\pi\)
\(194\) −3.94260 2.86447i −0.283062 0.205657i
\(195\) 0 0
\(196\) −0.495912 + 1.52626i −0.0354223 + 0.109019i
\(197\) 9.63624 9.63624i 0.686554 0.686554i −0.274915 0.961469i \(-0.588650\pi\)
0.961469 + 0.274915i \(0.0886496\pi\)
\(198\) −10.1563 + 4.76042i −0.721779 + 0.338308i
\(199\) 19.4166i 1.37640i −0.725519 0.688202i \(-0.758400\pi\)
0.725519 0.688202i \(-0.241600\pi\)
\(200\) 0 0
\(201\) 2.90999 2.11423i 0.205255 0.149126i
\(202\) 3.04795 + 19.2440i 0.214453 + 1.35400i
\(203\) 3.76275 + 1.91722i 0.264093 + 0.134562i
\(204\) −0.0739017 0.227446i −0.00517416 0.0159244i
\(205\) 0 0
\(206\) −8.68764 11.9575i −0.605297 0.833119i
\(207\) −5.69763 + 2.90309i −0.396012 + 0.201778i
\(208\) 2.79877 + 2.79877i 0.194060 + 0.194060i
\(209\) 14.2180 + 11.0632i 0.983478 + 0.765254i
\(210\) 0 0
\(211\) 6.07815 + 1.97491i 0.418437 + 0.135959i 0.510666 0.859779i \(-0.329399\pi\)
−0.0922284 + 0.995738i \(0.529399\pi\)
\(212\) −1.33668 0.211710i −0.0918037 0.0145403i
\(213\) 7.06401 1.11883i 0.484018 0.0766609i
\(214\) 8.59762 2.79354i 0.587721 0.190962i
\(215\) 0 0
\(216\) −7.04626 + 9.69835i −0.479437 + 0.659889i
\(217\) 0.279559 1.76507i 0.0189777 0.119820i
\(218\) 13.2569 + 26.0181i 0.897871 + 1.76217i
\(219\) 4.54564 0.307166
\(220\) 0 0
\(221\) −1.78450 −0.120038
\(222\) −2.73305 5.36392i −0.183430 0.360003i
\(223\) 2.22058 14.0202i 0.148701 0.938860i −0.794651 0.607066i \(-0.792346\pi\)
0.943352 0.331794i \(-0.107654\pi\)
\(224\) 2.08444 2.86898i 0.139272 0.191692i
\(225\) 0 0
\(226\) −16.9008 + 5.49139i −1.12422 + 0.365282i
\(227\) −8.17622 + 1.29499i −0.542675 + 0.0859512i −0.421753 0.906711i \(-0.638585\pi\)
−0.120922 + 0.992662i \(0.538585\pi\)
\(228\) −0.665546 0.105412i −0.0440769 0.00698109i
\(229\) 18.6401 + 6.05655i 1.23178 + 0.400228i 0.851357 0.524587i \(-0.175780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(230\) 0 0
\(231\) −11.1813 + 3.23010i −0.735676 + 0.212525i
\(232\) −1.92221 1.92221i −0.126199 0.126199i
\(233\) −3.30844 + 1.68573i −0.216743 + 0.110436i −0.558991 0.829173i \(-0.688812\pi\)
0.342249 + 0.939609i \(0.388812\pi\)
\(234\) −1.84012 2.53270i −0.120292 0.165568i
\(235\) 0 0
\(236\) 0.428714 + 1.31945i 0.0279069 + 0.0858887i
\(237\) 1.69429 + 0.863285i 0.110056 + 0.0560764i
\(238\) 1.86354 + 11.7659i 0.120795 + 0.762672i
\(239\) −2.59930 + 1.88850i −0.168135 + 0.122157i −0.668671 0.743559i \(-0.733136\pi\)
0.500536 + 0.865716i \(0.333136\pi\)
\(240\) 0 0
\(241\) 25.4119i 1.63693i 0.574559 + 0.818463i \(0.305174\pi\)
−0.574559 + 0.818463i \(0.694826\pi\)
\(242\) 13.8549 + 8.25059i 0.890629 + 0.530368i
\(243\) 11.2809 11.2809i 0.723671 0.723671i
\(244\) −0.358352 + 1.10289i −0.0229411 + 0.0706055i
\(245\) 0 0
\(246\) −0.570133 0.414226i −0.0363504 0.0264101i
\(247\) −2.28270 + 4.48005i −0.145245 + 0.285059i
\(248\) −0.522250 + 1.02497i −0.0331629 + 0.0650858i
\(249\) 1.33935 + 0.973096i 0.0848780 + 0.0616674i
\(250\) 0 0
\(251\) 5.03867 15.5074i 0.318038 0.978820i −0.656448 0.754371i \(-0.727942\pi\)
0.974486 0.224448i \(-0.0720580\pi\)
\(252\) −1.02473 + 1.02473i −0.0645519 + 0.0645519i
\(253\) 8.04929 + 4.44104i 0.506055 + 0.279206i
\(254\) 1.69982i 0.106656i
\(255\) 0 0
\(256\) −2.87779 + 2.09084i −0.179862 + 0.130677i
\(257\) 2.53487 + 16.0045i 0.158121 + 0.998335i 0.931328 + 0.364182i \(0.118651\pi\)
−0.773207 + 0.634154i \(0.781349\pi\)
\(258\) 7.77139 + 3.95972i 0.483825 + 0.246521i
\(259\) 6.42576 + 19.7764i 0.399277 + 1.22885i
\(260\) 0 0
\(261\) 1.35849 + 1.86981i 0.0840887 + 0.115738i
\(262\) −18.8784 + 9.61901i −1.16631 + 0.594265i
\(263\) 0.677874 + 0.677874i 0.0417995 + 0.0417995i 0.727698 0.685898i \(-0.240590\pi\)
−0.685898 + 0.727698i \(0.740590\pi\)
\(264\) 7.48778 + 0.246675i 0.460841 + 0.0151818i
\(265\) 0 0
\(266\) 31.9226 + 10.3723i 1.95730 + 0.635966i
\(267\) 11.4546 + 1.81424i 0.701013 + 0.111030i
\(268\) −0.635961 + 0.100726i −0.0388475 + 0.00615284i
\(269\) −27.0327 + 8.78345i −1.64821 + 0.535536i −0.978351 0.206951i \(-0.933646\pi\)
−0.669860 + 0.742487i \(0.733646\pi\)
\(270\) 0 0
\(271\) 18.0744 24.8772i 1.09794 1.51118i 0.259853 0.965648i \(-0.416326\pi\)
0.838087 0.545536i \(-0.183674\pi\)
\(272\) 1.28946 8.14133i 0.0781850 0.493641i
\(273\) −1.47472 2.89430i −0.0892540 0.175171i
\(274\) 18.1363 1.09565
\(275\) 0 0
\(276\) −0.343863 −0.0206981
\(277\) −13.6871 26.8625i −0.822379 1.61401i −0.788861 0.614571i \(-0.789329\pi\)
−0.0335176 0.999438i \(-0.510671\pi\)
\(278\) −0.231477 + 1.46149i −0.0138831 + 0.0876542i
\(279\) 0.574875 0.791248i 0.0344169 0.0473708i
\(280\) 0 0
\(281\) 8.10210 2.63253i 0.483331 0.157044i −0.0572089 0.998362i \(-0.518220\pi\)
0.540540 + 0.841319i \(0.318220\pi\)
\(282\) −1.43387 + 0.227103i −0.0853859 + 0.0135238i
\(283\) −9.42432 1.49267i −0.560218 0.0887297i −0.130097 0.991501i \(-0.541529\pi\)
−0.430120 + 0.902772i \(0.641529\pi\)
\(284\) −1.21763 0.395632i −0.0722530 0.0234764i
\(285\) 0 0
\(286\) −1.53097 + 4.23228i −0.0905280 + 0.250260i
\(287\) 1.72125 + 1.72125i 0.101602 + 0.101602i
\(288\) 1.72928 0.881112i 0.101899 0.0519200i
\(289\) −7.80797 10.7468i −0.459292 0.632162i
\(290\) 0 0
\(291\) −0.855180 2.63197i −0.0501315 0.154289i
\(292\) −0.725025 0.369419i −0.0424289 0.0216186i
\(293\) 0.360965 + 2.27904i 0.0210878 + 0.133143i 0.995986 0.0895072i \(-0.0285292\pi\)
−0.974898 + 0.222650i \(0.928529\pi\)
\(294\) −10.6322 + 7.72474i −0.620082 + 0.450516i
\(295\) 0 0
\(296\) 13.3854i 0.778013i
\(297\) −14.3889 2.76744i −0.834928 0.160583i
\(298\) 1.26523 1.26523i 0.0732926 0.0732926i
\(299\) −0.792887 + 2.44025i −0.0458538 + 0.141124i
\(300\) 0 0
\(301\) −24.3734 17.7083i −1.40486 1.02069i
\(302\) 1.05603 2.07257i 0.0607676 0.119263i
\(303\) −5.02310 + 9.85838i −0.288569 + 0.566349i
\(304\) −18.7897 13.6515i −1.07766 0.782967i
\(305\) 0 0
\(306\) −2.01466 + 6.20050i −0.115171 + 0.354459i
\(307\) −12.4635 + 12.4635i −0.711327 + 0.711327i −0.966813 0.255486i \(-0.917765\pi\)
0.255486 + 0.966813i \(0.417765\pi\)
\(308\) 2.04591 + 0.393494i 0.116577 + 0.0224214i
\(309\) 8.39331i 0.477479i
\(310\) 0 0
\(311\) −12.2271 + 8.88353i −0.693337 + 0.503739i −0.877755 0.479109i \(-0.840960\pi\)
0.184419 + 0.982848i \(0.440960\pi\)
\(312\) 0.327104 + 2.06525i 0.0185186 + 0.116922i
\(313\) −23.2697 11.8565i −1.31528 0.670169i −0.351331 0.936251i \(-0.614271\pi\)
−0.963950 + 0.266082i \(0.914271\pi\)
\(314\) 3.36092 + 10.3438i 0.189668 + 0.583737i
\(315\) 0 0
\(316\) −0.200080 0.275386i −0.0112554 0.0154917i
\(317\) −25.2398 + 12.8603i −1.41761 + 0.722307i −0.983896 0.178744i \(-0.942797\pi\)
−0.433712 + 0.901051i \(0.642797\pi\)
\(318\) −7.83675 7.83675i −0.439463 0.439463i
\(319\) 1.13026 3.12455i 0.0632824 0.174941i
\(320\) 0 0
\(321\) 4.88234 + 1.58637i 0.272506 + 0.0885425i
\(322\) 16.9176 + 2.67949i 0.942782 + 0.149322i
\(323\) 10.3423 1.63805i 0.575458 0.0911436i
\(324\) −0.459645 + 0.149348i −0.0255358 + 0.00829710i
\(325\) 0 0
\(326\) −13.2773 + 18.2746i −0.735360 + 1.01214i
\(327\) −2.59405 + 16.3782i −0.143451 + 0.905714i
\(328\) −0.711372 1.39615i −0.0392790 0.0770893i
\(329\) 5.01454 0.276461
\(330\) 0 0
\(331\) −24.6455 −1.35464 −0.677319 0.735690i \(-0.736858\pi\)
−0.677319 + 0.735690i \(0.736858\pi\)
\(332\) −0.134543 0.264055i −0.00738401 0.0144919i
\(333\) −1.78028 + 11.2403i −0.0975588 + 0.615962i
\(334\) 3.57605 4.92202i 0.195673 0.269321i
\(335\) 0 0
\(336\) 14.2702 4.63665i 0.778501 0.252950i
\(337\) 30.6340 4.85195i 1.66874 0.264302i 0.750657 0.660692i \(-0.229737\pi\)
0.918082 + 0.396390i \(0.129737\pi\)
\(338\) 17.5821 + 2.78473i 0.956339 + 0.151469i
\(339\) −9.59746 3.11840i −0.521263 0.169369i
\(340\) 0 0
\(341\) −1.40530 0.0462960i −0.0761015 0.00250707i
\(342\) 12.9895 + 12.9895i 0.702390 + 0.702390i
\(343\) 14.1559 7.21277i 0.764345 0.389453i
\(344\) 11.3990 + 15.6894i 0.614594 + 0.845916i
\(345\) 0 0
\(346\) −1.96139 6.03654i −0.105445 0.324527i
\(347\) 26.8957 + 13.7041i 1.44384 + 0.735672i 0.988009 0.154395i \(-0.0493430\pi\)
0.455829 + 0.890068i \(0.349343\pi\)
\(348\) 0.0194421 + 0.122753i 0.00104221 + 0.00658024i
\(349\) 17.2865 12.5594i 0.925323 0.672287i −0.0195201 0.999809i \(-0.506214\pi\)
0.944843 + 0.327523i \(0.106214\pi\)
\(350\) 0 0
\(351\) 4.08959i 0.218286i
\(352\) −2.44303 1.34789i −0.130214 0.0718430i
\(353\) 2.82626 2.82626i 0.150427 0.150427i −0.627882 0.778309i \(-0.716078\pi\)
0.778309 + 0.627882i \(0.216078\pi\)
\(354\) −3.51084 + 10.8053i −0.186599 + 0.574293i
\(355\) 0 0
\(356\) −1.67956 1.22027i −0.0890167 0.0646744i
\(357\) −3.07116 + 6.02750i −0.162543 + 0.319009i
\(358\) −2.47550 + 4.85844i −0.130834 + 0.256777i
\(359\) −8.68908 6.31298i −0.458592 0.333187i 0.334387 0.942436i \(-0.391471\pi\)
−0.792979 + 0.609249i \(0.791471\pi\)
\(360\) 0 0
\(361\) 3.24592 9.98992i 0.170838 0.525785i
\(362\) 6.26778 6.26778i 0.329427 0.329427i
\(363\) 3.61127 + 8.41505i 0.189542 + 0.441676i
\(364\) 0.581487i 0.0304782i
\(365\) 0 0
\(366\) −7.68295 + 5.58199i −0.401594 + 0.291775i
\(367\) −5.41331 34.1783i −0.282572 1.78409i −0.565293 0.824890i \(-0.691237\pi\)
0.282721 0.959202i \(-0.408763\pi\)
\(368\) −10.5601 5.38066i −0.550485 0.280486i
\(369\) 0.411677 + 1.26701i 0.0214310 + 0.0659579i
\(370\) 0 0
\(371\) 22.5015 + 30.9706i 1.16822 + 1.60791i
\(372\) 0.0468606 0.0238767i 0.00242961 0.00123795i
\(373\) 9.90454 + 9.90454i 0.512838 + 0.512838i 0.915395 0.402557i \(-0.131879\pi\)
−0.402557 + 0.915395i \(0.631879\pi\)
\(374\) 9.00463 2.60129i 0.465618 0.134510i
\(375\) 0 0
\(376\) −3.06993 0.997480i −0.158319 0.0514411i
\(377\) 0.915956 + 0.145073i 0.0471741 + 0.00747165i
\(378\) −26.9643 + 4.27073i −1.38690 + 0.219663i
\(379\) −25.2037 + 8.18919i −1.29463 + 0.420651i −0.873710 0.486447i \(-0.838292\pi\)
−0.420919 + 0.907098i \(0.638292\pi\)
\(380\) 0 0
\(381\) 0.567376 0.780926i 0.0290676 0.0400081i
\(382\) 3.79640 23.9695i 0.194241 1.22639i
\(383\) −10.9129 21.4177i −0.557622 1.09439i −0.981995 0.188907i \(-0.939505\pi\)
0.424373 0.905487i \(-0.360495\pi\)
\(384\) −10.3318 −0.527243
\(385\) 0 0
\(386\) 24.8686 1.26578
\(387\) −7.48548 14.6911i −0.380508 0.746789i
\(388\) −0.0774970 + 0.489297i −0.00393431 + 0.0248403i
\(389\) 4.43509 6.10438i 0.224868 0.309505i −0.681644 0.731684i \(-0.738735\pi\)
0.906512 + 0.422179i \(0.138735\pi\)
\(390\) 0 0
\(391\) 5.08193 1.65122i 0.257004 0.0835057i
\(392\) −28.8613 + 4.57119i −1.45772 + 0.230880i
\(393\) −11.8838 1.88220i −0.599456 0.0949445i
\(394\) −18.9998 6.17342i −0.957197 0.311012i
\(395\) 0 0
\(396\) 0.899892 + 0.700215i 0.0452213 + 0.0351871i
\(397\) −16.0995 16.0995i −0.808008 0.808008i 0.176324 0.984332i \(-0.443579\pi\)
−0.984332 + 0.176324i \(0.943579\pi\)
\(398\) −25.3614 + 12.9223i −1.27125 + 0.647736i
\(399\) 11.2037 + 15.4205i 0.560886 + 0.771993i
\(400\) 0 0
\(401\) −7.46030 22.9604i −0.372550 1.14659i −0.945117 0.326732i \(-0.894053\pi\)
0.572568 0.819858i \(-0.305947\pi\)
\(402\) −4.69823 2.39387i −0.234327 0.119395i
\(403\) −0.0613908 0.387606i −0.00305809 0.0193080i
\(404\) 1.60236 1.16418i 0.0797203 0.0579202i
\(405\) 0 0
\(406\) 6.19078i 0.307243i
\(407\) 14.8143 6.94368i 0.734319 0.344185i
\(408\) 3.07915 3.07915i 0.152441 0.152441i
\(409\) 1.80956 5.56925i 0.0894769 0.275382i −0.896298 0.443452i \(-0.853754\pi\)
0.985775 + 0.168070i \(0.0537536\pi\)
\(410\) 0 0
\(411\) 8.33214 + 6.05365i 0.410994 + 0.298605i
\(412\) −0.682114 + 1.33872i −0.0336054 + 0.0659542i
\(413\) 17.8162 34.9663i 0.876680 1.72058i
\(414\) 7.58387 + 5.51001i 0.372727 + 0.270802i
\(415\) 0 0
\(416\) 0.240648 0.740639i 0.0117987 0.0363128i
\(417\) −0.594169 + 0.594169i −0.0290966 + 0.0290966i
\(418\) 4.98793 25.9340i 0.243968 1.26847i
\(419\) 11.0599i 0.540311i −0.962817 0.270155i \(-0.912925\pi\)
0.962817 0.270155i \(-0.0870751\pi\)
\(420\) 0 0
\(421\) −6.36944 + 4.62767i −0.310428 + 0.225539i −0.732080 0.681219i \(-0.761450\pi\)
0.421652 + 0.906758i \(0.361450\pi\)
\(422\) −1.46561 9.25349i −0.0713447 0.450453i
\(423\) 2.44527 + 1.24593i 0.118893 + 0.0605790i
\(424\) −7.61491 23.4363i −0.369813 1.13817i
\(425\) 0 0
\(426\) −6.16269 8.48222i −0.298583 0.410965i
\(427\) 29.2275 14.8922i 1.41442 0.720682i
\(428\) −0.649807 0.649807i −0.0314096 0.0314096i
\(429\) −2.11603 + 1.43337i −0.102163 + 0.0692037i
\(430\) 0 0
\(431\) −6.94552 2.25674i −0.334554 0.108703i 0.136923 0.990582i \(-0.456279\pi\)
−0.471477 + 0.881879i \(0.656279\pi\)
\(432\) 18.6577 + 2.95510i 0.897671 + 0.142177i
\(433\) −4.98536 + 0.789604i −0.239581 + 0.0379460i −0.275070 0.961424i \(-0.588701\pi\)
0.0354890 + 0.999370i \(0.488701\pi\)
\(434\) −2.49154 + 0.809550i −0.119598 + 0.0388596i
\(435\) 0 0
\(436\) 1.74478 2.40149i 0.0835599 0.115010i
\(437\) 2.35527 14.8706i 0.112668 0.711357i
\(438\) −3.02525 5.93740i −0.144552 0.283700i
\(439\) 1.29778 0.0619394 0.0309697 0.999520i \(-0.490140\pi\)
0.0309697 + 0.999520i \(0.490140\pi\)
\(440\) 0 0
\(441\) 24.8439 1.18304
\(442\) 1.18763 + 2.33086i 0.0564900 + 0.110868i
\(443\) −2.40922 + 15.2112i −0.114466 + 0.722707i 0.861980 + 0.506942i \(0.169224\pi\)
−0.976445 + 0.215764i \(0.930776\pi\)
\(444\) −0.359706 + 0.495092i −0.0170709 + 0.0234960i
\(445\) 0 0
\(446\) −19.7907 + 6.43037i −0.937115 + 0.304487i
\(447\) 1.00358 0.158952i 0.0474678 0.00751816i
\(448\) 30.4696 + 4.82591i 1.43955 + 0.228003i
\(449\) 11.5295 + 3.74615i 0.544109 + 0.176792i 0.568159 0.822919i \(-0.307656\pi\)
−0.0240497 + 0.999711i \(0.507656\pi\)
\(450\) 0 0
\(451\) 1.17616 1.51156i 0.0553833 0.0711766i
\(452\) 1.27736 + 1.27736i 0.0600818 + 0.0600818i
\(453\) 1.17695 0.599688i 0.0552981 0.0281758i
\(454\) 7.13299 + 9.81772i 0.334768 + 0.460768i
\(455\) 0 0
\(456\) −3.79153 11.6691i −0.177555 0.546458i
\(457\) −3.12807 1.59383i −0.146325 0.0745563i 0.379295 0.925276i \(-0.376167\pi\)
−0.525620 + 0.850720i \(0.676167\pi\)
\(458\) −4.49465 28.3781i −0.210021 1.32602i
\(459\) −6.89018 + 5.00601i −0.321606 + 0.233660i
\(460\) 0 0
\(461\) 5.45336i 0.253988i 0.991903 + 0.126994i \(0.0405329\pi\)
−0.991903 + 0.126994i \(0.959467\pi\)
\(462\) 11.6606 + 12.4550i 0.542498 + 0.579460i
\(463\) −15.3996 + 15.3996i −0.715681 + 0.715681i −0.967718 0.252037i \(-0.918900\pi\)
0.252037 + 0.967718i \(0.418900\pi\)
\(464\) −1.32372 + 4.07400i −0.0614523 + 0.189131i
\(465\) 0 0
\(466\) 4.40372 + 3.19949i 0.203998 + 0.148214i
\(467\) −6.66632 + 13.0834i −0.308481 + 0.605427i −0.992248 0.124273i \(-0.960340\pi\)
0.683768 + 0.729700i \(0.260340\pi\)
\(468\) −0.144478 + 0.283553i −0.00667848 + 0.0131073i
\(469\) 14.7351 + 10.7057i 0.680402 + 0.494341i
\(470\) 0 0
\(471\) −1.90857 + 5.87397i −0.0879422 + 0.270658i
\(472\) −17.8626 + 17.8626i −0.822193 + 0.822193i
\(473\) −11.4510 + 20.7547i −0.526518 + 0.954303i
\(474\) 2.78758i 0.128038i
\(475\) 0 0
\(476\) 0.979695 0.711790i 0.0449043 0.0326249i
\(477\) 3.27747 + 20.6931i 0.150065 + 0.947473i
\(478\) 4.19663 + 2.13829i 0.191949 + 0.0978030i
\(479\) 1.51842 + 4.67321i 0.0693783 + 0.213524i 0.979734 0.200302i \(-0.0641922\pi\)
−0.910356 + 0.413826i \(0.864192\pi\)
\(480\) 0 0
\(481\) 2.68405 + 3.69428i 0.122382 + 0.168444i
\(482\) 33.1924 16.9124i 1.51187 0.770338i
\(483\) 6.87787 + 6.87787i 0.312954 + 0.312954i
\(484\) 0.107888 1.63568i 0.00490399 0.0743490i
\(485\) 0 0
\(486\) −22.2426 7.22706i −1.00895 0.327826i
\(487\) −10.6054 1.67972i −0.480574 0.0761155i −0.0885527 0.996071i \(-0.528224\pi\)
−0.392022 + 0.919956i \(0.628224\pi\)
\(488\) −20.8555 + 3.30319i −0.944086 + 0.149529i
\(489\) −12.1996 + 3.96390i −0.551686 + 0.179254i
\(490\) 0 0
\(491\) 1.91387 2.63421i 0.0863715 0.118880i −0.763645 0.645637i \(-0.776592\pi\)
0.850016 + 0.526757i \(0.176592\pi\)
\(492\) −0.0112067 + 0.0707565i −0.000505238 + 0.00318995i
\(493\) −0.876788 1.72079i −0.0394886 0.0775007i
\(494\) 7.37092 0.331634
\(495\) 0 0
\(496\) 1.81272 0.0813935
\(497\) 16.4414 + 32.2681i 0.737498 + 1.44742i
\(498\) 0.379656 2.39705i 0.0170128 0.107414i
\(499\) −5.25588 + 7.23410i −0.235285 + 0.323843i −0.910290 0.413971i \(-0.864142\pi\)
0.675005 + 0.737813i \(0.264142\pi\)
\(500\) 0 0
\(501\) 3.28580 1.06762i 0.146799 0.0476978i
\(502\) −23.6088 + 3.73926i −1.05371 + 0.166891i
\(503\) −19.0954 3.02441i −0.851421 0.134852i −0.284553 0.958660i \(-0.591845\pi\)
−0.566868 + 0.823808i \(0.691845\pi\)
\(504\) −25.0960 8.15419i −1.11787 0.363217i
\(505\) 0 0
\(506\) 0.443733 13.4694i 0.0197263 0.598789i
\(507\) 7.14801 + 7.14801i 0.317454 + 0.317454i
\(508\) −0.153961 + 0.0784471i −0.00683092 + 0.00348053i
\(509\) −1.65845 2.28267i −0.0735097 0.101177i 0.770679 0.637224i \(-0.219917\pi\)
−0.844189 + 0.536046i \(0.819917\pi\)
\(510\) 0 0
\(511\) 7.11276 + 21.8908i 0.314650 + 0.968393i
\(512\) −17.4703 8.90156i −0.772085 0.393397i
\(513\) 3.75398 + 23.7017i 0.165742 + 1.04645i
\(514\) 19.2177 13.9625i 0.847656 0.615858i
\(515\) 0 0
\(516\) 0.886635i 0.0390319i
\(517\) −0.488562 3.91508i −0.0214869 0.172185i
\(518\) 21.5550 21.5550i 0.947071 0.947071i
\(519\) 1.11382 3.42798i 0.0488912 0.150472i
\(520\) 0 0
\(521\) −7.68839 5.58594i −0.336835 0.244725i 0.406491 0.913655i \(-0.366752\pi\)
−0.743325 + 0.668930i \(0.766752\pi\)
\(522\) 1.53818 3.01884i 0.0673241 0.132131i
\(523\) 6.73563 13.2194i 0.294528 0.578045i −0.695564 0.718465i \(-0.744845\pi\)
0.990092 + 0.140420i \(0.0448453\pi\)
\(524\) 1.74248 + 1.26599i 0.0761207 + 0.0553049i
\(525\) 0 0
\(526\) 0.434277 1.33657i 0.0189354 0.0582771i
\(527\) −0.577895 + 0.577895i −0.0251735 + 0.0251735i
\(528\) −5.01037 10.6896i −0.218049 0.465206i
\(529\) 15.3169i 0.665953i
\(530\) 0 0
\(531\) 17.3757 12.6242i 0.754039 0.547842i
\(532\) −0.533767 3.37007i −0.0231417 0.146111i
\(533\) 0.476289 + 0.242681i 0.0206304 + 0.0105117i
\(534\) −5.25369 16.1692i −0.227349 0.699709i
\(535\) 0 0
\(536\) −6.89134 9.48511i −0.297661 0.409695i
\(537\) −2.75897 + 1.40577i −0.119058 + 0.0606633i
\(538\) 29.4638 + 29.4638i 1.27027 + 1.27027i
\(539\) −20.0309 29.5710i −0.862794 1.27371i
\(540\) 0 0
\(541\) −29.7351 9.66153i −1.27841 0.415381i −0.410392 0.911909i \(-0.634608\pi\)
−0.868021 + 0.496528i \(0.834608\pi\)
\(542\) −44.5230 7.05176i −1.91243 0.302899i
\(543\) 4.97163 0.787429i 0.213353 0.0337918i
\(544\) −1.54241 + 0.501159i −0.0661303 + 0.0214870i
\(545\) 0 0
\(546\) −2.79899 + 3.85248i −0.119786 + 0.164871i
\(547\) −4.93799 + 31.1772i −0.211133 + 1.33304i 0.623322 + 0.781966i \(0.285783\pi\)
−0.834455 + 0.551076i \(0.814217\pi\)
\(548\) −0.836995 1.64270i −0.0357547 0.0701725i
\(549\) 17.9525 0.766194
\(550\) 0 0
\(551\) −5.44169 −0.231824
\(552\) −2.84254 5.57880i −0.120987 0.237449i
\(553\) −1.50626 + 9.51017i −0.0640528 + 0.404414i
\(554\) −25.9779 + 35.7555i −1.10370 + 1.51911i
\(555\) 0 0
\(556\) 0.143057 0.0464820i 0.00606696 0.00197128i
\(557\) 13.0992 2.07471i 0.555030 0.0879082i 0.127383 0.991854i \(-0.459342\pi\)
0.427648 + 0.903945i \(0.359342\pi\)
\(558\) −1.41610 0.224289i −0.0599485 0.00949491i
\(559\) −6.29208 2.04442i −0.266127 0.0864698i
\(560\) 0 0
\(561\) 5.00516 + 1.81054i 0.211318 + 0.0764412i
\(562\) −8.83073 8.83073i −0.372502 0.372502i
\(563\) −26.1698 + 13.3342i −1.10292 + 0.561968i −0.908051 0.418860i \(-0.862430\pi\)
−0.194874 + 0.980828i \(0.562430\pi\)
\(564\) 0.0867434 + 0.119392i 0.00365256 + 0.00502731i
\(565\) 0 0
\(566\) 4.32248 + 13.3032i 0.181687 + 0.559176i
\(567\) 12.1809 + 6.20650i 0.511551 + 0.260648i
\(568\) −3.64683 23.0252i −0.153018 0.966115i
\(569\) −17.3540 + 12.6084i −0.727518 + 0.528573i −0.888777 0.458339i \(-0.848445\pi\)
0.161259 + 0.986912i \(0.448445\pi\)
\(570\) 0 0
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) 0.453993 0.0566536i 0.0189824 0.00236881i
\(573\) 9.74484 9.74484i 0.407097 0.407097i
\(574\) 1.10271 3.39380i 0.0460263 0.141654i
\(575\) 0 0
\(576\) 13.6590 + 9.92385i 0.569125 + 0.413494i
\(577\) −3.03825 + 5.96290i −0.126484 + 0.248239i −0.945561 0.325445i \(-0.894486\pi\)
0.819077 + 0.573683i \(0.194486\pi\)
\(578\) −8.84070 + 17.3509i −0.367725 + 0.721700i
\(579\) 11.4251 + 8.30081i 0.474810 + 0.344970i
\(580\) 0 0
\(581\) −2.59048 + 7.97268i −0.107471 + 0.330763i
\(582\) −2.86867 + 2.86867i −0.118910 + 0.118910i
\(583\) 21.9879 20.5853i 0.910644 0.852558i
\(584\) 14.8165i 0.613112i
\(585\) 0 0
\(586\) 2.73660 1.98825i 0.113048 0.0821340i
\(587\) −5.70952 36.0485i −0.235657 1.48788i −0.767506 0.641041i \(-0.778503\pi\)
0.531849 0.846839i \(-0.321497\pi\)
\(588\) 1.19035 + 0.606512i 0.0490890 + 0.0250121i
\(589\) 0.711594 + 2.19006i 0.0293207 + 0.0902400i
\(590\) 0 0
\(591\) −6.66825 9.17805i −0.274295 0.377535i
\(592\) −18.7937 + 9.57587i −0.772417 + 0.393566i
\(593\) 26.6656 + 26.6656i 1.09502 + 1.09502i 0.994983 + 0.100040i \(0.0318971\pi\)
0.100040 + 0.994983i \(0.468103\pi\)
\(594\) 5.96146 + 20.6362i 0.244602 + 0.846714i
\(595\) 0 0
\(596\) −0.172988 0.0562073i −0.00708588 0.00230234i
\(597\) −15.9648 2.52857i −0.653394 0.103487i
\(598\) 3.71509 0.588412i 0.151921 0.0240620i
\(599\) 36.7124 11.9286i 1.50003 0.487388i 0.560002 0.828492i \(-0.310801\pi\)
0.940026 + 0.341103i \(0.110801\pi\)
\(600\) 0 0
\(601\) 22.4050 30.8379i 0.913920 1.25790i −0.0518905 0.998653i \(-0.516525\pi\)
0.965810 0.259250i \(-0.0834753\pi\)
\(602\) −6.90894 + 43.6213i −0.281587 + 1.77787i
\(603\) 4.52538 + 8.88156i 0.184288 + 0.361685i
\(604\) −0.236459 −0.00962138
\(605\) 0 0
\(606\) 16.2198 0.658884
\(607\) −16.4492 32.2834i −0.667653 1.31034i −0.937683 0.347491i \(-0.887034\pi\)
0.270031 0.962852i \(-0.412966\pi\)
\(608\) −0.714845 + 4.51336i −0.0289908 + 0.183041i
\(609\) 2.06640 2.84415i 0.0837346 0.115251i
\(610\) 0 0
\(611\) 1.04729 0.340286i 0.0423689 0.0137665i
\(612\) 0.654587 0.103676i 0.0264601 0.00419087i
\(613\) −2.37960 0.376892i −0.0961113 0.0152225i 0.108194 0.994130i \(-0.465493\pi\)
−0.204305 + 0.978907i \(0.565493\pi\)
\(614\) 24.5743 + 7.98466i 0.991736 + 0.322235i
\(615\) 0 0
\(616\) 10.5285 + 36.4455i 0.424206 + 1.46843i
\(617\) 25.5598 + 25.5598i 1.02900 + 1.02900i 0.999567 + 0.0294325i \(0.00937002\pi\)
0.0294325 + 0.999567i \(0.490630\pi\)
\(618\) −10.9631 + 5.58599i −0.441001 + 0.224701i
\(619\) −0.537145 0.739317i −0.0215897 0.0297157i 0.798086 0.602544i \(-0.205846\pi\)
−0.819675 + 0.572828i \(0.805846\pi\)
\(620\) 0 0
\(621\) 3.78415 + 11.6464i 0.151853 + 0.467355i
\(622\) 19.7409 + 10.0585i 0.791540 + 0.403310i
\(623\) 9.18661 + 58.0020i 0.368054 + 2.32380i
\(624\) 2.66569 1.93674i 0.106713 0.0775316i
\(625\) 0 0
\(626\) 38.2851i 1.53018i
\(627\) 10.9480 10.2496i 0.437219 0.409331i
\(628\) 0.781786 0.781786i 0.0311967 0.0311967i
\(629\) 2.93865 9.04423i 0.117172 0.360617i
\(630\) 0 0
\(631\) −18.6941 13.5820i −0.744199 0.540692i 0.149824 0.988713i \(-0.452129\pi\)
−0.894023 + 0.448020i \(0.852129\pi\)
\(632\) 2.81388 5.52255i 0.111930 0.219675i
\(633\) 2.41536 4.74042i 0.0960020 0.188415i
\(634\) 33.5956 + 24.4087i 1.33425 + 0.969392i
\(635\) 0 0
\(636\) −0.348145 + 1.07148i −0.0138049 + 0.0424870i
\(637\) 7.04889 7.04889i 0.279287 0.279287i
\(638\) −4.83342 + 0.603161i −0.191357 + 0.0238794i
\(639\) 19.8201i 0.784072i
\(640\) 0 0
\(641\) −7.06172 + 5.13064i −0.278921 + 0.202648i −0.718447 0.695582i \(-0.755147\pi\)
0.439525 + 0.898230i \(0.355147\pi\)
\(642\) −1.17727 7.43296i −0.0464630 0.293356i
\(643\) 28.1018 + 14.3186i 1.10823 + 0.564670i 0.909634 0.415412i \(-0.136362\pi\)
0.198594 + 0.980082i \(0.436362\pi\)
\(644\) −0.538058 1.65597i −0.0212024 0.0652544i
\(645\) 0 0
\(646\) −9.02265 12.4186i −0.354991 0.488604i
\(647\) 12.2437 6.23845i 0.481348 0.245259i −0.196441 0.980516i \(-0.562938\pi\)
0.677789 + 0.735257i \(0.262938\pi\)
\(648\) −6.22265 6.22265i −0.244449 0.244449i
\(649\) −29.0356 10.5032i −1.13975 0.412288i
\(650\) 0 0
\(651\) −1.41487 0.459720i −0.0554532 0.0180178i
\(652\) 2.26797 + 0.359211i 0.0888205 + 0.0140678i
\(653\) 5.37414 0.851181i 0.210307 0.0333093i −0.0503921 0.998730i \(-0.516047\pi\)
0.260699 + 0.965420i \(0.416047\pi\)
\(654\) 23.1192 7.51187i 0.904030 0.293737i
\(655\) 0 0
\(656\) −1.45134 + 1.99759i −0.0566652 + 0.0779929i
\(657\) −1.97062 + 12.4420i −0.0768812 + 0.485408i
\(658\) −3.33733 6.54987i −0.130102 0.255341i
\(659\) 42.1160 1.64061 0.820304 0.571928i \(-0.193805\pi\)
0.820304 + 0.571928i \(0.193805\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 16.4023 + 32.1913i 0.637493 + 1.25115i
\(663\) −0.232390 + 1.46726i −0.00902529 + 0.0569835i
\(664\) 3.17181 4.36562i 0.123090 0.169419i
\(665\) 0 0
\(666\) 15.8666 5.15536i 0.614817 0.199766i
\(667\) −2.74272 + 0.434404i −0.106198 + 0.0168202i
\(668\) −0.610847 0.0967487i −0.0236344 0.00374332i
\(669\) −11.2385 3.65162i −0.434507 0.141180i
\(670\) 0 0
\(671\) −14.4746 21.3683i −0.558786 0.824915i
\(672\) −2.08750 2.08750i −0.0805269 0.0805269i
\(673\) 4.94179 2.51797i 0.190492 0.0970605i −0.356143 0.934431i \(-0.615908\pi\)
0.546635 + 0.837371i \(0.315908\pi\)
\(674\) −26.7253 36.7842i −1.02942 1.41687i
\(675\) 0 0
\(676\) −0.559191 1.72101i −0.0215073 0.0661928i
\(677\) 2.07893 + 1.05927i 0.0798999 + 0.0407110i 0.493484 0.869755i \(-0.335723\pi\)
−0.413584 + 0.910466i \(0.635723\pi\)
\(678\) 2.31421 + 14.6114i 0.0888767 + 0.561146i
\(679\) 11.3369 8.23673i 0.435070 0.316097i
\(680\) 0 0
\(681\) 6.89132i 0.264076i
\(682\) 0.874800 + 1.86638i 0.0334978 + 0.0714675i
\(683\) 25.0400 25.0400i 0.958127 0.958127i −0.0410307 0.999158i \(-0.513064\pi\)
0.999158 + 0.0410307i \(0.0130641\pi\)
\(684\) 0.577053 1.77599i 0.0220642 0.0679066i
\(685\) 0 0
\(686\) −18.8423 13.6897i −0.719401 0.522676i
\(687\) 7.40730 14.5376i 0.282606 0.554646i
\(688\) 13.8738 27.2288i 0.528933 1.03809i
\(689\) 6.80110 + 4.94129i 0.259101 + 0.188248i
\(690\) 0 0
\(691\) −0.556172 + 1.71172i −0.0211578 + 0.0651170i −0.961078 0.276277i \(-0.910899\pi\)
0.939920 + 0.341394i \(0.110899\pi\)
\(692\) −0.456241 + 0.456241i −0.0173437 + 0.0173437i
\(693\) −3.99389 32.0050i −0.151715 1.21577i
\(694\) 44.2510i 1.67974i
\(695\) 0 0
\(696\) −1.83081 + 1.33016i −0.0693967 + 0.0504196i
\(697\) −0.174147 1.09952i −0.00659628 0.0416473i
\(698\) −27.9094 14.2205i −1.05638 0.538255i
\(699\) 0.955200 + 2.93980i 0.0361290 + 0.111194i
\(700\) 0 0
\(701\) 10.4715 + 14.4128i 0.395502 + 0.544362i 0.959608 0.281340i \(-0.0907790\pi\)
−0.564106 + 0.825703i \(0.690779\pi\)
\(702\) −5.34171 + 2.72174i −0.201610 + 0.102725i
\(703\) −18.9468 18.9468i −0.714593 0.714593i
\(704\) 0.799189 24.2592i 0.0301206 0.914304i
\(705\) 0 0
\(706\) −5.57255 1.81063i −0.209726 0.0681440i
\(707\) −55.3357 8.76432i −2.08111 0.329616i
\(708\) 1.14071 0.180671i 0.0428706 0.00679003i
\(709\) 9.55567 3.10483i 0.358871 0.116604i −0.124032 0.992278i \(-0.539583\pi\)
0.482903 + 0.875674i \(0.339583\pi\)
\(710\) 0 0
\(711\) −3.09743 + 4.26324i −0.116163 + 0.159884i
\(712\) 5.91351 37.3365i 0.221618 1.39924i
\(713\) 0.533487 + 1.04703i 0.0199793 + 0.0392115i
\(714\) 9.91691 0.371131
\(715\) 0 0
\(716\) 0.554298 0.0207151
\(717\) 1.21427 + 2.38314i 0.0453478 + 0.0890001i
\(718\) −2.46302 + 15.5509i −0.0919193 + 0.580355i
\(719\) −4.03181 + 5.54931i −0.150361 + 0.206954i −0.877553 0.479480i \(-0.840825\pi\)
0.727191 + 0.686435i \(0.240825\pi\)
\(720\) 0 0
\(721\) 40.4204 13.1334i 1.50533 0.489113i
\(722\) −15.2088 + 2.40884i −0.566014 + 0.0896478i
\(723\) 20.8943 + 3.30933i 0.777067 + 0.123075i
\(724\) −0.856964 0.278444i −0.0318488 0.0103483i
\(725\) 0 0
\(726\) 8.58812 10.3174i 0.318735 0.382915i
\(727\) 25.2212 + 25.2212i 0.935401 + 0.935401i 0.998036 0.0626351i \(-0.0199504\pi\)
−0.0626351 + 0.998036i \(0.519950\pi\)
\(728\) −9.43398 + 4.80685i −0.349647 + 0.178154i
\(729\) −2.08750 2.87320i −0.0773149 0.106415i
\(730\) 0 0
\(731\) 4.25759 + 13.1035i 0.157473 + 0.484651i
\(732\) 0.860158 + 0.438272i 0.0317924 + 0.0161990i
\(733\) −1.20620 7.61562i −0.0445519 0.281289i 0.955347 0.295485i \(-0.0954812\pi\)
−0.999899 + 0.0141956i \(0.995481\pi\)
\(734\) −41.0401 + 29.8174i −1.51482 + 1.10058i
\(735\) 0 0
\(736\) 2.33188i 0.0859543i
\(737\) 6.92277 12.5474i 0.255004 0.462189i
\(738\) 1.38095 1.38095i 0.0508336 0.0508336i
\(739\) −12.6089 + 38.8062i −0.463825 + 1.42751i 0.396629 + 0.917979i \(0.370180\pi\)
−0.860454 + 0.509528i \(0.829820\pi\)
\(740\) 0 0
\(741\) 3.38633 + 2.46031i 0.124400 + 0.0903819i
\(742\) 25.4776 50.0027i 0.935313 1.83566i
\(743\) −20.1411 + 39.5290i −0.738904 + 1.45018i 0.148368 + 0.988932i \(0.452598\pi\)
−0.887271 + 0.461248i \(0.847402\pi\)
\(744\) 0.774746 + 0.562886i 0.0284036 + 0.0206364i
\(745\) 0 0
\(746\) 6.34530 19.5288i 0.232318 0.715001i
\(747\) −3.24412 + 3.24412i −0.118696 + 0.118696i
\(748\) −0.651178 0.695544i −0.0238094 0.0254316i
\(749\) 25.9946i 0.949821i
\(750\) 0 0
\(751\) 10.6518 7.73896i 0.388688 0.282399i −0.376229 0.926527i \(-0.622780\pi\)
0.764918 + 0.644128i \(0.222780\pi\)
\(752\) 0.795708 + 5.02390i 0.0290165 + 0.183203i
\(753\) −12.0944 6.16240i −0.440744 0.224570i
\(754\) −0.420104 1.29295i −0.0152993 0.0470864i
\(755\) 0 0
\(756\) 1.63123 + 2.24520i 0.0593274 + 0.0816571i
\(757\) 17.7060 9.02166i 0.643535 0.327898i −0.101586 0.994827i \(-0.532392\pi\)
0.745121 + 0.666929i \(0.232392\pi\)
\(758\) 27.4703 + 27.4703i 0.997768 + 0.997768i
\(759\) 4.69977 6.03997i 0.170591 0.219237i
\(760\) 0 0
\(761\) 16.8706 + 5.48158i 0.611558 + 0.198707i 0.598389 0.801206i \(-0.295808\pi\)
0.0131694 + 0.999913i \(0.495808\pi\)
\(762\) −1.39763 0.221363i −0.0506309 0.00801914i
\(763\) −82.9328 + 13.1353i −3.00237 + 0.475528i
\(764\) −2.34625 + 0.762341i −0.0848842 + 0.0275805i
\(765\) 0 0
\(766\) −20.7124 + 28.5082i −0.748371 + 1.03004i
\(767\) 1.34813 8.51175i 0.0486781 0.307342i
\(768\) 1.34437 + 2.63847i 0.0485107 + 0.0952076i
\(769\) −33.4001 −1.20444 −0.602218 0.798331i \(-0.705716\pi\)
−0.602218 + 0.798331i \(0.705716\pi\)
\(770\) 0 0
\(771\) 13.4894 0.485810
\(772\) −1.14769 2.25247i −0.0413064 0.0810683i
\(773\) 5.96974 37.6915i 0.214717 1.35567i −0.611021 0.791614i \(-0.709241\pi\)
0.825738 0.564054i \(-0.190759\pi\)
\(774\) −14.2073 + 19.5547i −0.510671 + 0.702878i
\(775\) 0 0
\(776\) −8.57893 + 2.78746i −0.307966 + 0.100064i
\(777\) 17.0975 2.70797i 0.613369 0.0971480i
\(778\) −10.9251 1.73036i −0.391683 0.0620365i
\(779\) −2.98315 0.969285i −0.106882 0.0347282i
\(780\) 0 0
\(781\) 23.5913 15.9804i 0.844163 0.571824i
\(782\) −5.53895 5.53895i −0.198072 0.198072i
\(783\) 3.94360 2.00936i 0.140933 0.0718088i
\(784\) 27.0654 + 37.2523i 0.966621 + 1.33044i
\(785\) 0 0
\(786\) 5.45050 + 16.7749i 0.194413 + 0.598341i
\(787\) −32.7403 16.6820i −1.16706 0.594649i −0.240450 0.970662i \(-0.577295\pi\)
−0.926614 + 0.376013i \(0.877295\pi\)
\(788\) 0.317689 + 2.00581i 0.0113172 + 0.0714541i
\(789\) 0.645642 0.469086i 0.0229855 0.0166999i
\(790\) 0 0
\(791\) 51.0989i 1.81687i
\(792\) −3.92127 + 20.3881i −0.139336 + 0.724458i
\(793\) 5.09361 5.09361i 0.180879 0.180879i
\(794\) −10.3140 + 31.7434i −0.366032 + 1.12653i
\(795\) 0 0
\(796\) 2.34087 + 1.70074i 0.0829700 + 0.0602812i
\(797\) 9.14395 17.9460i 0.323895 0.635680i −0.670441 0.741963i \(-0.733895\pi\)
0.994336 + 0.106283i \(0.0338949\pi\)
\(798\) 12.6855 24.8968i 0.449063 0.881337i
\(799\) −1.85529 1.34795i −0.0656355 0.0476870i
\(800\) 0 0
\(801\) −9.93160 + 30.5663i −0.350916 + 1.08001i
\(802\) −25.0253 + 25.0253i −0.883674 + 0.883674i
\(803\) 16.3982 7.68606i 0.578679 0.271235i
\(804\) 0.536020i 0.0189040i
\(805\) 0 0
\(806\) −0.465424 + 0.338150i −0.0163939 + 0.0119108i
\(807\) 3.70156 + 23.3708i 0.130301 + 0.822690i
\(808\) 32.1334 + 16.3728i 1.13045 + 0.575993i
\(809\) −16.0484 49.3920i −0.564233 1.73653i −0.670220 0.742162i \(-0.733800\pi\)
0.105987 0.994367i \(-0.466200\pi\)
\(810\) 0 0
\(811\) −23.0252 31.6914i −0.808523 1.11284i −0.991550 0.129728i \(-0.958590\pi\)
0.183027 0.983108i \(-0.441410\pi\)
\(812\) −0.560729 + 0.285706i −0.0196777 + 0.0100263i
\(813\) −18.1009 18.1009i −0.634826 0.634826i
\(814\) −18.9290 14.7289i −0.663462 0.516247i
\(815\) 0 0
\(816\) −6.52607 2.12045i −0.228458 0.0742306i
\(817\) 38.3431 + 6.07296i 1.34146 + 0.212466i
\(818\) −8.47873 + 1.34290i −0.296452 + 0.0469533i
\(819\) 8.56139 2.78176i 0.299159 0.0972027i
\(820\) 0 0
\(821\) −14.6926 + 20.2226i −0.512775 + 0.705774i −0.984384 0.176034i \(-0.943673\pi\)
0.471609 + 0.881808i \(0.343673\pi\)
\(822\) 2.36185 14.9121i 0.0823789 0.520120i
\(823\) −10.4310 20.4719i −0.363600 0.713606i 0.634646 0.772803i \(-0.281146\pi\)
−0.998246 + 0.0591972i \(0.981146\pi\)
\(824\) −27.3580 −0.953062
\(825\) 0 0
\(826\) −57.5294 −2.00170
\(827\) 2.51391 + 4.93382i 0.0874171 + 0.171566i 0.930576 0.366099i \(-0.119307\pi\)
−0.843159 + 0.537664i \(0.819307\pi\)
\(828\) 0.149071 0.941197i 0.00518057 0.0327089i
\(829\) 8.80126 12.1139i 0.305680 0.420733i −0.628348 0.777933i \(-0.716268\pi\)
0.934028 + 0.357200i \(0.116268\pi\)
\(830\) 0 0
\(831\) −23.8694 + 7.75564i −0.828020 + 0.269040i
\(832\) 6.69109 1.05976i 0.231972 0.0367407i
\(833\) −20.5045 3.24759i −0.710439 0.112522i
\(834\) 1.17153 + 0.380652i 0.0405666 + 0.0131809i
\(835\) 0 0
\(836\) −2.57917 + 0.745079i −0.0892023 + 0.0257691i
\(837\) −1.32438 1.32438i −0.0457773 0.0457773i
\(838\) −14.4461 + 7.36068i −0.499034 + 0.254270i
\(839\) −7.40356 10.1901i −0.255599 0.351802i 0.661863 0.749625i \(-0.269766\pi\)
−0.917462 + 0.397823i \(0.869766\pi\)
\(840\) 0 0
\(841\) −8.65134 26.6261i −0.298322 0.918141i
\(842\) 10.2836 + 5.23975i 0.354396 + 0.180574i
\(843\) −1.10941 7.00457i −0.0382103 0.241250i
\(844\) −0.770496 + 0.559798i −0.0265216 + 0.0192691i
\(845\) 0 0
\(846\) 4.02315i 0.138319i
\(847\) −34.8744 + 30.5585i −1.19830 + 1.05000i
\(848\) −27.4579 + 27.4579i −0.942907 + 0.942907i
\(849\) −2.45461 + 7.55451i −0.0842420 + 0.259270i
\(850\) 0 0
\(851\) −11.0621 8.03706i −0.379203 0.275507i
\(852\) −0.483867 + 0.949642i −0.0165770 + 0.0325342i
\(853\) 22.5965 44.3481i 0.773689 1.51845i −0.0794926 0.996835i \(-0.525330\pi\)
0.853181 0.521614i \(-0.174670\pi\)
\(854\) −38.9035 28.2651i −1.33125 0.967211i
\(855\) 0 0
\(856\) 5.17078 15.9140i 0.176734 0.543930i
\(857\) −21.2860 + 21.2860i −0.727117 + 0.727117i −0.970044 0.242927i \(-0.921892\pi\)
0.242927 + 0.970044i \(0.421892\pi\)
\(858\) 3.28051 + 1.80996i 0.111995 + 0.0617909i
\(859\) 9.31402i 0.317790i −0.987295 0.158895i \(-0.949207\pi\)
0.987295 0.158895i \(-0.0507932\pi\)
\(860\) 0 0
\(861\) 1.63941 1.19110i 0.0558709 0.0405926i
\(862\) 1.67475 + 10.5740i 0.0570424 + 0.360151i
\(863\) −31.5320 16.0664i −1.07336 0.546905i −0.174285 0.984695i \(-0.555761\pi\)
−0.899077 + 0.437790i \(0.855761\pi\)
\(864\) −1.14852 3.53479i −0.0390735 0.120256i
\(865\) 0 0
\(866\) 4.34927 + 5.98625i 0.147794 + 0.203421i
\(867\) −9.85305 + 5.02038i −0.334627 + 0.170501i
\(868\) 0.188310 + 0.188310i 0.00639166 + 0.00639166i
\(869\) 7.57178 + 0.249443i 0.256855 + 0.00846176i
\(870\) 0 0
\(871\) 3.80391 + 1.23597i 0.128891 + 0.0418791i
\(872\) 53.3847 + 8.45531i 1.80783 + 0.286333i
\(873\) 7.57478 1.19973i 0.256368 0.0406046i
\(874\) −20.9911 + 6.82042i −0.710034 + 0.230704i
\(875\) 0 0
\(876\) −0.398163 + 0.548025i −0.0134527 + 0.0185160i
\(877\) 3.41955 21.5902i 0.115470 0.729048i −0.860225 0.509915i \(-0.829677\pi\)
0.975695 0.219133i \(-0.0703230\pi\)
\(878\) −0.863707 1.69512i −0.0291487 0.0572076i
\(879\) 1.92089 0.0647901
\(880\) 0 0
\(881\) 46.4810 1.56599 0.782993 0.622031i \(-0.213692\pi\)
0.782993 + 0.622031i \(0.213692\pi\)
\(882\) −16.5344 32.4505i −0.556741 1.09267i
\(883\) −4.36822 + 27.5798i −0.147002 + 0.928135i 0.798376 + 0.602159i \(0.205693\pi\)
−0.945378 + 0.325976i \(0.894307\pi\)
\(884\) 0.156308 0.215140i 0.00525721 0.00723593i
\(885\) 0 0
\(886\) 21.4719 6.97665i 0.721363 0.234385i
\(887\) 6.95351 1.10133i 0.233476 0.0369790i −0.0385999 0.999255i \(-0.512290\pi\)
0.272076 + 0.962276i \(0.412290\pi\)
\(888\) −11.0058 1.74315i −0.369331 0.0584963i
\(889\) 4.64858 + 1.51041i 0.155908 + 0.0506577i
\(890\) 0 0
\(891\) 3.65892 10.1149i 0.122578 0.338862i
\(892\) 1.49577 + 1.49577i 0.0500822 + 0.0500822i
\(893\) −5.75734 + 2.93351i −0.192662 + 0.0981662i
\(894\) −0.875532 1.20507i −0.0292822 0.0403035i
\(895\) 0 0
\(896\) −16.1666 49.7558i −0.540090 1.66223i
\(897\) 1.90318 + 0.969718i 0.0635453 + 0.0323780i
\(898\) −2.78007 17.5527i −0.0927721 0.585740i
\(899\) 0.343606 0.249644i 0.0114599 0.00832611i
\(900\) 0 0
\(901\) 17.5071i 0.583247i
\(902\) −2.75713 0.530284i −0.0918024 0.0176565i
\(903\) −17.7343 + 17.7343i −0.590160 + 0.590160i
\(904\) −10.1645 + 31.2830i −0.338065 + 1.04046i
\(905\) 0 0
\(906\) −1.56659 1.13820i −0.0520466 0.0378141i
\(907\) −13.4148 + 26.3281i −0.445433 + 0.874211i 0.553706 + 0.832712i \(0.313213\pi\)
−0.999139 + 0.0414984i \(0.986787\pi\)
\(908\) 0.560050 1.09916i 0.0185859 0.0364769i
\(909\) −24.8061 18.0227i −0.822765 0.597774i
\(910\) 0 0
\(911\) 5.23886 16.1236i 0.173571 0.534198i −0.825994 0.563679i \(-0.809386\pi\)
0.999565 + 0.0294813i \(0.00938555\pi\)
\(912\) −13.6715 + 13.6715i −0.452709 + 0.452709i
\(913\) 6.47702 + 1.24574i 0.214358 + 0.0412279i
\(914\) 5.14655i 0.170233i
\(915\) 0 0
\(916\) −2.36292 + 1.71676i −0.0780729 + 0.0567233i
\(917\) −9.53075 60.1748i −0.314733 1.98715i
\(918\) 11.1243 + 5.66813i 0.367158 + 0.187076i
\(919\) −1.55222 4.77725i −0.0512030 0.157587i 0.922185 0.386748i \(-0.126402\pi\)
−0.973388 + 0.229161i \(0.926402\pi\)
\(920\) 0 0
\(921\) 8.62467 + 11.8708i 0.284193 + 0.391158i
\(922\) 7.12304 3.62937i 0.234585 0.119527i
\(923\) 5.62351 + 5.62351i 0.185100 + 0.185100i
\(924\) 0.589975 1.63096i 0.0194087 0.0536545i
\(925\) 0 0
\(926\) 30.3635 + 9.86569i 0.997805 + 0.324207i
\(927\) 22.9736 + 3.63865i 0.754551 + 0.119509i
\(928\) 0.832439 0.131845i 0.0273262 0.00432804i
\(929\) 11.2348 3.65041i 0.368602 0.119766i −0.118858 0.992911i \(-0.537923\pi\)
0.487460 + 0.873145i \(0.337923\pi\)
\(930\) 0 0
\(931\) −34.3822 + 47.3231i −1.12683 + 1.55095i
\(932\) 0.0865609 0.546524i 0.00283540 0.0179020i
\(933\) 5.71194 + 11.2103i 0.187001 + 0.367009i
\(934\) 21.5258 0.704346
\(935\) 0 0
\(936\) −5.79466 −0.189405
\(937\) 1.04060 + 2.04229i 0.0339949 + 0.0667187i 0.907379 0.420313i \(-0.138080\pi\)
−0.873384 + 0.487032i \(0.838080\pi\)
\(938\) 4.17683 26.3715i 0.136378 0.861060i
\(939\) −12.7791 + 17.5889i −0.417029 + 0.573991i
\(940\) 0 0
\(941\) 1.68653 0.547988i 0.0549794 0.0178639i −0.281398 0.959591i \(-0.590798\pi\)
0.336378 + 0.941727i \(0.390798\pi\)
\(942\) 8.94264 1.41638i 0.291367 0.0461480i
\(943\) −1.58094 0.250397i −0.0514826 0.00815404i
\(944\) 37.8587 + 12.3010i 1.23219 + 0.400364i
\(945\) 0 0
\(946\) 34.7303 + 1.14415i 1.12918 + 0.0371994i
\(947\) 8.63289 + 8.63289i 0.280531 + 0.280531i 0.833321 0.552790i \(-0.186437\pi\)
−0.552790 + 0.833321i \(0.686437\pi\)
\(948\) −0.252485 + 0.128648i −0.00820033 + 0.00417828i
\(949\) 2.97101 + 4.08925i 0.0964431 + 0.132743i
\(950\) 0 0
\(951\) 7.28714 + 22.4275i 0.236302 + 0.727262i
\(952\) 19.6466 + 10.0105i 0.636752 + 0.324441i
\(953\) −2.88376 18.2074i −0.0934143 0.589794i −0.989344 0.145598i \(-0.953489\pi\)
0.895930 0.444196i \(-0.146511\pi\)
\(954\) 24.8476 18.0528i 0.804470 0.584482i
\(955\) 0 0
\(956\) 0.478792i 0.0154852i
\(957\) −2.42189 1.33623i −0.0782884 0.0431941i
\(958\) 5.09348 5.09348i 0.164563 0.164563i
\(959\) −16.1154 + 49.5982i −0.520395 + 1.60161i
\(960\) 0 0
\(961\) 24.9341 + 18.1157i 0.804327 + 0.584377i
\(962\) 3.03906 5.96448i 0.0979831 0.192303i
\(963\) −6.45868 + 12.6759i −0.208128 + 0.408474i
\(964\) −3.06368 2.22589i −0.0986743 0.0716911i
\(965\) 0 0
\(966\) 4.40628 13.5611i 0.141770 0.436322i
\(967\) −9.49113 + 9.49113i −0.305214 + 0.305214i −0.843050 0.537836i \(-0.819242\pi\)
0.537836 + 0.843050i \(0.319242\pi\)
\(968\) 27.4289 11.7709i 0.881598 0.378333i
\(969\) 8.71697i 0.280029i
\(970\) 0 0
\(971\) −41.4379 + 30.1064i −1.32981 + 0.966161i −0.330053 + 0.943963i \(0.607067\pi\)
−0.999754 + 0.0221983i \(0.992933\pi\)
\(972\) 0.371911 + 2.34815i 0.0119291 + 0.0753171i
\(973\) −3.79111 1.93167i −0.121538 0.0619265i
\(974\) 4.86416 + 14.9703i 0.155858 + 0.479681i
\(975\) 0 0
\(976\) 19.5578 + 26.9190i 0.626029 + 0.861655i
\(977\) −12.9020 + 6.57391i −0.412772 + 0.210318i −0.648030 0.761615i \(-0.724407\pi\)
0.235257 + 0.971933i \(0.424407\pi\)
\(978\) 13.2967 + 13.2967i 0.425183 + 0.425183i
\(979\) 44.3897 12.8235i 1.41870 0.409840i
\(980\) 0 0
\(981\) −43.7046 14.2005i −1.39538 0.453386i
\(982\) −4.71447 0.746699i −0.150445 0.0238281i
\(983\) 56.8388 9.00238i 1.81288 0.287131i 0.844304 0.535865i \(-0.180014\pi\)
0.968572 + 0.248734i \(0.0800143\pi\)
\(984\) −1.24059 + 0.403091i −0.0395484 + 0.0128501i
\(985\) 0 0
\(986\) −1.66413 + 2.29048i −0.0529967 + 0.0729437i
\(987\) 0.653031 4.12308i 0.0207862 0.131239i
\(988\) −0.340170 0.667621i −0.0108222 0.0212399i
\(989\) 19.8105 0.629936
\(990\) 0 0
\(991\) 13.1102 0.416458 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(992\) −0.161918 0.317782i −0.00514090 0.0100896i
\(993\) −3.20952 + 20.2641i −0.101851 + 0.643062i
\(994\) 31.2055 42.9507i 0.989779 1.36231i
\(995\) 0 0
\(996\) −0.234634 + 0.0762372i −0.00743466 + 0.00241567i
\(997\) −2.22714 + 0.352744i −0.0705343 + 0.0111715i −0.191602 0.981473i \(-0.561368\pi\)
0.121068 + 0.992644i \(0.461368\pi\)
\(998\) 12.9469 + 2.05059i 0.409828 + 0.0649104i
\(999\) 20.7269 + 6.73459i 0.655772 + 0.213073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.57.1 32
5.2 odd 4 55.2.l.a.13.4 yes 32
5.3 odd 4 inner 275.2.bm.b.68.1 32
5.4 even 2 55.2.l.a.2.4 32
11.6 odd 10 inner 275.2.bm.b.182.1 32
15.2 even 4 495.2.bj.a.343.1 32
15.14 odd 2 495.2.bj.a.442.1 32
20.7 even 4 880.2.cm.a.673.3 32
20.19 odd 2 880.2.cm.a.497.3 32
55.2 even 20 605.2.m.d.118.4 32
55.4 even 10 605.2.e.b.362.4 32
55.7 even 20 605.2.e.b.483.4 32
55.9 even 10 605.2.m.c.602.4 32
55.14 even 10 605.2.m.d.282.4 32
55.17 even 20 55.2.l.a.28.4 yes 32
55.19 odd 10 605.2.m.c.282.1 32
55.24 odd 10 605.2.m.d.602.1 32
55.27 odd 20 605.2.m.e.578.1 32
55.28 even 20 inner 275.2.bm.b.193.1 32
55.29 odd 10 605.2.e.b.362.13 32
55.32 even 4 605.2.m.e.233.1 32
55.37 odd 20 605.2.e.b.483.13 32
55.39 odd 10 55.2.l.a.17.4 yes 32
55.42 odd 20 605.2.m.c.118.1 32
55.47 odd 20 605.2.m.d.403.1 32
55.49 even 10 605.2.m.e.457.1 32
55.52 even 20 605.2.m.c.403.4 32
55.54 odd 2 605.2.m.e.112.1 32
165.17 odd 20 495.2.bj.a.28.1 32
165.149 even 10 495.2.bj.a.127.1 32
220.39 even 10 880.2.cm.a.17.3 32
220.127 odd 20 880.2.cm.a.193.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 5.4 even 2
55.2.l.a.13.4 yes 32 5.2 odd 4
55.2.l.a.17.4 yes 32 55.39 odd 10
55.2.l.a.28.4 yes 32 55.17 even 20
275.2.bm.b.57.1 32 1.1 even 1 trivial
275.2.bm.b.68.1 32 5.3 odd 4 inner
275.2.bm.b.182.1 32 11.6 odd 10 inner
275.2.bm.b.193.1 32 55.28 even 20 inner
495.2.bj.a.28.1 32 165.17 odd 20
495.2.bj.a.127.1 32 165.149 even 10
495.2.bj.a.343.1 32 15.2 even 4
495.2.bj.a.442.1 32 15.14 odd 2
605.2.e.b.362.4 32 55.4 even 10
605.2.e.b.362.13 32 55.29 odd 10
605.2.e.b.483.4 32 55.7 even 20
605.2.e.b.483.13 32 55.37 odd 20
605.2.m.c.118.1 32 55.42 odd 20
605.2.m.c.282.1 32 55.19 odd 10
605.2.m.c.403.4 32 55.52 even 20
605.2.m.c.602.4 32 55.9 even 10
605.2.m.d.118.4 32 55.2 even 20
605.2.m.d.282.4 32 55.14 even 10
605.2.m.d.403.1 32 55.47 odd 20
605.2.m.d.602.1 32 55.24 odd 10
605.2.m.e.112.1 32 55.54 odd 2
605.2.m.e.233.1 32 55.32 even 4
605.2.m.e.457.1 32 55.49 even 10
605.2.m.e.578.1 32 55.27 odd 20
880.2.cm.a.17.3 32 220.39 even 10
880.2.cm.a.193.3 32 220.127 odd 20
880.2.cm.a.497.3 32 20.19 odd 2
880.2.cm.a.673.3 32 20.7 even 4