Properties

Label 880.2.cm.a.17.3
Level $880$
Weight $2$
Character 880.17
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 880.17
Dual form 880.2.cm.a.673.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.822224 - 0.130227i) q^{3} +(-0.233059 + 2.22389i) q^{5} +(-0.659422 + 4.16343i) q^{7} +(-2.19408 + 0.712899i) q^{9} +(0.920480 - 3.18633i) q^{11} +(-0.420250 + 0.824787i) q^{13} +(0.0979846 + 1.85889i) q^{15} +(0.875188 + 1.71765i) q^{17} +(-4.39439 - 3.19271i) q^{19} +3.50915i q^{21} +(-1.95998 + 1.95998i) q^{23} +(-4.89137 - 1.03660i) q^{25} +(-3.93640 + 2.00570i) q^{27} +(-0.810497 + 0.588860i) q^{29} +(-0.131006 - 0.403196i) q^{31} +(0.341892 - 2.73975i) q^{33} +(-9.10532 - 2.43681i) q^{35} +(-4.87226 - 0.771690i) q^{37} +(-0.238130 + 0.732888i) q^{39} +(0.339428 - 0.467182i) q^{41} +(5.05373 + 5.05373i) q^{43} +(-1.07406 - 5.04553i) q^{45} +(0.186094 + 1.17495i) q^{47} +(-10.2419 - 3.32780i) q^{49} +(0.943286 + 1.29832i) q^{51} +(8.09173 + 4.12294i) q^{53} +(6.87153 + 2.78965i) q^{55} +(-4.02895 - 2.05285i) q^{57} +(5.47214 + 7.53175i) q^{59} +(7.40093 + 2.40471i) q^{61} +(-1.52128 - 9.60498i) q^{63} +(-1.73629 - 1.12681i) q^{65} +(3.05526 + 3.05526i) q^{67} +(-1.35630 + 1.86679i) q^{69} +(-2.65487 + 8.17086i) q^{71} +(5.39318 + 0.854195i) q^{73} +(-4.15679 - 0.215323i) q^{75} +(12.6591 + 5.93349i) q^{77} +(-0.705861 - 2.17242i) q^{79} +(2.62377 - 1.90628i) q^{81} +(-1.77193 + 0.902846i) q^{83} +(-4.02384 + 1.54601i) q^{85} +(-0.589724 + 0.589724i) q^{87} +13.9313i q^{89} +(-3.15682 - 2.29356i) q^{91} +(-0.160224 - 0.314457i) q^{93} +(8.12438 - 9.02854i) q^{95} +(1.50922 - 2.96200i) q^{97} +(0.251929 + 7.64727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.822224 0.130227i 0.474711 0.0751869i 0.0855054 0.996338i \(-0.472750\pi\)
0.389206 + 0.921151i \(0.372750\pi\)
\(4\) 0 0
\(5\) −0.233059 + 2.22389i −0.104227 + 0.994554i
\(6\) 0 0
\(7\) −0.659422 + 4.16343i −0.249238 + 1.57363i 0.472417 + 0.881375i \(0.343382\pi\)
−0.721655 + 0.692253i \(0.756618\pi\)
\(8\) 0 0
\(9\) −2.19408 + 0.712899i −0.731359 + 0.237633i
\(10\) 0 0
\(11\) 0.920480 3.18633i 0.277535 0.960716i
\(12\) 0 0
\(13\) −0.420250 + 0.824787i −0.116556 + 0.228755i −0.941913 0.335857i \(-0.890974\pi\)
0.825357 + 0.564612i \(0.190974\pi\)
\(14\) 0 0
\(15\) 0.0979846 + 1.85889i 0.0252995 + 0.479962i
\(16\) 0 0
\(17\) 0.875188 + 1.71765i 0.212264 + 0.416592i 0.972449 0.233115i \(-0.0748917\pi\)
−0.760185 + 0.649707i \(0.774892\pi\)
\(18\) 0 0
\(19\) −4.39439 3.19271i −1.00814 0.732458i −0.0443230 0.999017i \(-0.514113\pi\)
−0.963818 + 0.266560i \(0.914113\pi\)
\(20\) 0 0
\(21\) 3.50915i 0.765758i
\(22\) 0 0
\(23\) −1.95998 + 1.95998i −0.408685 + 0.408685i −0.881280 0.472595i \(-0.843317\pi\)
0.472595 + 0.881280i \(0.343317\pi\)
\(24\) 0 0
\(25\) −4.89137 1.03660i −0.978273 0.207319i
\(26\) 0 0
\(27\) −3.93640 + 2.00570i −0.757561 + 0.385996i
\(28\) 0 0
\(29\) −0.810497 + 0.588860i −0.150505 + 0.109349i −0.660490 0.750835i \(-0.729651\pi\)
0.509984 + 0.860184i \(0.329651\pi\)
\(30\) 0 0
\(31\) −0.131006 0.403196i −0.0235294 0.0724161i 0.938602 0.345001i \(-0.112121\pi\)
−0.962132 + 0.272585i \(0.912121\pi\)
\(32\) 0 0
\(33\) 0.341892 2.73975i 0.0595158 0.476929i
\(34\) 0 0
\(35\) −9.10532 2.43681i −1.53908 0.411896i
\(36\) 0 0
\(37\) −4.87226 0.771690i −0.800995 0.126865i −0.257501 0.966278i \(-0.582899\pi\)
−0.543494 + 0.839413i \(0.682899\pi\)
\(38\) 0 0
\(39\) −0.238130 + 0.732888i −0.0381313 + 0.117356i
\(40\) 0 0
\(41\) 0.339428 0.467182i 0.0530097 0.0729616i −0.781689 0.623668i \(-0.785642\pi\)
0.834699 + 0.550707i \(0.185642\pi\)
\(42\) 0 0
\(43\) 5.05373 + 5.05373i 0.770687 + 0.770687i 0.978227 0.207540i \(-0.0665456\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(44\) 0 0
\(45\) −1.07406 5.04553i −0.160111 0.752143i
\(46\) 0 0
\(47\) 0.186094 + 1.17495i 0.0271446 + 0.171384i 0.997536 0.0701524i \(-0.0223486\pi\)
−0.970392 + 0.241537i \(0.922349\pi\)
\(48\) 0 0
\(49\) −10.2419 3.32780i −1.46313 0.475400i
\(50\) 0 0
\(51\) 0.943286 + 1.29832i 0.132086 + 0.181801i
\(52\) 0 0
\(53\) 8.09173 + 4.12294i 1.11149 + 0.566330i 0.910602 0.413285i \(-0.135619\pi\)
0.200883 + 0.979615i \(0.435619\pi\)
\(54\) 0 0
\(55\) 6.87153 + 2.78965i 0.926556 + 0.376156i
\(56\) 0 0
\(57\) −4.02895 2.05285i −0.533647 0.271907i
\(58\) 0 0
\(59\) 5.47214 + 7.53175i 0.712411 + 0.980550i 0.999742 + 0.0227186i \(0.00723217\pi\)
−0.287331 + 0.957831i \(0.592768\pi\)
\(60\) 0 0
\(61\) 7.40093 + 2.40471i 0.947591 + 0.307891i 0.741737 0.670691i \(-0.234002\pi\)
0.205855 + 0.978583i \(0.434002\pi\)
\(62\) 0 0
\(63\) −1.52128 9.60498i −0.191663 1.21011i
\(64\) 0 0
\(65\) −1.73629 1.12681i −0.215361 0.139764i
\(66\) 0 0
\(67\) 3.05526 + 3.05526i 0.373259 + 0.373259i 0.868663 0.495404i \(-0.164980\pi\)
−0.495404 + 0.868663i \(0.664980\pi\)
\(68\) 0 0
\(69\) −1.35630 + 1.86679i −0.163280 + 0.224735i
\(70\) 0 0
\(71\) −2.65487 + 8.17086i −0.315075 + 0.969702i 0.660648 + 0.750696i \(0.270282\pi\)
−0.975723 + 0.219006i \(0.929718\pi\)
\(72\) 0 0
\(73\) 5.39318 + 0.854195i 0.631224 + 0.0999760i 0.463844 0.885917i \(-0.346470\pi\)
0.167379 + 0.985893i \(0.446470\pi\)
\(74\) 0 0
\(75\) −4.15679 0.215323i −0.479985 0.0248634i
\(76\) 0 0
\(77\) 12.6591 + 5.93349i 1.44264 + 0.676184i
\(78\) 0 0
\(79\) −0.705861 2.17242i −0.0794156 0.244416i 0.903464 0.428663i \(-0.141015\pi\)
−0.982880 + 0.184247i \(0.941015\pi\)
\(80\) 0 0
\(81\) 2.62377 1.90628i 0.291530 0.211809i
\(82\) 0 0
\(83\) −1.77193 + 0.902846i −0.194495 + 0.0991002i −0.548526 0.836134i \(-0.684811\pi\)
0.354031 + 0.935234i \(0.384811\pi\)
\(84\) 0 0
\(85\) −4.02384 + 1.54601i −0.436447 + 0.167688i
\(86\) 0 0
\(87\) −0.589724 + 0.589724i −0.0632250 + 0.0632250i
\(88\) 0 0
\(89\) 13.9313i 1.47671i 0.674410 + 0.738357i \(0.264398\pi\)
−0.674410 + 0.738357i \(0.735602\pi\)
\(90\) 0 0
\(91\) −3.15682 2.29356i −0.330925 0.240431i
\(92\) 0 0
\(93\) −0.160224 0.314457i −0.0166144 0.0326076i
\(94\) 0 0
\(95\) 8.12438 9.02854i 0.833544 0.926309i
\(96\) 0 0
\(97\) 1.50922 2.96200i 0.153238 0.300746i −0.801607 0.597851i \(-0.796021\pi\)
0.954845 + 0.297105i \(0.0960213\pi\)
\(98\) 0 0
\(99\) 0.251929 + 7.64727i 0.0253199 + 0.768579i
\(100\) 0 0
\(101\) −12.6404 + 4.10712i −1.25777 + 0.408673i −0.860698 0.509116i \(-0.829973\pi\)
−0.397069 + 0.917789i \(0.629973\pi\)
\(102\) 0 0
\(103\) 1.57723 9.95825i 0.155409 0.981215i −0.779519 0.626378i \(-0.784536\pi\)
0.934928 0.354837i \(-0.115464\pi\)
\(104\) 0 0
\(105\) −7.80395 0.817839i −0.761588 0.0798129i
\(106\) 0 0
\(107\) 6.09076 0.964682i 0.588816 0.0932593i 0.145085 0.989419i \(-0.453654\pi\)
0.443731 + 0.896160i \(0.353654\pi\)
\(108\) 0 0
\(109\) 19.9193 1.90793 0.953964 0.299922i \(-0.0969607\pi\)
0.953964 + 0.299922i \(0.0969607\pi\)
\(110\) 0 0
\(111\) −4.10659 −0.389780
\(112\) 0 0
\(113\) −11.9729 + 1.89632i −1.12632 + 0.178391i −0.691673 0.722211i \(-0.743126\pi\)
−0.434644 + 0.900602i \(0.643126\pi\)
\(114\) 0 0
\(115\) −3.90200 4.81558i −0.363863 0.449055i
\(116\) 0 0
\(117\) 0.334071 2.10924i 0.0308849 0.194999i
\(118\) 0 0
\(119\) −7.72845 + 2.51112i −0.708465 + 0.230194i
\(120\) 0 0
\(121\) −9.30543 5.86591i −0.845949 0.533265i
\(122\) 0 0
\(123\) 0.218246 0.428331i 0.0196785 0.0386213i
\(124\) 0 0
\(125\) 3.44525 10.6363i 0.308153 0.951337i
\(126\) 0 0
\(127\) 0.526416 + 1.03315i 0.0467119 + 0.0916772i 0.913183 0.407551i \(-0.133617\pi\)
−0.866471 + 0.499228i \(0.833617\pi\)
\(128\) 0 0
\(129\) 4.81343 + 3.49716i 0.423799 + 0.307908i
\(130\) 0 0
\(131\) 14.4532i 1.26278i −0.775465 0.631390i \(-0.782485\pi\)
0.775465 0.631390i \(-0.217515\pi\)
\(132\) 0 0
\(133\) 16.1904 16.1904i 1.40388 1.40388i
\(134\) 0 0
\(135\) −3.54303 9.22156i −0.304936 0.793666i
\(136\) 0 0
\(137\) −11.0232 + 5.61663i −0.941780 + 0.479861i −0.856300 0.516479i \(-0.827242\pi\)
−0.0854799 + 0.996340i \(0.527242\pi\)
\(138\) 0 0
\(139\) −0.816606 + 0.593299i −0.0692636 + 0.0503229i −0.621878 0.783114i \(-0.713630\pi\)
0.552615 + 0.833437i \(0.313630\pi\)
\(140\) 0 0
\(141\) 0.306022 + 0.941839i 0.0257717 + 0.0793172i
\(142\) 0 0
\(143\) 2.24121 + 2.09826i 0.187420 + 0.175465i
\(144\) 0 0
\(145\) −1.12067 1.93969i −0.0930663 0.161083i
\(146\) 0 0
\(147\) −8.85451 1.40242i −0.730308 0.115669i
\(148\) 0 0
\(149\) −0.377177 + 1.16083i −0.0308996 + 0.0950990i −0.965317 0.261081i \(-0.915921\pi\)
0.934417 + 0.356180i \(0.115921\pi\)
\(150\) 0 0
\(151\) −0.932668 + 1.28371i −0.0758995 + 0.104467i −0.845279 0.534326i \(-0.820566\pi\)
0.769379 + 0.638792i \(0.220566\pi\)
\(152\) 0 0
\(153\) −3.14474 3.14474i −0.254237 0.254237i
\(154\) 0 0
\(155\) 0.927195 0.197375i 0.0744741 0.0158535i
\(156\) 0 0
\(157\) 1.16061 + 7.32783i 0.0926271 + 0.584824i 0.989724 + 0.142991i \(0.0456719\pi\)
−0.897097 + 0.441834i \(0.854328\pi\)
\(158\) 0 0
\(159\) 7.19014 + 2.33622i 0.570215 + 0.185274i
\(160\) 0 0
\(161\) −6.86780 9.45272i −0.541258 0.744978i
\(162\) 0 0
\(163\) 13.7294 + 6.99546i 1.07537 + 0.547927i 0.899694 0.436522i \(-0.143790\pi\)
0.175673 + 0.984449i \(0.443790\pi\)
\(164\) 0 0
\(165\) 6.01322 + 1.39885i 0.468129 + 0.108901i
\(166\) 0 0
\(167\) 3.69782 + 1.88413i 0.286146 + 0.145799i 0.591172 0.806545i \(-0.298665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(168\) 0 0
\(169\) 7.13754 + 9.82399i 0.549042 + 0.755691i
\(170\) 0 0
\(171\) 11.9177 + 3.87229i 0.911369 + 0.296122i
\(172\) 0 0
\(173\) 0.677320 + 4.27643i 0.0514957 + 0.325131i 0.999966 + 0.00826456i \(0.00263072\pi\)
−0.948470 + 0.316867i \(0.897369\pi\)
\(174\) 0 0
\(175\) 7.54127 19.6813i 0.570066 1.48777i
\(176\) 0 0
\(177\) 5.48016 + 5.48016i 0.411914 + 0.411914i
\(178\) 0 0
\(179\) −2.18633 + 3.00922i −0.163414 + 0.224920i −0.882869 0.469619i \(-0.844391\pi\)
0.719456 + 0.694538i \(0.244391\pi\)
\(180\) 0 0
\(181\) 1.86849 5.75062i 0.138884 0.427440i −0.857290 0.514834i \(-0.827854\pi\)
0.996174 + 0.0873933i \(0.0278537\pi\)
\(182\) 0 0
\(183\) 6.39838 + 1.01340i 0.472982 + 0.0749129i
\(184\) 0 0
\(185\) 2.85168 10.6555i 0.209660 0.783409i
\(186\) 0 0
\(187\) 6.27861 1.20758i 0.459137 0.0883066i
\(188\) 0 0
\(189\) −5.75482 17.7115i −0.418602 1.28832i
\(190\) 0 0
\(191\) −13.3930 + 9.73057i −0.969082 + 0.704079i −0.955242 0.295825i \(-0.904405\pi\)
−0.0138398 + 0.999904i \(0.504405\pi\)
\(192\) 0 0
\(193\) 15.1151 7.70155i 1.08801 0.554370i 0.184456 0.982841i \(-0.440948\pi\)
0.903556 + 0.428471i \(0.140948\pi\)
\(194\) 0 0
\(195\) −1.57436 0.700380i −0.112742 0.0501553i
\(196\) 0 0
\(197\) 9.63624 9.63624i 0.686554 0.686554i −0.274915 0.961469i \(-0.588650\pi\)
0.961469 + 0.274915i \(0.0886496\pi\)
\(198\) 0 0
\(199\) 19.4166i 1.37640i 0.725519 + 0.688202i \(0.241600\pi\)
−0.725519 + 0.688202i \(0.758400\pi\)
\(200\) 0 0
\(201\) 2.90999 + 2.11423i 0.205255 + 0.149126i
\(202\) 0 0
\(203\) −1.91722 3.76275i −0.134562 0.264093i
\(204\) 0 0
\(205\) 0.959854 + 0.863730i 0.0670391 + 0.0603255i
\(206\) 0 0
\(207\) 2.90309 5.69763i 0.201778 0.396012i
\(208\) 0 0
\(209\) −14.2180 + 11.0632i −0.983478 + 0.765254i
\(210\) 0 0
\(211\) −6.07815 + 1.97491i −0.418437 + 0.135959i −0.510666 0.859779i \(-0.670601\pi\)
0.0922284 + 0.995738i \(0.470601\pi\)
\(212\) 0 0
\(213\) −1.11883 + 7.06401i −0.0766609 + 0.484018i
\(214\) 0 0
\(215\) −12.4168 + 10.0611i −0.846816 + 0.686163i
\(216\) 0 0
\(217\) 1.76507 0.279559i 0.119820 0.0189777i
\(218\) 0 0
\(219\) 4.54564 0.307166
\(220\) 0 0
\(221\) −1.78450 −0.120038
\(222\) 0 0
\(223\) 14.0202 2.22058i 0.938860 0.148701i 0.331794 0.943352i \(-0.392346\pi\)
0.607066 + 0.794651i \(0.292346\pi\)
\(224\) 0 0
\(225\) 11.4710 1.21268i 0.764735 0.0808452i
\(226\) 0 0
\(227\) 1.29499 8.17622i 0.0859512 0.542675i −0.906711 0.421753i \(-0.861415\pi\)
0.992662 0.120922i \(-0.0385850\pi\)
\(228\) 0 0
\(229\) −18.6401 + 6.05655i −1.23178 + 0.400228i −0.851357 0.524587i \(-0.824220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(230\) 0 0
\(231\) 11.1813 + 3.23010i 0.735676 + 0.212525i
\(232\) 0 0
\(233\) 1.68573 3.30844i 0.110436 0.216743i −0.829173 0.558991i \(-0.811188\pi\)
0.939609 + 0.342249i \(0.111188\pi\)
\(234\) 0 0
\(235\) −2.65633 + 0.140019i −0.173280 + 0.00913385i
\(236\) 0 0
\(237\) −0.863285 1.69429i −0.0560764 0.110056i
\(238\) 0 0
\(239\) −2.59930 1.88850i −0.168135 0.122157i 0.500536 0.865716i \(-0.333136\pi\)
−0.668671 + 0.743559i \(0.733136\pi\)
\(240\) 0 0
\(241\) 25.4119i 1.63693i −0.574559 0.818463i \(-0.694826\pi\)
0.574559 0.818463i \(-0.305174\pi\)
\(242\) 0 0
\(243\) 11.2809 11.2809i 0.723671 0.723671i
\(244\) 0 0
\(245\) 9.78763 22.0013i 0.625309 1.40561i
\(246\) 0 0
\(247\) 4.48005 2.28270i 0.285059 0.145245i
\(248\) 0 0
\(249\) −1.33935 + 0.973096i −0.0848780 + 0.0616674i
\(250\) 0 0
\(251\) −5.03867 15.5074i −0.318038 0.978820i −0.974486 0.224448i \(-0.927942\pi\)
0.656448 0.754371i \(-0.272058\pi\)
\(252\) 0 0
\(253\) 4.44104 + 8.04929i 0.279206 + 0.506055i
\(254\) 0 0
\(255\) −3.10717 + 1.79518i −0.194578 + 0.112418i
\(256\) 0 0
\(257\) −16.0045 2.53487i −0.998335 0.158121i −0.364182 0.931328i \(-0.618651\pi\)
−0.634154 + 0.773207i \(0.718651\pi\)
\(258\) 0 0
\(259\) 6.42576 19.7764i 0.399277 1.22885i
\(260\) 0 0
\(261\) 1.35849 1.86981i 0.0840887 0.115738i
\(262\) 0 0
\(263\) −0.677874 0.677874i −0.0417995 0.0417995i 0.685898 0.727698i \(-0.259410\pi\)
−0.727698 + 0.685898i \(0.759410\pi\)
\(264\) 0 0
\(265\) −11.0548 + 17.0342i −0.679092 + 1.04640i
\(266\) 0 0
\(267\) 1.81424 + 11.4546i 0.111030 + 0.701013i
\(268\) 0 0
\(269\) 27.0327 + 8.78345i 1.64821 + 0.535536i 0.978351 0.206951i \(-0.0663541\pi\)
0.669860 + 0.742487i \(0.266354\pi\)
\(270\) 0 0
\(271\) −18.0744 24.8772i −1.09794 1.51118i −0.838087 0.545536i \(-0.816326\pi\)
−0.259853 0.965648i \(-0.583674\pi\)
\(272\) 0 0
\(273\) −2.89430 1.47472i −0.175171 0.0892540i
\(274\) 0 0
\(275\) −7.80534 + 14.6314i −0.470680 + 0.882304i
\(276\) 0 0
\(277\) 26.8625 + 13.6871i 1.61401 + 0.822379i 0.999438 + 0.0335176i \(0.0106710\pi\)
0.614571 + 0.788861i \(0.289329\pi\)
\(278\) 0 0
\(279\) 0.574875 + 0.791248i 0.0344169 + 0.0473708i
\(280\) 0 0
\(281\) 8.10210 + 2.63253i 0.483331 + 0.157044i 0.540540 0.841319i \(-0.318220\pi\)
−0.0572089 + 0.998362i \(0.518220\pi\)
\(282\) 0 0
\(283\) 1.49267 + 9.42432i 0.0887297 + 0.560218i 0.991501 + 0.130097i \(0.0415289\pi\)
−0.902772 + 0.430120i \(0.858471\pi\)
\(284\) 0 0
\(285\) 5.50430 8.48150i 0.326046 0.502401i
\(286\) 0 0
\(287\) 1.72125 + 1.72125i 0.101602 + 0.101602i
\(288\) 0 0
\(289\) 7.80797 10.7468i 0.459292 0.632162i
\(290\) 0 0
\(291\) 0.855180 2.63197i 0.0501315 0.154289i
\(292\) 0 0
\(293\) 2.27904 + 0.360965i 0.133143 + 0.0210878i 0.222650 0.974898i \(-0.428529\pi\)
−0.0895072 + 0.995986i \(0.528529\pi\)
\(294\) 0 0
\(295\) −18.0251 + 10.4141i −1.04946 + 0.606331i
\(296\) 0 0
\(297\) 2.76744 + 14.3889i 0.160583 + 0.834928i
\(298\) 0 0
\(299\) −0.792887 2.44025i −0.0458538 0.141124i
\(300\) 0 0
\(301\) −24.3734 + 17.7083i −1.40486 + 1.02069i
\(302\) 0 0
\(303\) −9.85838 + 5.02310i −0.566349 + 0.288569i
\(304\) 0 0
\(305\) −7.07265 + 15.8984i −0.404979 + 0.910340i
\(306\) 0 0
\(307\) 12.4635 12.4635i 0.711327 0.711327i −0.255486 0.966813i \(-0.582235\pi\)
0.966813 + 0.255486i \(0.0822353\pi\)
\(308\) 0 0
\(309\) 8.39331i 0.477479i
\(310\) 0 0
\(311\) 12.2271 + 8.88353i 0.693337 + 0.503739i 0.877755 0.479109i \(-0.159040\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(312\) 0 0
\(313\) −11.8565 23.2697i −0.670169 1.31528i −0.936251 0.351331i \(-0.885729\pi\)
0.266082 0.963950i \(-0.414271\pi\)
\(314\) 0 0
\(315\) 21.7150 1.14463i 1.22350 0.0644925i
\(316\) 0 0
\(317\) −12.8603 + 25.2398i −0.722307 + 1.41761i 0.178744 + 0.983896i \(0.442797\pi\)
−0.901051 + 0.433712i \(0.857203\pi\)
\(318\) 0 0
\(319\) 1.13026 + 3.12455i 0.0632824 + 0.174941i
\(320\) 0 0
\(321\) 4.88234 1.58637i 0.272506 0.0885425i
\(322\) 0 0
\(323\) 1.63805 10.3423i 0.0911436 0.575458i
\(324\) 0 0
\(325\) 2.91057 3.59871i 0.161449 0.199620i
\(326\) 0 0
\(327\) 16.3782 2.59405i 0.905714 0.143451i
\(328\) 0 0
\(329\) −5.01454 −0.276461
\(330\) 0 0
\(331\) 24.6455 1.35464 0.677319 0.735690i \(-0.263142\pi\)
0.677319 + 0.735690i \(0.263142\pi\)
\(332\) 0 0
\(333\) 11.2403 1.78028i 0.615962 0.0975588i
\(334\) 0 0
\(335\) −7.50662 + 6.08250i −0.410130 + 0.332323i
\(336\) 0 0
\(337\) 4.85195 30.6340i 0.264302 1.66874i −0.396390 0.918082i \(-0.629737\pi\)
0.660692 0.750657i \(-0.270263\pi\)
\(338\) 0 0
\(339\) −9.59746 + 3.11840i −0.521263 + 0.169369i
\(340\) 0 0
\(341\) −1.40530 + 0.0462960i −0.0761015 + 0.00250707i
\(342\) 0 0
\(343\) 7.21277 14.1559i 0.389453 0.764345i
\(344\) 0 0
\(345\) −3.83544 3.45134i −0.206493 0.185814i
\(346\) 0 0
\(347\) 13.7041 + 26.8957i 0.735672 + 1.44384i 0.890068 + 0.455829i \(0.150657\pi\)
−0.154395 + 0.988009i \(0.549343\pi\)
\(348\) 0 0
\(349\) −17.2865 12.5594i −0.925323 0.672287i 0.0195201 0.999809i \(-0.493786\pi\)
−0.944843 + 0.327523i \(0.893786\pi\)
\(350\) 0 0
\(351\) 4.08959i 0.218286i
\(352\) 0 0
\(353\) −2.82626 + 2.82626i −0.150427 + 0.150427i −0.778309 0.627882i \(-0.783922\pi\)
0.627882 + 0.778309i \(0.283922\pi\)
\(354\) 0 0
\(355\) −17.5523 7.80843i −0.931581 0.414429i
\(356\) 0 0
\(357\) −6.02750 + 3.07116i −0.319009 + 0.162543i
\(358\) 0 0
\(359\) −8.68908 + 6.31298i −0.458592 + 0.333187i −0.792979 0.609249i \(-0.791471\pi\)
0.334387 + 0.942436i \(0.391471\pi\)
\(360\) 0 0
\(361\) 3.24592 + 9.98992i 0.170838 + 0.525785i
\(362\) 0 0
\(363\) −8.41505 3.61127i −0.441676 0.189542i
\(364\) 0 0
\(365\) −3.15656 + 11.7947i −0.165222 + 0.617365i
\(366\) 0 0
\(367\) −34.1783 5.41331i −1.78409 0.282572i −0.824890 0.565293i \(-0.808763\pi\)
−0.959202 + 0.282721i \(0.908763\pi\)
\(368\) 0 0
\(369\) −0.411677 + 1.26701i −0.0214310 + 0.0659579i
\(370\) 0 0
\(371\) −22.5015 + 30.9706i −1.16822 + 1.60791i
\(372\) 0 0
\(373\) 9.90454 + 9.90454i 0.512838 + 0.512838i 0.915395 0.402557i \(-0.131879\pi\)
−0.402557 + 0.915395i \(0.631879\pi\)
\(374\) 0 0
\(375\) 1.44763 9.19406i 0.0747555 0.474779i
\(376\) 0 0
\(377\) −0.145073 0.915956i −0.00747165 0.0471741i
\(378\) 0 0
\(379\) −25.2037 8.18919i −1.29463 0.420651i −0.420919 0.907098i \(-0.638292\pi\)
−0.873710 + 0.486447i \(0.838292\pi\)
\(380\) 0 0
\(381\) 0.567376 + 0.780926i 0.0290676 + 0.0400081i
\(382\) 0 0
\(383\) 21.4177 + 10.9129i 1.09439 + 0.557622i 0.905487 0.424373i \(-0.139505\pi\)
0.188907 + 0.981995i \(0.439505\pi\)
\(384\) 0 0
\(385\) −16.1457 + 26.7696i −0.822863 + 1.36430i
\(386\) 0 0
\(387\) −14.6911 7.48548i −0.746789 0.380508i
\(388\) 0 0
\(389\) −4.43509 6.10438i −0.224868 0.309505i 0.681644 0.731684i \(-0.261265\pi\)
−0.906512 + 0.422179i \(0.861265\pi\)
\(390\) 0 0
\(391\) −5.08193 1.65122i −0.257004 0.0835057i
\(392\) 0 0
\(393\) −1.88220 11.8838i −0.0949445 0.599456i
\(394\) 0 0
\(395\) 4.99573 1.06346i 0.251362 0.0535083i
\(396\) 0 0
\(397\) 16.0995 + 16.0995i 0.808008 + 0.808008i 0.984332 0.176324i \(-0.0564206\pi\)
−0.176324 + 0.984332i \(0.556421\pi\)
\(398\) 0 0
\(399\) 11.2037 15.4205i 0.560886 0.771993i
\(400\) 0 0
\(401\) −7.46030 + 22.9604i −0.372550 + 1.14659i 0.572568 + 0.819858i \(0.305947\pi\)
−0.945117 + 0.326732i \(0.894053\pi\)
\(402\) 0 0
\(403\) 0.387606 + 0.0613908i 0.0193080 + 0.00305809i
\(404\) 0 0
\(405\) 3.62787 + 6.27926i 0.180270 + 0.312019i
\(406\) 0 0
\(407\) −6.94368 + 14.8143i −0.344185 + 0.734319i
\(408\) 0 0
\(409\) −1.80956 5.56925i −0.0894769 0.275382i 0.896298 0.443452i \(-0.146246\pi\)
−0.985775 + 0.168070i \(0.946246\pi\)
\(410\) 0 0
\(411\) −8.33214 + 6.05365i −0.410994 + 0.298605i
\(412\) 0 0
\(413\) −34.9663 + 17.8162i −1.72058 + 0.876680i
\(414\) 0 0
\(415\) −1.59486 4.15100i −0.0782888 0.203765i
\(416\) 0 0
\(417\) −0.594169 + 0.594169i −0.0290966 + 0.0290966i
\(418\) 0 0
\(419\) 11.0599i 0.540311i 0.962817 + 0.270155i \(0.0870751\pi\)
−0.962817 + 0.270155i \(0.912925\pi\)
\(420\) 0 0
\(421\) −6.36944 4.62767i −0.310428 0.225539i 0.421652 0.906758i \(-0.361450\pi\)
−0.732080 + 0.681219i \(0.761450\pi\)
\(422\) 0 0
\(423\) −1.24593 2.44527i −0.0605790 0.118893i
\(424\) 0 0
\(425\) −2.50035 9.30889i −0.121285 0.451547i
\(426\) 0 0
\(427\) −14.8922 + 29.2275i −0.720682 + 1.41442i
\(428\) 0 0
\(429\) 2.11603 + 1.43337i 0.102163 + 0.0692037i
\(430\) 0 0
\(431\) 6.94552 2.25674i 0.334554 0.108703i −0.136923 0.990582i \(-0.543721\pi\)
0.471477 + 0.881879i \(0.343721\pi\)
\(432\) 0 0
\(433\) 0.789604 4.98536i 0.0379460 0.239581i −0.961424 0.275070i \(-0.911299\pi\)
0.999370 + 0.0354890i \(0.0112989\pi\)
\(434\) 0 0
\(435\) −1.17404 1.44892i −0.0562909 0.0694705i
\(436\) 0 0
\(437\) 14.8706 2.35527i 0.711357 0.112668i
\(438\) 0 0
\(439\) 1.29778 0.0619394 0.0309697 0.999520i \(-0.490140\pi\)
0.0309697 + 0.999520i \(0.490140\pi\)
\(440\) 0 0
\(441\) 24.8439 1.18304
\(442\) 0 0
\(443\) −15.2112 + 2.40922i −0.722707 + 0.114466i −0.506942 0.861980i \(-0.669224\pi\)
−0.215764 + 0.976445i \(0.569224\pi\)
\(444\) 0 0
\(445\) −30.9817 3.24682i −1.46867 0.153914i
\(446\) 0 0
\(447\) −0.158952 + 1.00358i −0.00751816 + 0.0474678i
\(448\) 0 0
\(449\) −11.5295 + 3.74615i −0.544109 + 0.176792i −0.568159 0.822919i \(-0.692344\pi\)
0.0240497 + 0.999711i \(0.492344\pi\)
\(450\) 0 0
\(451\) −1.17616 1.51156i −0.0553833 0.0711766i
\(452\) 0 0
\(453\) −0.599688 + 1.17695i −0.0281758 + 0.0552981i
\(454\) 0 0
\(455\) 5.83636 6.48588i 0.273613 0.304063i
\(456\) 0 0
\(457\) 1.59383 + 3.12807i 0.0745563 + 0.146325i 0.925276 0.379295i \(-0.123833\pi\)
−0.850720 + 0.525620i \(0.823833\pi\)
\(458\) 0 0
\(459\) −6.89018 5.00601i −0.321606 0.233660i
\(460\) 0 0
\(461\) 5.45336i 0.253988i −0.991903 0.126994i \(-0.959467\pi\)
0.991903 0.126994i \(-0.0405329\pi\)
\(462\) 0 0
\(463\) −15.3996 + 15.3996i −0.715681 + 0.715681i −0.967718 0.252037i \(-0.918900\pi\)
0.252037 + 0.967718i \(0.418900\pi\)
\(464\) 0 0
\(465\) 0.736658 0.283033i 0.0341617 0.0131253i
\(466\) 0 0
\(467\) 13.0834 6.66632i 0.605427 0.308481i −0.124273 0.992248i \(-0.539660\pi\)
0.729700 + 0.683768i \(0.239660\pi\)
\(468\) 0 0
\(469\) −14.7351 + 10.7057i −0.680402 + 0.494341i
\(470\) 0 0
\(471\) 1.90857 + 5.87397i 0.0879422 + 0.270658i
\(472\) 0 0
\(473\) 20.7547 11.4510i 0.954303 0.526518i
\(474\) 0 0
\(475\) 18.1850 + 20.1719i 0.834385 + 0.925551i
\(476\) 0 0
\(477\) −20.6931 3.27747i −0.947473 0.150065i
\(478\) 0 0
\(479\) 1.51842 4.67321i 0.0693783 0.213524i −0.910356 0.413826i \(-0.864192\pi\)
0.979734 + 0.200302i \(0.0641922\pi\)
\(480\) 0 0
\(481\) 2.68405 3.69428i 0.122382 0.168444i
\(482\) 0 0
\(483\) −6.87787 6.87787i −0.312954 0.312954i
\(484\) 0 0
\(485\) 6.23543 + 4.04665i 0.283136 + 0.183749i
\(486\) 0 0
\(487\) −1.67972 10.6054i −0.0761155 0.480574i −0.996071 0.0885527i \(-0.971776\pi\)
0.919956 0.392022i \(-0.128224\pi\)
\(488\) 0 0
\(489\) 12.1996 + 3.96390i 0.551686 + 0.179254i
\(490\) 0 0
\(491\) −1.91387 2.63421i −0.0863715 0.118880i 0.763645 0.645637i \(-0.223408\pi\)
−0.850016 + 0.526757i \(0.823408\pi\)
\(492\) 0 0
\(493\) −1.72079 0.876788i −0.0775007 0.0394886i
\(494\) 0 0
\(495\) −17.0654 1.22200i −0.767032 0.0549249i
\(496\) 0 0
\(497\) −32.2681 16.4414i −1.44742 0.737498i
\(498\) 0 0
\(499\) −5.25588 7.23410i −0.235285 0.323843i 0.675005 0.737813i \(-0.264142\pi\)
−0.910290 + 0.413971i \(0.864142\pi\)
\(500\) 0 0
\(501\) 3.28580 + 1.06762i 0.146799 + 0.0476978i
\(502\) 0 0
\(503\) 3.02441 + 19.0954i 0.134852 + 0.851421i 0.958660 + 0.284553i \(0.0918451\pi\)
−0.823808 + 0.566868i \(0.808155\pi\)
\(504\) 0 0
\(505\) −6.18781 29.0681i −0.275354 1.29351i
\(506\) 0 0
\(507\) 7.14801 + 7.14801i 0.317454 + 0.317454i
\(508\) 0 0
\(509\) 1.65845 2.28267i 0.0735097 0.101177i −0.770679 0.637224i \(-0.780083\pi\)
0.844189 + 0.536046i \(0.180083\pi\)
\(510\) 0 0
\(511\) −7.11276 + 21.8908i −0.314650 + 0.968393i
\(512\) 0 0
\(513\) 23.7017 + 3.75398i 1.04645 + 0.165742i
\(514\) 0 0
\(515\) 21.7784 + 5.82845i 0.959673 + 0.256832i
\(516\) 0 0
\(517\) 3.91508 + 0.488562i 0.172185 + 0.0214869i
\(518\) 0 0
\(519\) 1.11382 + 3.42798i 0.0488912 + 0.150472i
\(520\) 0 0
\(521\) −7.68839 + 5.58594i −0.336835 + 0.244725i −0.743325 0.668930i \(-0.766752\pi\)
0.406491 + 0.913655i \(0.366752\pi\)
\(522\) 0 0
\(523\) 13.2194 6.73563i 0.578045 0.294528i −0.140420 0.990092i \(-0.544845\pi\)
0.718465 + 0.695564i \(0.244845\pi\)
\(524\) 0 0
\(525\) 3.63757 17.1645i 0.158756 0.749121i
\(526\) 0 0
\(527\) 0.577895 0.577895i 0.0251735 0.0251735i
\(528\) 0 0
\(529\) 15.3169i 0.665953i
\(530\) 0 0
\(531\) −17.3757 12.6242i −0.754039 0.547842i
\(532\) 0 0
\(533\) 0.242681 + 0.476289i 0.0105117 + 0.0206304i
\(534\) 0 0
\(535\) 0.725838 + 13.7700i 0.0313807 + 0.595329i
\(536\) 0 0
\(537\) −1.40577 + 2.75897i −0.0606633 + 0.119058i
\(538\) 0 0
\(539\) −20.0309 + 29.5710i −0.862794 + 1.27371i
\(540\) 0 0
\(541\) −29.7351 + 9.66153i −1.27841 + 0.415381i −0.868021 0.496528i \(-0.834608\pi\)
−0.410392 + 0.911909i \(0.634608\pi\)
\(542\) 0 0
\(543\) 0.787429 4.97163i 0.0337918 0.213353i
\(544\) 0 0
\(545\) −4.64239 + 44.2984i −0.198858 + 1.89754i
\(546\) 0 0
\(547\) 31.1772 4.93799i 1.33304 0.211133i 0.551076 0.834455i \(-0.314217\pi\)
0.781966 + 0.623322i \(0.214217\pi\)
\(548\) 0 0
\(549\) −17.9525 −0.766194
\(550\) 0 0
\(551\) 5.44169 0.231824
\(552\) 0 0
\(553\) 9.51017 1.50626i 0.404414 0.0640528i
\(554\) 0 0
\(555\) 0.957078 9.13259i 0.0406257 0.387657i
\(556\) 0 0
\(557\) 2.07471 13.0992i 0.0879082 0.555030i −0.903945 0.427648i \(-0.859342\pi\)
0.991854 0.127383i \(-0.0406576\pi\)
\(558\) 0 0
\(559\) −6.29208 + 2.04442i −0.266127 + 0.0864698i
\(560\) 0 0
\(561\) 5.00516 1.81054i 0.211318 0.0764412i
\(562\) 0 0
\(563\) −13.3342 + 26.1698i −0.561968 + 1.10292i 0.418860 + 0.908051i \(0.362430\pi\)
−0.980828 + 0.194874i \(0.937570\pi\)
\(564\) 0 0
\(565\) −1.42682 27.0684i −0.0600266 1.13878i
\(566\) 0 0
\(567\) 6.20650 + 12.1809i 0.260648 + 0.511551i
\(568\) 0 0
\(569\) 17.3540 + 12.6084i 0.727518 + 0.528573i 0.888777 0.458339i \(-0.151555\pi\)
−0.161259 + 0.986912i \(0.551555\pi\)
\(570\) 0 0
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) 0 0
\(573\) −9.74484 + 9.74484i −0.407097 + 0.407097i
\(574\) 0 0
\(575\) 11.6187 7.55529i 0.484534 0.315077i
\(576\) 0 0
\(577\) −5.96290 + 3.03825i −0.248239 + 0.126484i −0.573683 0.819077i \(-0.694486\pi\)
0.325445 + 0.945561i \(0.394486\pi\)
\(578\) 0 0
\(579\) 11.4251 8.30081i 0.474810 0.344970i
\(580\) 0 0
\(581\) −2.59048 7.97268i −0.107471 0.330763i
\(582\) 0 0
\(583\) 20.5853 21.9879i 0.852558 0.910644i
\(584\) 0 0
\(585\) 4.61286 + 1.23452i 0.190718 + 0.0510409i
\(586\) 0 0
\(587\) −36.0485 5.70952i −1.48788 0.235657i −0.641041 0.767506i \(-0.721497\pi\)
−0.846839 + 0.531849i \(0.821497\pi\)
\(588\) 0 0
\(589\) −0.711594 + 2.19006i −0.0293207 + 0.0902400i
\(590\) 0 0
\(591\) 6.66825 9.17805i 0.274295 0.377535i
\(592\) 0 0
\(593\) 26.6656 + 26.6656i 1.09502 + 1.09502i 0.994983 + 0.100040i \(0.0318971\pi\)
0.100040 + 0.994983i \(0.468103\pi\)
\(594\) 0 0
\(595\) −3.78328 17.7724i −0.155099 0.728599i
\(596\) 0 0
\(597\) 2.52857 + 15.9648i 0.103487 + 0.653394i
\(598\) 0 0
\(599\) 36.7124 + 11.9286i 1.50003 + 0.487388i 0.940026 0.341103i \(-0.110801\pi\)
0.560002 + 0.828492i \(0.310801\pi\)
\(600\) 0 0
\(601\) 22.4050 + 30.8379i 0.913920 + 1.25790i 0.965810 + 0.259250i \(0.0834753\pi\)
−0.0518905 + 0.998653i \(0.516525\pi\)
\(602\) 0 0
\(603\) −8.88156 4.52538i −0.361685 0.184288i
\(604\) 0 0
\(605\) 15.2139 19.3272i 0.618531 0.785760i
\(606\) 0 0
\(607\) −32.2834 16.4492i −1.31034 0.667653i −0.347491 0.937683i \(-0.612966\pi\)
−0.962852 + 0.270031i \(0.912966\pi\)
\(608\) 0 0
\(609\) −2.06640 2.84415i −0.0837346 0.115251i
\(610\) 0 0
\(611\) −1.04729 0.340286i −0.0423689 0.0137665i
\(612\) 0 0
\(613\) −0.376892 2.37960i −0.0152225 0.0961113i 0.978907 0.204305i \(-0.0654934\pi\)
−0.994130 + 0.108194i \(0.965493\pi\)
\(614\) 0 0
\(615\) 0.901696 + 0.585180i 0.0363599 + 0.0235967i
\(616\) 0 0
\(617\) −25.5598 25.5598i −1.02900 1.02900i −0.999567 0.0294325i \(-0.990630\pi\)
−0.0294325 0.999567i \(-0.509370\pi\)
\(618\) 0 0
\(619\) −0.537145 + 0.739317i −0.0215897 + 0.0297157i −0.819675 0.572828i \(-0.805846\pi\)
0.798086 + 0.602544i \(0.205846\pi\)
\(620\) 0 0
\(621\) 3.78415 11.6464i 0.151853 0.467355i
\(622\) 0 0
\(623\) −58.0020 9.18661i −2.32380 0.368054i
\(624\) 0 0
\(625\) 22.8509 + 10.1407i 0.914038 + 0.405630i
\(626\) 0 0
\(627\) −10.2496 + 10.9480i −0.409331 + 0.437219i
\(628\) 0 0
\(629\) −2.93865 9.04423i −0.117172 0.360617i
\(630\) 0 0
\(631\) 18.6941 13.5820i 0.744199 0.540692i −0.149824 0.988713i \(-0.547871\pi\)
0.894023 + 0.448020i \(0.147871\pi\)
\(632\) 0 0
\(633\) −4.74042 + 2.41536i −0.188415 + 0.0960020i
\(634\) 0 0
\(635\) −2.42030 + 0.929906i −0.0960465 + 0.0369022i
\(636\) 0 0
\(637\) 7.04889 7.04889i 0.279287 0.279287i
\(638\) 0 0
\(639\) 19.8201i 0.784072i
\(640\) 0 0
\(641\) −7.06172 5.13064i −0.278921 0.202648i 0.439525 0.898230i \(-0.355147\pi\)
−0.718447 + 0.695582i \(0.755147\pi\)
\(642\) 0 0
\(643\) −14.3186 28.1018i −0.564670 1.10823i −0.980082 0.198594i \(-0.936362\pi\)
0.415412 0.909634i \(-0.363638\pi\)
\(644\) 0 0
\(645\) −8.89912 + 9.88950i −0.350403 + 0.389399i
\(646\) 0 0
\(647\) −6.23845 + 12.2437i −0.245259 + 0.481348i −0.980516 0.196441i \(-0.937062\pi\)
0.735257 + 0.677789i \(0.237062\pi\)
\(648\) 0 0
\(649\) 29.0356 10.5032i 1.13975 0.412288i
\(650\) 0 0
\(651\) 1.41487 0.459720i 0.0554532 0.0180178i
\(652\) 0 0
\(653\) −0.851181 + 5.37414i −0.0333093 + 0.210307i −0.998730 0.0503921i \(-0.983953\pi\)
0.965420 + 0.260699i \(0.0839529\pi\)
\(654\) 0 0
\(655\) 32.1423 + 3.36845i 1.25590 + 0.131616i
\(656\) 0 0
\(657\) −12.4420 + 1.97062i −0.485408 + 0.0768812i
\(658\) 0 0
\(659\) 42.1160 1.64061 0.820304 0.571928i \(-0.193805\pi\)
0.820304 + 0.571928i \(0.193805\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 0 0
\(663\) −1.46726 + 0.232390i −0.0569835 + 0.00902529i
\(664\) 0 0
\(665\) 32.2323 + 39.7789i 1.24991 + 1.54256i
\(666\) 0 0
\(667\) 0.434404 2.74272i 0.0168202 0.106198i
\(668\) 0 0
\(669\) 11.2385 3.65162i 0.434507 0.141180i
\(670\) 0 0
\(671\) 14.4746 21.3683i 0.558786 0.824915i
\(672\) 0 0
\(673\) −2.51797 + 4.94179i −0.0970605 + 0.190492i −0.934431 0.356143i \(-0.884092\pi\)
0.837371 + 0.546635i \(0.184092\pi\)
\(674\) 0 0
\(675\) 21.3335 5.73014i 0.821126 0.220553i
\(676\) 0 0
\(677\) −1.05927 2.07893i −0.0407110 0.0798999i 0.869755 0.493484i \(-0.164277\pi\)
−0.910466 + 0.413584i \(0.864277\pi\)
\(678\) 0 0
\(679\) 11.3369 + 8.23673i 0.435070 + 0.316097i
\(680\) 0 0
\(681\) 6.89132i 0.264076i
\(682\) 0 0
\(683\) 25.0400 25.0400i 0.958127 0.958127i −0.0410307 0.999158i \(-0.513064\pi\)
0.999158 + 0.0410307i \(0.0130641\pi\)
\(684\) 0 0
\(685\) −9.92168 25.8235i −0.379088 0.986665i
\(686\) 0 0
\(687\) −14.5376 + 7.40730i −0.554646 + 0.282606i
\(688\) 0 0
\(689\) −6.80110 + 4.94129i −0.259101 + 0.188248i
\(690\) 0 0
\(691\) 0.556172 + 1.71172i 0.0211578 + 0.0651170i 0.961078 0.276277i \(-0.0891008\pi\)
−0.939920 + 0.341394i \(0.889101\pi\)
\(692\) 0 0
\(693\) −32.0050 3.99389i −1.21577 0.151715i
\(694\) 0 0
\(695\) −1.12911 1.95431i −0.0428297 0.0741314i
\(696\) 0 0
\(697\) 1.09952 + 0.174147i 0.0416473 + 0.00659628i
\(698\) 0 0
\(699\) 0.955200 2.93980i 0.0361290 0.111194i
\(700\) 0 0
\(701\) 10.4715 14.4128i 0.395502 0.544362i −0.564106 0.825703i \(-0.690779\pi\)
0.959608 + 0.281340i \(0.0907790\pi\)
\(702\) 0 0
\(703\) 18.9468 + 18.9468i 0.714593 + 0.714593i
\(704\) 0 0
\(705\) −2.16587 + 0.461055i −0.0815713 + 0.0173643i
\(706\) 0 0
\(707\) −8.76432 55.3357i −0.329616 2.08111i
\(708\) 0 0
\(709\) −9.55567 3.10483i −0.358871 0.116604i 0.124032 0.992278i \(-0.460417\pi\)
−0.482903 + 0.875674i \(0.660417\pi\)
\(710\) 0 0
\(711\) 3.09743 + 4.26324i 0.116163 + 0.159884i
\(712\) 0 0
\(713\) 1.04703 + 0.533487i 0.0392115 + 0.0199793i
\(714\) 0 0
\(715\) −5.18863 + 4.49520i −0.194044 + 0.168111i
\(716\) 0 0
\(717\) −2.38314 1.21427i −0.0890001 0.0453478i
\(718\) 0 0
\(719\) −4.03181 5.54931i −0.150361 0.206954i 0.727191 0.686435i \(-0.240825\pi\)
−0.877553 + 0.479480i \(0.840825\pi\)
\(720\) 0 0
\(721\) 40.4204 + 13.1334i 1.50533 + 0.489113i
\(722\) 0 0
\(723\) −3.30933 20.8943i −0.123075 0.777067i
\(724\) 0 0
\(725\) 4.57485 2.04017i 0.169906 0.0757702i
\(726\) 0 0
\(727\) 25.2212 + 25.2212i 0.935401 + 0.935401i 0.998036 0.0626351i \(-0.0199504\pi\)
−0.0626351 + 0.998036i \(0.519950\pi\)
\(728\) 0 0
\(729\) 2.08750 2.87320i 0.0773149 0.106415i
\(730\) 0 0
\(731\) −4.25759 + 13.1035i −0.157473 + 0.484651i
\(732\) 0 0
\(733\) −7.61562 1.20620i −0.281289 0.0445519i 0.0141956 0.999899i \(-0.495481\pi\)
−0.295485 + 0.955347i \(0.595481\pi\)
\(734\) 0 0
\(735\) 5.18245 19.3646i 0.191157 0.714275i
\(736\) 0 0
\(737\) 12.5474 6.92277i 0.462189 0.255004i
\(738\) 0 0
\(739\) −12.6089 38.8062i −0.463825 1.42751i −0.860454 0.509528i \(-0.829820\pi\)
0.396629 0.917979i \(-0.370180\pi\)
\(740\) 0 0
\(741\) 3.38633 2.46031i 0.124400 0.0903819i
\(742\) 0 0
\(743\) −39.5290 + 20.1411i −1.45018 + 0.738904i −0.988932 0.148368i \(-0.952598\pi\)
−0.461248 + 0.887271i \(0.652598\pi\)
\(744\) 0 0
\(745\) −2.49366 1.10934i −0.0913605 0.0406432i
\(746\) 0 0
\(747\) 3.24412 3.24412i 0.118696 0.118696i
\(748\) 0 0
\(749\) 25.9946i 0.949821i
\(750\) 0 0
\(751\) −10.6518 7.73896i −0.388688 0.282399i 0.376229 0.926527i \(-0.377220\pi\)
−0.764918 + 0.644128i \(0.777220\pi\)
\(752\) 0 0
\(753\) −6.16240 12.0944i −0.224570 0.440744i
\(754\) 0 0
\(755\) −2.63746 2.37333i −0.0959869 0.0863743i
\(756\) 0 0
\(757\) 9.02166 17.7060i 0.327898 0.643535i −0.666929 0.745121i \(-0.732392\pi\)
0.994827 + 0.101586i \(0.0323916\pi\)
\(758\) 0 0
\(759\) 4.69977 + 6.03997i 0.170591 + 0.219237i
\(760\) 0 0
\(761\) 16.8706 5.48158i 0.611558 0.198707i 0.0131694 0.999913i \(-0.495808\pi\)
0.598389 + 0.801206i \(0.295808\pi\)
\(762\) 0 0
\(763\) −13.1353 + 82.9328i −0.475528 + 3.00237i
\(764\) 0 0
\(765\) 7.72647 6.26065i 0.279351 0.226354i
\(766\) 0 0
\(767\) −8.51175 + 1.34813i −0.307342 + 0.0486781i
\(768\) 0 0
\(769\) 33.4001 1.20444 0.602218 0.798331i \(-0.294284\pi\)
0.602218 + 0.798331i \(0.294284\pi\)
\(770\) 0 0
\(771\) −13.4894 −0.485810
\(772\) 0 0
\(773\) −37.6915 + 5.96974i −1.35567 + 0.214717i −0.791614 0.611021i \(-0.790759\pi\)
−0.564054 + 0.825738i \(0.690759\pi\)
\(774\) 0 0
\(775\) 0.222849 + 2.10798i 0.00800496 + 0.0757208i
\(776\) 0 0
\(777\) 2.70797 17.0975i 0.0971480 0.613369i
\(778\) 0 0
\(779\) −2.98315 + 0.969285i −0.106882 + 0.0347282i
\(780\) 0 0
\(781\) 23.5913 + 15.9804i 0.844163 + 0.571824i
\(782\) 0 0
\(783\) 2.00936 3.94360i 0.0718088 0.140933i
\(784\) 0 0
\(785\) −16.5668 + 0.873259i −0.591293 + 0.0311680i
\(786\) 0 0
\(787\) −16.6820 32.7403i −0.594649 1.16706i −0.970662 0.240450i \(-0.922705\pi\)
0.376013 0.926614i \(-0.377295\pi\)
\(788\) 0 0
\(789\) −0.645642 0.469086i −0.0229855 0.0166999i
\(790\) 0 0
\(791\) 51.0989i 1.81687i
\(792\) 0 0
\(793\) −5.09361 + 5.09361i −0.180879 + 0.180879i
\(794\) 0 0
\(795\) −6.87122 + 15.4456i −0.243697 + 0.547799i
\(796\) 0 0
\(797\) 17.9460 9.14395i 0.635680 0.323895i −0.106283 0.994336i \(-0.533895\pi\)
0.741963 + 0.670441i \(0.233895\pi\)
\(798\) 0 0
\(799\) −1.85529 + 1.34795i −0.0656355 + 0.0476870i
\(800\) 0 0
\(801\) −9.93160 30.5663i −0.350916 1.08001i
\(802\) 0 0
\(803\) 7.68606 16.3982i 0.271235 0.578679i
\(804\) 0 0
\(805\) 22.6224 13.0702i 0.797335 0.460663i
\(806\) 0 0
\(807\) 23.3708 + 3.70156i 0.822690 + 0.130301i
\(808\) 0 0
\(809\) 16.0484 49.3920i 0.564233 1.73653i −0.105987 0.994367i \(-0.533800\pi\)
0.670220 0.742162i \(-0.266200\pi\)
\(810\) 0 0
\(811\) 23.0252 31.6914i 0.808523 1.11284i −0.183027 0.983108i \(-0.558590\pi\)
0.991550 0.129728i \(-0.0414104\pi\)
\(812\) 0 0
\(813\) −18.1009 18.1009i −0.634826 0.634826i
\(814\) 0 0
\(815\) −18.7569 + 28.9022i −0.657025 + 1.01240i
\(816\) 0 0
\(817\) −6.07296 38.3431i −0.212466 1.34146i
\(818\) 0 0
\(819\) 8.56139 + 2.78176i 0.299159 + 0.0972027i
\(820\) 0 0
\(821\) −14.6926 20.2226i −0.512775 0.705774i 0.471609 0.881808i \(-0.343673\pi\)
−0.984384 + 0.176034i \(0.943673\pi\)
\(822\) 0 0
\(823\) 20.4719 + 10.4310i 0.713606 + 0.363600i 0.772803 0.634646i \(-0.218854\pi\)
−0.0591972 + 0.998246i \(0.518854\pi\)
\(824\) 0 0
\(825\) −4.51233 + 13.0467i −0.157099 + 0.454229i
\(826\) 0 0
\(827\) 4.93382 + 2.51391i 0.171566 + 0.0874171i 0.537664 0.843159i \(-0.319307\pi\)
−0.366099 + 0.930576i \(0.619307\pi\)
\(828\) 0 0
\(829\) −8.80126 12.1139i −0.305680 0.420733i 0.628348 0.777933i \(-0.283732\pi\)
−0.934028 + 0.357200i \(0.883732\pi\)
\(830\) 0 0
\(831\) 23.8694 + 7.75564i 0.828020 + 0.269040i
\(832\) 0 0
\(833\) −3.24759 20.5045i −0.112522 0.710439i
\(834\) 0 0
\(835\) −5.05192 + 7.78443i −0.174829 + 0.269391i
\(836\) 0 0
\(837\) 1.32438 + 1.32438i 0.0457773 + 0.0457773i
\(838\) 0 0
\(839\) −7.40356 + 10.1901i −0.255599 + 0.351802i −0.917462 0.397823i \(-0.869766\pi\)
0.661863 + 0.749625i \(0.269766\pi\)
\(840\) 0 0
\(841\) −8.65134 + 26.6261i −0.298322 + 0.918141i
\(842\) 0 0
\(843\) 7.00457 + 1.10941i 0.241250 + 0.0382103i
\(844\) 0 0
\(845\) −23.5109 + 13.5835i −0.808801 + 0.467288i
\(846\) 0 0
\(847\) 30.5585 34.8744i 1.05000 1.19830i
\(848\) 0 0
\(849\) 2.45461 + 7.55451i 0.0842420 + 0.259270i
\(850\) 0 0
\(851\) 11.0621 8.03706i 0.379203 0.275507i
\(852\) 0 0
\(853\) −44.3481 + 22.5965i −1.51845 + 0.773689i −0.996835 0.0794926i \(-0.974670\pi\)
−0.521614 + 0.853181i \(0.674670\pi\)
\(854\) 0 0
\(855\) −11.3891 + 25.6012i −0.389498 + 0.875541i
\(856\) 0 0
\(857\) −21.2860 + 21.2860i −0.727117 + 0.727117i −0.970044 0.242927i \(-0.921892\pi\)
0.242927 + 0.970044i \(0.421892\pi\)
\(858\) 0 0
\(859\) 9.31402i 0.317790i 0.987295 + 0.158895i \(0.0507932\pi\)
−0.987295 + 0.158895i \(0.949207\pi\)
\(860\) 0 0
\(861\) 1.63941 + 1.19110i 0.0558709 + 0.0405926i
\(862\) 0 0
\(863\) 16.0664 + 31.5320i 0.546905 + 1.07336i 0.984695 + 0.174285i \(0.0557613\pi\)
−0.437790 + 0.899077i \(0.644239\pi\)
\(864\) 0 0
\(865\) −9.66817 + 0.509623i −0.328727 + 0.0173277i
\(866\) 0 0
\(867\) 5.02038 9.85305i 0.170501 0.334627i
\(868\) 0 0
\(869\) −7.57178 + 0.249443i −0.256855 + 0.00846176i
\(870\) 0 0
\(871\) −3.80391 + 1.23597i −0.128891 + 0.0418791i
\(872\) 0 0
\(873\) −1.19973 + 7.57478i −0.0406046 + 0.256368i
\(874\) 0 0
\(875\) 42.0115 + 21.3579i 1.42025 + 0.722027i
\(876\) 0 0
\(877\) 21.5902 3.41955i 0.729048 0.115470i 0.219133 0.975695i \(-0.429677\pi\)
0.509915 + 0.860225i \(0.329677\pi\)
\(878\) 0 0
\(879\) 1.92089 0.0647901
\(880\) 0 0
\(881\) 46.4810 1.56599 0.782993 0.622031i \(-0.213692\pi\)
0.782993 + 0.622031i \(0.213692\pi\)
\(882\) 0 0
\(883\) −27.5798 + 4.36822i −0.928135 + 0.147002i −0.602159 0.798376i \(-0.705693\pi\)
−0.325976 + 0.945378i \(0.605693\pi\)
\(884\) 0 0
\(885\) −13.4645 + 10.9101i −0.452603 + 0.366738i
\(886\) 0 0
\(887\) −1.10133 + 6.95351i −0.0369790 + 0.233476i −0.999255 0.0385999i \(-0.987710\pi\)
0.962276 + 0.272076i \(0.0877102\pi\)
\(888\) 0 0
\(889\) −4.64858 + 1.51041i −0.155908 + 0.0506577i
\(890\) 0 0
\(891\) −3.65892 10.1149i −0.122578 0.338862i
\(892\) 0 0
\(893\) 2.93351 5.75734i 0.0981662 0.192662i
\(894\) 0 0
\(895\) −6.18263 5.56347i −0.206662 0.185966i
\(896\) 0 0
\(897\) −0.969718 1.90318i −0.0323780 0.0635453i
\(898\) 0 0
\(899\) 0.343606 + 0.249644i 0.0114599 + 0.00832611i
\(900\) 0 0
\(901\) 17.5071i 0.583247i
\(902\) 0 0
\(903\) −17.7343 + 17.7343i −0.590160 + 0.590160i
\(904\) 0 0
\(905\) 12.3533 + 5.49555i 0.410637 + 0.182678i
\(906\) 0 0
\(907\) 26.3281 13.4148i 0.874211 0.445433i 0.0414984 0.999139i \(-0.486787\pi\)
0.832712 + 0.553706i \(0.186787\pi\)
\(908\) 0 0
\(909\) 24.8061 18.0227i 0.822765 0.597774i
\(910\) 0 0
\(911\) −5.23886 16.1236i −0.173571 0.534198i 0.825994 0.563679i \(-0.190614\pi\)
−0.999565 + 0.0294813i \(0.990614\pi\)
\(912\) 0 0
\(913\) 1.24574 + 6.47702i 0.0412279 + 0.214358i
\(914\) 0 0
\(915\) −3.74490 + 13.9931i −0.123802 + 0.462598i
\(916\) 0 0
\(917\) 60.1748 + 9.53075i 1.98715 + 0.314733i
\(918\) 0 0
\(919\) −1.55222 + 4.77725i −0.0512030 + 0.157587i −0.973388 0.229161i \(-0.926402\pi\)
0.922185 + 0.386748i \(0.126402\pi\)
\(920\) 0 0
\(921\) 8.62467 11.8708i 0.284193 0.391158i
\(922\) 0 0
\(923\) −5.62351 5.62351i −0.185100 0.185100i
\(924\) 0 0
\(925\) 23.0321 + 8.82519i 0.757290 + 0.290170i
\(926\) 0 0
\(927\) 3.63865 + 22.9736i 0.119509 + 0.754551i
\(928\) 0 0
\(929\) −11.2348 3.65041i −0.368602 0.119766i 0.118858 0.992911i \(-0.462077\pi\)
−0.487460 + 0.873145i \(0.662077\pi\)
\(930\) 0 0
\(931\) 34.3822 + 47.3231i 1.12683 + 1.55095i
\(932\) 0 0
\(933\) 11.2103 + 5.71194i 0.367009 + 0.187001i
\(934\) 0 0
\(935\) 1.22223 + 14.2444i 0.0399711 + 0.465840i
\(936\) 0 0
\(937\) −2.04229 1.04060i −0.0667187 0.0339949i 0.420313 0.907379i \(-0.361920\pi\)
−0.487032 + 0.873384i \(0.661920\pi\)
\(938\) 0 0
\(939\) −12.7791 17.5889i −0.417029 0.573991i
\(940\) 0 0
\(941\) 1.68653 + 0.547988i 0.0549794 + 0.0178639i 0.336378 0.941727i \(-0.390798\pi\)
−0.281398 + 0.959591i \(0.590798\pi\)
\(942\) 0 0
\(943\) 0.250397 + 1.58094i 0.00815404 + 0.0514826i
\(944\) 0 0
\(945\) 40.7297 8.67026i 1.32494 0.282043i
\(946\) 0 0
\(947\) 8.63289 + 8.63289i 0.280531 + 0.280531i 0.833321 0.552790i \(-0.186437\pi\)
−0.552790 + 0.833321i \(0.686437\pi\)
\(948\) 0 0
\(949\) −2.97101 + 4.08925i −0.0964431 + 0.132743i
\(950\) 0 0
\(951\) −7.28714 + 22.4275i −0.236302 + 0.727262i
\(952\) 0 0
\(953\) −18.2074 2.88376i −0.589794 0.0934143i −0.145598 0.989344i \(-0.546511\pi\)
−0.444196 + 0.895930i \(0.646511\pi\)
\(954\) 0 0
\(955\) −18.5184 32.0523i −0.599240 1.03719i
\(956\) 0 0
\(957\) 1.33623 + 2.42189i 0.0431941 + 0.0782884i
\(958\) 0 0
\(959\) −16.1154 49.5982i −0.520395 1.60161i
\(960\) 0 0
\(961\) 24.9341 18.1157i 0.804327 0.584377i
\(962\) 0 0
\(963\) −12.6759 + 6.45868i −0.408474 + 0.208128i
\(964\) 0 0
\(965\) 13.6047 + 35.4093i 0.437950 + 1.13987i
\(966\) 0 0
\(967\) 9.49113 9.49113i 0.305214 0.305214i −0.537836 0.843050i \(-0.680758\pi\)
0.843050 + 0.537836i \(0.180758\pi\)
\(968\) 0 0
\(969\) 8.71697i 0.280029i
\(970\) 0 0
\(971\) 41.4379 + 30.1064i 1.32981 + 0.966161i 0.999754 + 0.0221983i \(0.00706650\pi\)
0.330053 + 0.943963i \(0.392933\pi\)
\(972\) 0 0
\(973\) −1.93167 3.79111i −0.0619265 0.121538i
\(974\) 0 0
\(975\) 1.92449 3.33798i 0.0616329 0.106901i
\(976\) 0 0
\(977\) −6.57391 + 12.9020i −0.210318 + 0.412772i −0.971933 0.235257i \(-0.924407\pi\)
0.761615 + 0.648030i \(0.224407\pi\)
\(978\) 0 0
\(979\) 44.3897 + 12.8235i 1.41870 + 0.409840i
\(980\) 0 0
\(981\) −43.7046 + 14.2005i −1.39538 + 0.453386i
\(982\) 0 0
\(983\) 9.00238 56.8388i 0.287131 1.81288i −0.248734 0.968572i \(-0.580014\pi\)
0.535865 0.844304i \(-0.319986\pi\)
\(984\) 0 0
\(985\) 19.1841 + 23.6758i 0.611257 + 0.754372i
\(986\) 0 0
\(987\) −4.12308 + 0.653031i −0.131239 + 0.0207862i
\(988\) 0 0
\(989\) −19.8105 −0.629936
\(990\) 0 0
\(991\) −13.1102 −0.416458 −0.208229 0.978080i \(-0.566770\pi\)
−0.208229 + 0.978080i \(0.566770\pi\)
\(992\) 0 0
\(993\) 20.2641 3.20952i 0.643062 0.101851i
\(994\) 0 0
\(995\) −43.1803 4.52521i −1.36891 0.143459i
\(996\) 0 0
\(997\) −0.352744 + 2.22714i −0.0111715 + 0.0705343i −0.992644 0.121068i \(-0.961368\pi\)
0.981473 + 0.191602i \(0.0613682\pi\)
\(998\) 0 0
\(999\) 20.7269 6.73459i 0.655772 0.213073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.17.3 32
4.3 odd 2 55.2.l.a.17.4 yes 32
5.3 odd 4 inner 880.2.cm.a.193.3 32
11.2 odd 10 inner 880.2.cm.a.497.3 32
12.11 even 2 495.2.bj.a.127.1 32
20.3 even 4 55.2.l.a.28.4 yes 32
20.7 even 4 275.2.bm.b.193.1 32
20.19 odd 2 275.2.bm.b.182.1 32
44.3 odd 10 605.2.e.b.362.13 32
44.7 even 10 605.2.m.c.602.4 32
44.15 odd 10 605.2.m.d.602.1 32
44.19 even 10 605.2.e.b.362.4 32
44.27 odd 10 605.2.m.c.282.1 32
44.31 odd 10 605.2.m.e.112.1 32
44.35 even 10 55.2.l.a.2.4 32
44.39 even 10 605.2.m.d.282.4 32
44.43 even 2 605.2.m.e.457.1 32
55.13 even 20 inner 880.2.cm.a.673.3 32
60.23 odd 4 495.2.bj.a.28.1 32
132.35 odd 10 495.2.bj.a.442.1 32
220.3 even 20 605.2.e.b.483.4 32
220.43 odd 4 605.2.m.e.578.1 32
220.63 odd 20 605.2.e.b.483.13 32
220.79 even 10 275.2.bm.b.57.1 32
220.83 odd 20 605.2.m.d.403.1 32
220.103 even 20 605.2.m.d.118.4 32
220.123 odd 20 55.2.l.a.13.4 yes 32
220.163 even 20 605.2.m.e.233.1 32
220.167 odd 20 275.2.bm.b.68.1 32
220.183 odd 20 605.2.m.c.118.1 32
220.203 even 20 605.2.m.c.403.4 32
660.563 even 20 495.2.bj.a.343.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 44.35 even 10
55.2.l.a.13.4 yes 32 220.123 odd 20
55.2.l.a.17.4 yes 32 4.3 odd 2
55.2.l.a.28.4 yes 32 20.3 even 4
275.2.bm.b.57.1 32 220.79 even 10
275.2.bm.b.68.1 32 220.167 odd 20
275.2.bm.b.182.1 32 20.19 odd 2
275.2.bm.b.193.1 32 20.7 even 4
495.2.bj.a.28.1 32 60.23 odd 4
495.2.bj.a.127.1 32 12.11 even 2
495.2.bj.a.343.1 32 660.563 even 20
495.2.bj.a.442.1 32 132.35 odd 10
605.2.e.b.362.4 32 44.19 even 10
605.2.e.b.362.13 32 44.3 odd 10
605.2.e.b.483.4 32 220.3 even 20
605.2.e.b.483.13 32 220.63 odd 20
605.2.m.c.118.1 32 220.183 odd 20
605.2.m.c.282.1 32 44.27 odd 10
605.2.m.c.403.4 32 220.203 even 20
605.2.m.c.602.4 32 44.7 even 10
605.2.m.d.118.4 32 220.103 even 20
605.2.m.d.282.4 32 44.39 even 10
605.2.m.d.403.1 32 220.83 odd 20
605.2.m.d.602.1 32 44.15 odd 10
605.2.m.e.112.1 32 44.31 odd 10
605.2.m.e.233.1 32 220.163 even 20
605.2.m.e.457.1 32 44.43 even 2
605.2.m.e.578.1 32 220.43 odd 4
880.2.cm.a.17.3 32 1.1 even 1 trivial
880.2.cm.a.193.3 32 5.3 odd 4 inner
880.2.cm.a.497.3 32 11.2 odd 10 inner
880.2.cm.a.673.3 32 55.13 even 20 inner