Properties

Label 605.2.m.e.457.1
Level $605$
Weight $2$
Character 605.457
Analytic conductor $4.831$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(112,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.112"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.m (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,-4,0,-2,20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 457.1
Character \(\chi\) \(=\) 605.457
Dual form 605.2.m.e.233.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30617 - 0.665529i) q^{2} +(-0.822224 + 0.130227i) q^{3} +(0.0875924 + 0.120561i) q^{4} +(-0.233059 + 2.22389i) q^{5} +(1.16064 + 0.377114i) q^{6} +(-0.659422 + 4.16343i) q^{7} +(0.424477 + 2.68004i) q^{8} +(-2.19408 + 0.712899i) q^{9} +(1.78448 - 2.74968i) q^{10} +(-0.0877208 - 0.0877208i) q^{12} +(0.420250 - 0.824787i) q^{13} +(3.63220 - 4.99930i) q^{14} +(-0.0979846 - 1.85889i) q^{15} +(1.32131 - 4.06656i) q^{16} +(-0.875188 - 1.71765i) q^{17} +(3.34030 + 0.529052i) q^{18} +(-4.39439 - 3.19271i) q^{19} +(-0.288528 + 0.166698i) q^{20} -3.50915i q^{21} +(1.95998 - 1.95998i) q^{23} +(-0.698030 - 2.14832i) q^{24} +(-4.89137 - 1.03660i) q^{25} +(-1.09784 + 0.797627i) q^{26} +(3.93640 - 2.00570i) q^{27} +(-0.559706 + 0.285184i) q^{28} +(0.810497 - 0.588860i) q^{29} +(-1.10916 + 2.49324i) q^{30} +(0.131006 + 0.403196i) q^{31} +(-0.594873 + 0.594873i) q^{32} +2.82602i q^{34} +(-9.10532 - 2.43681i) q^{35} +(-0.278132 - 0.202075i) q^{36} +(-4.87226 - 0.771690i) q^{37} +(3.61500 + 7.09483i) q^{38} +(-0.238130 + 0.732888i) q^{39} +(-6.05905 + 0.319381i) q^{40} +(-0.339428 + 0.467182i) q^{41} +(-2.33544 + 4.58356i) q^{42} +(5.05373 + 5.05373i) q^{43} +(-1.07406 - 5.04553i) q^{45} +(-3.86451 + 1.25566i) q^{46} +(-0.186094 - 1.17495i) q^{47} +(-0.556831 + 3.51569i) q^{48} +(-10.2419 - 3.32780i) q^{49} +(5.69909 + 4.60932i) q^{50} +(0.943286 + 1.29832i) q^{51} +(0.136247 - 0.0215795i) q^{52} +(8.09173 + 4.12294i) q^{53} -6.47647 q^{54} -11.4381 q^{56} +(4.02895 + 2.05285i) q^{57} +(-1.45055 + 0.229745i) q^{58} +(-5.47214 - 7.53175i) q^{59} +(0.215526 - 0.174637i) q^{60} +(-7.40093 - 2.40471i) q^{61} +(0.0972215 - 0.613832i) q^{62} +(-1.52128 - 9.60498i) q^{63} +(-6.96021 + 2.26151i) q^{64} +(1.73629 + 1.12681i) q^{65} +(-3.05526 - 3.05526i) q^{67} +(0.130421 - 0.255966i) q^{68} +(-1.35630 + 1.86679i) q^{69} +(10.2714 + 9.24275i) q^{70} +(2.65487 - 8.17086i) q^{71} +(-2.84193 - 5.57761i) q^{72} +(-5.39318 - 0.854195i) q^{73} +(5.85044 + 4.25059i) q^{74} +(4.15679 + 0.215323i) q^{75} -0.809447i q^{76} +(0.798797 - 0.798797i) q^{78} +(-0.705861 - 2.17242i) q^{79} +(8.73564 + 3.88619i) q^{80} +(2.62377 - 1.90628i) q^{81} +(0.754275 - 0.384322i) q^{82} +(-1.77193 + 0.902846i) q^{83} +(0.423065 - 0.307374i) q^{84} +(4.02384 - 1.54601i) q^{85} +(-3.23765 - 9.96446i) q^{86} +(-0.589724 + 0.589724i) q^{87} +13.9313i q^{89} +(-1.95504 + 7.30516i) q^{90} +(3.15682 + 2.29356i) q^{91} +(0.407977 + 0.0646171i) q^{92} +(-0.160224 - 0.314457i) q^{93} +(-0.538893 + 1.65854i) q^{94} +(8.12438 - 9.02854i) q^{95} +(0.411650 - 0.566587i) q^{96} +(1.50922 - 2.96200i) q^{97} +(11.1630 + 11.1630i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} - 4 q^{3} - 2 q^{5} + 20 q^{6} + 10 q^{8} + 12 q^{12} + 10 q^{13} + 14 q^{15} - 8 q^{16} + 10 q^{18} + 16 q^{20} - 24 q^{23} + 16 q^{25} + 20 q^{26} - 16 q^{27} - 50 q^{28} - 30 q^{30} - 28 q^{31}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30617 0.665529i −0.923605 0.470600i −0.0735483 0.997292i \(-0.523432\pi\)
−0.850057 + 0.526691i \(0.823432\pi\)
\(3\) −0.822224 + 0.130227i −0.474711 + 0.0751869i −0.389206 0.921151i \(-0.627250\pi\)
−0.0855054 + 0.996338i \(0.527250\pi\)
\(4\) 0.0875924 + 0.120561i 0.0437962 + 0.0602803i
\(5\) −0.233059 + 2.22389i −0.104227 + 0.994554i
\(6\) 1.16064 + 0.377114i 0.473829 + 0.153956i
\(7\) −0.659422 + 4.16343i −0.249238 + 1.57363i 0.472417 + 0.881375i \(0.343382\pi\)
−0.721655 + 0.692253i \(0.756618\pi\)
\(8\) 0.424477 + 2.68004i 0.150075 + 0.947538i
\(9\) −2.19408 + 0.712899i −0.731359 + 0.237633i
\(10\) 1.78448 2.74968i 0.564302 0.869525i
\(11\) 0 0
\(12\) −0.0877208 0.0877208i −0.0253228 0.0253228i
\(13\) 0.420250 0.824787i 0.116556 0.228755i −0.825357 0.564612i \(-0.809026\pi\)
0.941913 + 0.335857i \(0.109026\pi\)
\(14\) 3.63220 4.99930i 0.970747 1.33612i
\(15\) −0.0979846 1.85889i −0.0252995 0.479962i
\(16\) 1.32131 4.06656i 0.330326 1.01664i
\(17\) −0.875188 1.71765i −0.212264 0.416592i 0.760185 0.649707i \(-0.225108\pi\)
−0.972449 + 0.233115i \(0.925108\pi\)
\(18\) 3.34030 + 0.529052i 0.787317 + 0.124699i
\(19\) −4.39439 3.19271i −1.00814 0.732458i −0.0443230 0.999017i \(-0.514113\pi\)
−0.963818 + 0.266560i \(0.914113\pi\)
\(20\) −0.288528 + 0.166698i −0.0645167 + 0.0372748i
\(21\) 3.50915i 0.765758i
\(22\) 0 0
\(23\) 1.95998 1.95998i 0.408685 0.408685i −0.472595 0.881280i \(-0.656683\pi\)
0.881280 + 0.472595i \(0.156683\pi\)
\(24\) −0.698030 2.14832i −0.142485 0.438523i
\(25\) −4.89137 1.03660i −0.978273 0.207319i
\(26\) −1.09784 + 0.797627i −0.215304 + 0.156428i
\(27\) 3.93640 2.00570i 0.757561 0.385996i
\(28\) −0.559706 + 0.285184i −0.105774 + 0.0538948i
\(29\) 0.810497 0.588860i 0.150505 0.109349i −0.509984 0.860184i \(-0.670349\pi\)
0.660490 + 0.750835i \(0.270349\pi\)
\(30\) −1.10916 + 2.49324i −0.202504 + 0.455201i
\(31\) 0.131006 + 0.403196i 0.0235294 + 0.0724161i 0.962132 0.272585i \(-0.0878786\pi\)
−0.938602 + 0.345001i \(0.887879\pi\)
\(32\) −0.594873 + 0.594873i −0.105160 + 0.105160i
\(33\) 0 0
\(34\) 2.82602i 0.484658i
\(35\) −9.10532 2.43681i −1.53908 0.411896i
\(36\) −0.278132 0.202075i −0.0463553 0.0336791i
\(37\) −4.87226 0.771690i −0.800995 0.126865i −0.257501 0.966278i \(-0.582899\pi\)
−0.543494 + 0.839413i \(0.682899\pi\)
\(38\) 3.61500 + 7.09483i 0.586430 + 1.15093i
\(39\) −0.238130 + 0.732888i −0.0381313 + 0.117356i
\(40\) −6.05905 + 0.319381i −0.958019 + 0.0504986i
\(41\) −0.339428 + 0.467182i −0.0530097 + 0.0729616i −0.834699 0.550707i \(-0.814358\pi\)
0.781689 + 0.623668i \(0.214358\pi\)
\(42\) −2.33544 + 4.58356i −0.360366 + 0.707258i
\(43\) 5.05373 + 5.05373i 0.770687 + 0.770687i 0.978227 0.207540i \(-0.0665456\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(44\) 0 0
\(45\) −1.07406 5.04553i −0.160111 0.752143i
\(46\) −3.86451 + 1.25566i −0.569791 + 0.185136i
\(47\) −0.186094 1.17495i −0.0271446 0.171384i 0.970392 0.241537i \(-0.0776514\pi\)
−0.997536 + 0.0701524i \(0.977651\pi\)
\(48\) −0.556831 + 3.51569i −0.0803717 + 0.507447i
\(49\) −10.2419 3.32780i −1.46313 0.475400i
\(50\) 5.69909 + 4.60932i 0.805974 + 0.651857i
\(51\) 0.943286 + 1.29832i 0.132086 + 0.181801i
\(52\) 0.136247 0.0215795i 0.0188941 0.00299254i
\(53\) 8.09173 + 4.12294i 1.11149 + 0.566330i 0.910602 0.413285i \(-0.135619\pi\)
0.200883 + 0.979615i \(0.435619\pi\)
\(54\) −6.47647 −0.881337
\(55\) 0 0
\(56\) −11.4381 −1.52848
\(57\) 4.02895 + 2.05285i 0.533647 + 0.271907i
\(58\) −1.45055 + 0.229745i −0.190467 + 0.0301670i
\(59\) −5.47214 7.53175i −0.712411 0.980550i −0.999742 0.0227186i \(-0.992768\pi\)
0.287331 0.957831i \(-0.407232\pi\)
\(60\) 0.215526 0.174637i 0.0278242 0.0225456i
\(61\) −7.40093 2.40471i −0.947591 0.307891i −0.205855 0.978583i \(-0.565998\pi\)
−0.741737 + 0.670691i \(0.765998\pi\)
\(62\) 0.0972215 0.613832i 0.0123471 0.0779568i
\(63\) −1.52128 9.60498i −0.191663 1.21011i
\(64\) −6.96021 + 2.26151i −0.870026 + 0.282689i
\(65\) 1.73629 + 1.12681i 0.215361 + 0.139764i
\(66\) 0 0
\(67\) −3.05526 3.05526i −0.373259 0.373259i 0.495404 0.868663i \(-0.335020\pi\)
−0.868663 + 0.495404i \(0.835020\pi\)
\(68\) 0.130421 0.255966i 0.0158159 0.0310405i
\(69\) −1.35630 + 1.86679i −0.163280 + 0.224735i
\(70\) 10.2714 + 9.24275i 1.22766 + 1.10472i
\(71\) 2.65487 8.17086i 0.315075 0.969702i −0.660648 0.750696i \(-0.729718\pi\)
0.975723 0.219006i \(-0.0702816\pi\)
\(72\) −2.84193 5.57761i −0.334925 0.657328i
\(73\) −5.39318 0.854195i −0.631224 0.0999760i −0.167379 0.985893i \(-0.553530\pi\)
−0.463844 + 0.885917i \(0.653530\pi\)
\(74\) 5.85044 + 4.25059i 0.680100 + 0.494122i
\(75\) 4.15679 + 0.215323i 0.479985 + 0.0248634i
\(76\) 0.809447i 0.0928499i
\(77\) 0 0
\(78\) 0.798797 0.798797i 0.0904460 0.0904460i
\(79\) −0.705861 2.17242i −0.0794156 0.244416i 0.903464 0.428663i \(-0.141015\pi\)
−0.982880 + 0.184247i \(0.941015\pi\)
\(80\) 8.73564 + 3.88619i 0.976674 + 0.434489i
\(81\) 2.62377 1.90628i 0.291530 0.211809i
\(82\) 0.754275 0.384322i 0.0832957 0.0424413i
\(83\) −1.77193 + 0.902846i −0.194495 + 0.0991002i −0.548526 0.836134i \(-0.684811\pi\)
0.354031 + 0.935234i \(0.384811\pi\)
\(84\) 0.423065 0.307374i 0.0461601 0.0335373i
\(85\) 4.02384 1.54601i 0.436447 0.167688i
\(86\) −3.23765 9.96446i −0.349125 1.07450i
\(87\) −0.589724 + 0.589724i −0.0632250 + 0.0632250i
\(88\) 0 0
\(89\) 13.9313i 1.47671i 0.674410 + 0.738357i \(0.264398\pi\)
−0.674410 + 0.738357i \(0.735602\pi\)
\(90\) −1.95504 + 7.30516i −0.206079 + 0.770032i
\(91\) 3.15682 + 2.29356i 0.330925 + 0.240431i
\(92\) 0.407977 + 0.0646171i 0.0425345 + 0.00673680i
\(93\) −0.160224 0.314457i −0.0166144 0.0326076i
\(94\) −0.538893 + 1.65854i −0.0555826 + 0.171066i
\(95\) 8.12438 9.02854i 0.833544 0.926309i
\(96\) 0.411650 0.566587i 0.0420138 0.0578271i
\(97\) 1.50922 2.96200i 0.153238 0.300746i −0.801607 0.597851i \(-0.796021\pi\)
0.954845 + 0.297105i \(0.0960213\pi\)
\(98\) 11.1630 + 11.1630i 1.12763 + 1.12763i
\(99\) 0 0
\(100\) −0.303474 0.680504i −0.0303474 0.0680504i
\(101\) 12.6404 4.10712i 1.25777 0.408673i 0.397069 0.917789i \(-0.370027\pi\)
0.860698 + 0.509116i \(0.170027\pi\)
\(102\) −0.368025 2.32362i −0.0364399 0.230073i
\(103\) −1.57723 + 9.95825i −0.155409 + 0.981215i 0.779519 + 0.626378i \(0.215464\pi\)
−0.934928 + 0.354837i \(0.884536\pi\)
\(104\) 2.38885 + 0.776185i 0.234246 + 0.0761112i
\(105\) 7.80395 + 0.817839i 0.761588 + 0.0798129i
\(106\) −7.82528 10.7706i −0.760058 1.04613i
\(107\) 6.09076 0.964682i 0.588816 0.0932593i 0.145085 0.989419i \(-0.453654\pi\)
0.443731 + 0.896160i \(0.353654\pi\)
\(108\) 0.586606 + 0.298891i 0.0564462 + 0.0287608i
\(109\) −19.9193 −1.90793 −0.953964 0.299922i \(-0.903039\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(110\) 0 0
\(111\) 4.10659 0.389780
\(112\) 16.0595 + 8.18274i 1.51748 + 0.773197i
\(113\) −11.9729 + 1.89632i −1.12632 + 0.178391i −0.691673 0.722211i \(-0.743126\pi\)
−0.434644 + 0.900602i \(0.643126\pi\)
\(114\) −3.89628 5.36277i −0.364920 0.502269i
\(115\) 3.90200 + 4.81558i 0.363863 + 0.449055i
\(116\) 0.141987 + 0.0461342i 0.0131831 + 0.00428346i
\(117\) −0.334071 + 2.10924i −0.0308849 + 0.194999i
\(118\) 2.13497 + 13.4796i 0.196540 + 1.24090i
\(119\) 7.72845 2.51112i 0.708465 0.230194i
\(120\) 4.94030 1.05166i 0.450986 0.0960028i
\(121\) 0 0
\(122\) 8.06650 + 8.06650i 0.730306 + 0.730306i
\(123\) 0.218246 0.428331i 0.0196785 0.0386213i
\(124\) −0.0371343 + 0.0511110i −0.00333476 + 0.00458991i
\(125\) 3.44525 10.6363i 0.308153 0.951337i
\(126\) −4.40534 + 13.5582i −0.392459 + 1.20786i
\(127\) 0.526416 + 1.03315i 0.0467119 + 0.0916772i 0.913183 0.407551i \(-0.133617\pi\)
−0.866471 + 0.499228i \(0.833617\pi\)
\(128\) 12.2582 + 1.94151i 1.08348 + 0.171607i
\(129\) −4.81343 3.49716i −0.423799 0.307908i
\(130\) −1.51797 2.62737i −0.133135 0.230435i
\(131\) 14.4532i 1.26278i −0.775465 0.631390i \(-0.782485\pi\)
0.775465 0.631390i \(-0.217515\pi\)
\(132\) 0 0
\(133\) 16.1904 16.1904i 1.40388 1.40388i
\(134\) 1.95734 + 6.02407i 0.169088 + 0.520400i
\(135\) 3.54303 + 9.22156i 0.304936 + 0.793666i
\(136\) 4.23189 3.07465i 0.362881 0.263649i
\(137\) −11.0232 + 5.61663i −0.941780 + 0.479861i −0.856300 0.516479i \(-0.827242\pi\)
−0.0854799 + 0.996340i \(0.527242\pi\)
\(138\) 3.01397 1.53570i 0.256566 0.130727i
\(139\) −0.816606 + 0.593299i −0.0692636 + 0.0503229i −0.621878 0.783114i \(-0.713630\pi\)
0.552615 + 0.833437i \(0.313630\pi\)
\(140\) −0.503774 1.31119i −0.0425766 0.110816i
\(141\) 0.306022 + 0.941839i 0.0257717 + 0.0793172i
\(142\) −8.90567 + 8.90567i −0.747347 + 0.747347i
\(143\) 0 0
\(144\) 9.86430i 0.822025i
\(145\) 1.12067 + 1.93969i 0.0930663 + 0.161083i
\(146\) 6.47594 + 4.70504i 0.535952 + 0.389392i
\(147\) 8.85451 + 1.40242i 0.730308 + 0.115669i
\(148\) −0.333737 0.654997i −0.0274331 0.0538404i
\(149\) 0.377177 1.16083i 0.0308996 0.0950990i −0.934417 0.356180i \(-0.884079\pi\)
0.965317 + 0.261081i \(0.0840790\pi\)
\(150\) −5.28619 3.04772i −0.431616 0.248845i
\(151\) −0.932668 + 1.28371i −0.0758995 + 0.104467i −0.845279 0.534326i \(-0.820566\pi\)
0.769379 + 0.638792i \(0.220566\pi\)
\(152\) 6.69128 13.1324i 0.542734 1.06518i
\(153\) 3.14474 + 3.14474i 0.254237 + 0.254237i
\(154\) 0 0
\(155\) −0.927195 + 0.197375i −0.0744741 + 0.0158535i
\(156\) −0.109216 + 0.0354863i −0.00874425 + 0.00284118i
\(157\) 1.16061 + 7.32783i 0.0926271 + 0.584824i 0.989724 + 0.142991i \(0.0456719\pi\)
−0.897097 + 0.441834i \(0.854328\pi\)
\(158\) −0.523829 + 3.30733i −0.0416736 + 0.263117i
\(159\) −7.19014 2.33622i −0.570215 0.185274i
\(160\) −1.18429 1.46157i −0.0936264 0.115547i
\(161\) 6.86780 + 9.45272i 0.541258 + 0.744978i
\(162\) −4.69579 + 0.743741i −0.368936 + 0.0584338i
\(163\) −13.7294 6.99546i −1.07537 0.547927i −0.175673 0.984449i \(-0.556210\pi\)
−0.899694 + 0.436522i \(0.856210\pi\)
\(164\) −0.0860550 −0.00671976
\(165\) 0 0
\(166\) 2.91533 0.226273
\(167\) 3.69782 + 1.88413i 0.286146 + 0.145799i 0.591172 0.806545i \(-0.298665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(168\) 9.40466 1.48955i 0.725585 0.114921i
\(169\) 7.13754 + 9.82399i 0.549042 + 0.755691i
\(170\) −6.28475 0.658629i −0.482018 0.0505146i
\(171\) 11.9177 + 3.87229i 0.911369 + 0.296122i
\(172\) −0.166612 + 1.05195i −0.0127041 + 0.0802104i
\(173\) −0.677320 4.27643i −0.0514957 0.325131i −0.999966 0.00826456i \(-0.997369\pi\)
0.948470 0.316867i \(-0.102631\pi\)
\(174\) 1.16276 0.377804i 0.0881487 0.0286412i
\(175\) 7.54127 19.6813i 0.570066 1.48777i
\(176\) 0 0
\(177\) 5.48016 + 5.48016i 0.411914 + 0.411914i
\(178\) 9.27168 18.1967i 0.694942 1.36390i
\(179\) 2.18633 3.00922i 0.163414 0.224920i −0.719456 0.694538i \(-0.755609\pi\)
0.882869 + 0.469619i \(0.155609\pi\)
\(180\) 0.514213 0.571439i 0.0383271 0.0425925i
\(181\) 1.86849 5.75062i 0.138884 0.427440i −0.857290 0.514834i \(-0.827854\pi\)
0.996174 + 0.0873933i \(0.0278537\pi\)
\(182\) −2.59692 5.09675i −0.192497 0.377796i
\(183\) 6.39838 + 1.01340i 0.472982 + 0.0749129i
\(184\) 6.08481 + 4.42087i 0.448578 + 0.325911i
\(185\) 2.85168 10.6555i 0.209660 0.783409i
\(186\) 0.517369i 0.0379353i
\(187\) 0 0
\(188\) 0.125352 0.125352i 0.00914227 0.00914227i
\(189\) 5.75482 + 17.7115i 0.418602 + 1.28832i
\(190\) −16.6206 + 6.38583i −1.20579 + 0.463277i
\(191\) 13.3930 9.73057i 0.969082 0.704079i 0.0138398 0.999904i \(-0.495595\pi\)
0.955242 + 0.295825i \(0.0955945\pi\)
\(192\) 5.42834 2.76588i 0.391757 0.199610i
\(193\) −15.1151 + 7.70155i −1.08801 + 0.554370i −0.903556 0.428471i \(-0.859052\pi\)
−0.184456 + 0.982841i \(0.559052\pi\)
\(194\) −3.94260 + 2.86447i −0.283062 + 0.205657i
\(195\) −1.57436 0.700380i −0.112742 0.0501553i
\(196\) −0.495912 1.52626i −0.0354223 0.109019i
\(197\) −9.63624 + 9.63624i −0.686554 + 0.686554i −0.961469 0.274915i \(-0.911350\pi\)
0.274915 + 0.961469i \(0.411350\pi\)
\(198\) 0 0
\(199\) 19.4166i 1.37640i −0.725519 0.688202i \(-0.758400\pi\)
0.725519 0.688202i \(-0.241600\pi\)
\(200\) 0.701848 13.5491i 0.0496281 0.958065i
\(201\) 2.90999 + 2.11423i 0.205255 + 0.149126i
\(202\) −19.2440 3.04795i −1.35400 0.214453i
\(203\) 1.91722 + 3.76275i 0.134562 + 0.264093i
\(204\) −0.0739017 + 0.227446i −0.00517416 + 0.0159244i
\(205\) −0.959854 0.863730i −0.0670391 0.0603255i
\(206\) 8.68764 11.9575i 0.605297 0.833119i
\(207\) −2.90309 + 5.69763i −0.201778 + 0.396012i
\(208\) −2.79877 2.79877i −0.194060 0.194060i
\(209\) 0 0
\(210\) −9.64903 6.26200i −0.665846 0.432119i
\(211\) −6.07815 + 1.97491i −0.418437 + 0.135959i −0.510666 0.859779i \(-0.670601\pi\)
0.0922284 + 0.995738i \(0.470601\pi\)
\(212\) 0.211710 + 1.33668i 0.0145403 + 0.0918037i
\(213\) −1.11883 + 7.06401i −0.0766609 + 0.484018i
\(214\) −8.59762 2.79354i −0.587721 0.190962i
\(215\) −12.4168 + 10.0611i −0.846816 + 0.686163i
\(216\) 7.04626 + 9.69835i 0.479437 + 0.659889i
\(217\) −1.76507 + 0.279559i −0.119820 + 0.0189777i
\(218\) 26.0181 + 13.2569i 1.76217 + 0.897871i
\(219\) 4.54564 0.307166
\(220\) 0 0
\(221\) −1.78450 −0.120038
\(222\) −5.36392 2.73305i −0.360003 0.183430i
\(223\) −14.0202 + 2.22058i −0.938860 + 0.148701i −0.607066 0.794651i \(-0.707654\pi\)
−0.331794 + 0.943352i \(0.607654\pi\)
\(224\) −2.08444 2.86898i −0.139272 0.191692i
\(225\) 11.4710 1.21268i 0.764735 0.0808452i
\(226\) 16.9008 + 5.49139i 1.12422 + 0.365282i
\(227\) 1.29499 8.17622i 0.0859512 0.542675i −0.906711 0.421753i \(-0.861415\pi\)
0.992662 0.120922i \(-0.0385850\pi\)
\(228\) 0.105412 + 0.665546i 0.00698109 + 0.0440769i
\(229\) −18.6401 + 6.05655i −1.23178 + 0.400228i −0.851357 0.524587i \(-0.824220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(230\) −1.89178 8.88688i −0.124740 0.585984i
\(231\) 0 0
\(232\) 1.92221 + 1.92221i 0.126199 + 0.126199i
\(233\) −1.68573 + 3.30844i −0.110436 + 0.216743i −0.939609 0.342249i \(-0.888812\pi\)
0.829173 + 0.558991i \(0.188812\pi\)
\(234\) 1.84012 2.53270i 0.120292 0.165568i
\(235\) 2.65633 0.140019i 0.173280 0.00913385i
\(236\) 0.428714 1.31945i 0.0279069 0.0858887i
\(237\) 0.863285 + 1.69429i 0.0560764 + 0.110056i
\(238\) −11.7659 1.86354i −0.762672 0.120795i
\(239\) −2.59930 1.88850i −0.168135 0.122157i 0.500536 0.865716i \(-0.333136\pi\)
−0.668671 + 0.743559i \(0.733136\pi\)
\(240\) −7.68874 2.05770i −0.496306 0.132824i
\(241\) 25.4119i 1.63693i 0.574559 + 0.818463i \(0.305174\pi\)
−0.574559 + 0.818463i \(0.694826\pi\)
\(242\) 0 0
\(243\) −11.2809 + 11.2809i −0.723671 + 0.723671i
\(244\) −0.358352 1.10289i −0.0229411 0.0706055i
\(245\) 9.78763 22.0013i 0.625309 1.40561i
\(246\) −0.570133 + 0.414226i −0.0363504 + 0.0264101i
\(247\) −4.48005 + 2.28270i −0.285059 + 0.145245i
\(248\) −1.02497 + 0.522250i −0.0650858 + 0.0331629i
\(249\) 1.33935 0.973096i 0.0848780 0.0616674i
\(250\) −11.5788 + 11.5999i −0.732311 + 0.733643i
\(251\) 5.03867 + 15.5074i 0.318038 + 0.978820i 0.974486 + 0.224448i \(0.0720580\pi\)
−0.656448 + 0.754371i \(0.727942\pi\)
\(252\) 1.02473 1.02473i 0.0645519 0.0645519i
\(253\) 0 0
\(254\) 1.69982i 0.106656i
\(255\) −3.10717 + 1.79518i −0.194578 + 0.112418i
\(256\) −2.87779 2.09084i −0.179862 0.130677i
\(257\) −16.0045 2.53487i −0.998335 0.158121i −0.364182 0.931328i \(-0.618651\pi\)
−0.634154 + 0.773207i \(0.718651\pi\)
\(258\) 3.95972 + 7.77139i 0.246521 + 0.483825i
\(259\) 6.42576 19.7764i 0.399277 1.22885i
\(260\) 0.0162366 + 0.308029i 0.00100695 + 0.0191031i
\(261\) −1.35849 + 1.86981i −0.0840887 + 0.115738i
\(262\) −9.61901 + 18.8784i −0.594265 + 1.16631i
\(263\) −0.677874 0.677874i −0.0417995 0.0417995i 0.685898 0.727698i \(-0.259410\pi\)
−0.727698 + 0.685898i \(0.759410\pi\)
\(264\) 0 0
\(265\) −11.0548 + 17.0342i −0.679092 + 1.04640i
\(266\) −31.9226 + 10.3723i −1.95730 + 0.635966i
\(267\) −1.81424 11.4546i −0.111030 0.701013i
\(268\) 0.100726 0.635961i 0.00615284 0.0388475i
\(269\) 27.0327 + 8.78345i 1.64821 + 0.535536i 0.978351 0.206951i \(-0.0663541\pi\)
0.669860 + 0.742487i \(0.266354\pi\)
\(270\) 1.50940 14.4030i 0.0918593 0.876536i
\(271\) −18.0744 24.8772i −1.09794 1.51118i −0.838087 0.545536i \(-0.816326\pi\)
−0.259853 0.965648i \(-0.583674\pi\)
\(272\) −8.14133 + 1.28946i −0.493641 + 0.0781850i
\(273\) −2.89430 1.47472i −0.175171 0.0892540i
\(274\) 18.1363 1.09565
\(275\) 0 0
\(276\) −0.343863 −0.0206981
\(277\) −26.8625 13.6871i −1.61401 0.822379i −0.999438 0.0335176i \(-0.989329\pi\)
−0.614571 0.788861i \(-0.710671\pi\)
\(278\) 1.46149 0.231477i 0.0876542 0.0138831i
\(279\) −0.574875 0.791248i −0.0344169 0.0473708i
\(280\) 2.66575 25.4370i 0.159309 1.52015i
\(281\) −8.10210 2.63253i −0.483331 0.157044i 0.0572089 0.998362i \(-0.481780\pi\)
−0.540540 + 0.841319i \(0.681780\pi\)
\(282\) 0.227103 1.43387i 0.0135238 0.0853859i
\(283\) 1.49267 + 9.42432i 0.0887297 + 0.560218i 0.991501 + 0.130097i \(0.0415289\pi\)
−0.902772 + 0.430120i \(0.858471\pi\)
\(284\) 1.21763 0.395632i 0.0722530 0.0234764i
\(285\) −5.50430 + 8.48150i −0.326046 + 0.502401i
\(286\) 0 0
\(287\) −1.72125 1.72125i −0.101602 0.101602i
\(288\) 0.881112 1.72928i 0.0519200 0.101899i
\(289\) 7.80797 10.7468i 0.459292 0.632162i
\(290\) −0.172863 3.27941i −0.0101509 0.192574i
\(291\) −0.855180 + 2.63197i −0.0501315 + 0.154289i
\(292\) −0.369419 0.725025i −0.0216186 0.0424289i
\(293\) −2.27904 0.360965i −0.133143 0.0210878i 0.0895072 0.995986i \(-0.471471\pi\)
−0.222650 + 0.974898i \(0.571471\pi\)
\(294\) −10.6322 7.72474i −0.620082 0.450516i
\(295\) 18.0251 10.4141i 1.04946 0.606331i
\(296\) 13.3854i 0.778013i
\(297\) 0 0
\(298\) −1.26523 + 1.26523i −0.0732926 + 0.0732926i
\(299\) −0.792887 2.44025i −0.0458538 0.141124i
\(300\) 0.338144 + 0.520006i 0.0195227 + 0.0300225i
\(301\) −24.3734 + 17.7083i −1.40486 + 1.02069i
\(302\) 2.07257 1.05603i 0.119263 0.0607676i
\(303\) −9.85838 + 5.02310i −0.566349 + 0.288569i
\(304\) −18.7897 + 13.6515i −1.07766 + 0.782967i
\(305\) 7.07265 15.8984i 0.404979 0.910340i
\(306\) −2.01466 6.20050i −0.115171 0.354459i
\(307\) 12.4635 12.4635i 0.711327 0.711327i −0.255486 0.966813i \(-0.582235\pi\)
0.966813 + 0.255486i \(0.0822353\pi\)
\(308\) 0 0
\(309\) 8.39331i 0.477479i
\(310\) 1.34244 + 0.359269i 0.0762453 + 0.0204051i
\(311\) −12.2271 8.88353i −0.693337 0.503739i 0.184419 0.982848i \(-0.440960\pi\)
−0.877755 + 0.479109i \(0.840960\pi\)
\(312\) −2.06525 0.327104i −0.116922 0.0185186i
\(313\) −11.8565 23.2697i −0.670169 1.31528i −0.936251 0.351331i \(-0.885729\pi\)
0.266082 0.963950i \(-0.414271\pi\)
\(314\) 3.36092 10.3438i 0.189668 0.583737i
\(315\) 21.7150 1.14463i 1.22350 0.0644925i
\(316\) 0.200080 0.275386i 0.0112554 0.0154917i
\(317\) −12.8603 + 25.2398i −0.722307 + 1.41761i 0.178744 + 0.983896i \(0.442797\pi\)
−0.901051 + 0.433712i \(0.857203\pi\)
\(318\) 7.83675 + 7.83675i 0.439463 + 0.439463i
\(319\) 0 0
\(320\) −3.40720 16.0058i −0.190469 0.894751i
\(321\) −4.88234 + 1.58637i −0.272506 + 0.0885425i
\(322\) −2.67949 16.9176i −0.149322 0.942782i
\(323\) −1.63805 + 10.3423i −0.0911436 + 0.575458i
\(324\) 0.459645 + 0.149348i 0.0255358 + 0.00829710i
\(325\) −2.91057 + 3.59871i −0.161449 + 0.199620i
\(326\) 13.2773 + 18.2746i 0.735360 + 1.01214i
\(327\) 16.3782 2.59405i 0.905714 0.143451i
\(328\) −1.39615 0.711372i −0.0770893 0.0392790i
\(329\) 5.01454 0.276461
\(330\) 0 0
\(331\) −24.6455 −1.35464 −0.677319 0.735690i \(-0.736858\pi\)
−0.677319 + 0.735690i \(0.736858\pi\)
\(332\) −0.264055 0.134543i −0.0144919 0.00738401i
\(333\) 11.2403 1.78028i 0.615962 0.0975588i
\(334\) −3.57605 4.92202i −0.195673 0.269321i
\(335\) 7.50662 6.08250i 0.410130 0.332323i
\(336\) −14.2702 4.63665i −0.778501 0.252950i
\(337\) −4.85195 + 30.6340i −0.264302 + 1.66874i 0.396390 + 0.918082i \(0.370263\pi\)
−0.660692 + 0.750657i \(0.729737\pi\)
\(338\) −2.78473 17.5821i −0.151469 0.956339i
\(339\) 9.59746 3.11840i 0.521263 0.169369i
\(340\) 0.538845 + 0.349698i 0.0292230 + 0.0189650i
\(341\) 0 0
\(342\) −12.9895 12.9895i −0.702390 0.702390i
\(343\) 7.21277 14.1559i 0.389453 0.764345i
\(344\) −11.3990 + 15.6894i −0.614594 + 0.845916i
\(345\) −3.83544 3.45134i −0.206493 0.185814i
\(346\) −1.96139 + 6.03654i −0.105445 + 0.324527i
\(347\) 13.7041 + 26.8957i 0.735672 + 1.44384i 0.890068 + 0.455829i \(0.150657\pi\)
−0.154395 + 0.988009i \(0.549343\pi\)
\(348\) −0.122753 0.0194421i −0.00658024 0.00104221i
\(349\) 17.2865 + 12.5594i 0.925323 + 0.672287i 0.944843 0.327523i \(-0.106214\pi\)
−0.0195201 + 0.999809i \(0.506214\pi\)
\(350\) −22.9487 + 20.6883i −1.22666 + 1.10584i
\(351\) 4.08959i 0.218286i
\(352\) 0 0
\(353\) −2.82626 + 2.82626i −0.150427 + 0.150427i −0.778309 0.627882i \(-0.783922\pi\)
0.627882 + 0.778309i \(0.283922\pi\)
\(354\) −3.51084 10.8053i −0.186599 0.574293i
\(355\) 17.5523 + 7.80843i 0.931581 + 0.414429i
\(356\) −1.67956 + 1.22027i −0.0890167 + 0.0646744i
\(357\) −6.02750 + 3.07116i −0.319009 + 0.162543i
\(358\) −4.85844 + 2.47550i −0.256777 + 0.130834i
\(359\) −8.68908 + 6.31298i −0.458592 + 0.333187i −0.792979 0.609249i \(-0.791471\pi\)
0.334387 + 0.942436i \(0.391471\pi\)
\(360\) 13.0663 5.02023i 0.688656 0.264590i
\(361\) 3.24592 + 9.98992i 0.170838 + 0.525785i
\(362\) −6.26778 + 6.26778i −0.329427 + 0.329427i
\(363\) 0 0
\(364\) 0.581487i 0.0304782i
\(365\) 3.15656 11.7947i 0.165222 0.617365i
\(366\) −7.68295 5.58199i −0.401594 0.291775i
\(367\) 34.1783 + 5.41331i 1.78409 + 0.282572i 0.959202 0.282721i \(-0.0912370\pi\)
0.824890 + 0.565293i \(0.191237\pi\)
\(368\) −5.38066 10.5601i −0.280486 0.550485i
\(369\) 0.411677 1.26701i 0.0214310 0.0659579i
\(370\) −10.8164 + 12.0201i −0.562315 + 0.624895i
\(371\) −22.5015 + 30.9706i −1.16822 + 1.60791i
\(372\) 0.0238767 0.0468606i 0.00123795 0.00242961i
\(373\) −9.90454 9.90454i −0.512838 0.512838i 0.402557 0.915395i \(-0.368121\pi\)
−0.915395 + 0.402557i \(0.868121\pi\)
\(374\) 0 0
\(375\) −1.44763 + 9.19406i −0.0747555 + 0.474779i
\(376\) 3.06993 0.997480i 0.158319 0.0514411i
\(377\) −0.145073 0.915956i −0.00747165 0.0471741i
\(378\) 4.27073 26.9643i 0.219663 1.38690i
\(379\) 25.2037 + 8.18919i 1.29463 + 0.420651i 0.873710 0.486447i \(-0.161708\pi\)
0.420919 + 0.907098i \(0.361708\pi\)
\(380\) 1.80012 + 0.188649i 0.0923442 + 0.00967749i
\(381\) −0.567376 0.780926i −0.0290676 0.0400081i
\(382\) −23.9695 + 3.79640i −1.22639 + 0.194241i
\(383\) −21.4177 10.9129i −1.09439 0.557622i −0.188907 0.981995i \(-0.560495\pi\)
−0.905487 + 0.424373i \(0.860495\pi\)
\(384\) −10.3318 −0.527243
\(385\) 0 0
\(386\) 24.8686 1.26578
\(387\) −14.6911 7.48548i −0.746789 0.380508i
\(388\) 0.489297 0.0774970i 0.0248403 0.00393431i
\(389\) −4.43509 6.10438i −0.224868 0.309505i 0.681644 0.731684i \(-0.261265\pi\)
−0.906512 + 0.422179i \(0.861265\pi\)
\(390\) 1.59027 + 1.96260i 0.0805264 + 0.0993803i
\(391\) −5.08193 1.65122i −0.257004 0.0835057i
\(392\) 4.57119 28.8613i 0.230880 1.45772i
\(393\) 1.88220 + 11.8838i 0.0949445 + 0.599456i
\(394\) 18.9998 6.17342i 0.957197 0.311012i
\(395\) 4.99573 1.06346i 0.251362 0.0535083i
\(396\) 0 0
\(397\) 16.0995 + 16.0995i 0.808008 + 0.808008i 0.984332 0.176324i \(-0.0564206\pi\)
−0.176324 + 0.984332i \(0.556421\pi\)
\(398\) −12.9223 + 25.3614i −0.647736 + 1.27125i
\(399\) −11.2037 + 15.4205i −0.560886 + 0.771993i
\(400\) −10.6784 + 18.5214i −0.533918 + 0.926069i
\(401\) −7.46030 + 22.9604i −0.372550 + 1.14659i 0.572568 + 0.819858i \(0.305947\pi\)
−0.945117 + 0.326732i \(0.894053\pi\)
\(402\) −2.39387 4.69823i −0.119395 0.234327i
\(403\) 0.387606 + 0.0613908i 0.0193080 + 0.00305809i
\(404\) 1.60236 + 1.16418i 0.0797203 + 0.0579202i
\(405\) 3.62787 + 6.27926i 0.180270 + 0.312019i
\(406\) 6.19078i 0.307243i
\(407\) 0 0
\(408\) −3.07915 + 3.07915i −0.152441 + 0.152441i
\(409\) 1.80956 + 5.56925i 0.0894769 + 0.275382i 0.985775 0.168070i \(-0.0537536\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(410\) 0.678899 + 1.76699i 0.0335284 + 0.0872656i
\(411\) 8.33214 6.05365i 0.410994 0.298605i
\(412\) −1.33872 + 0.682114i −0.0659542 + 0.0336054i
\(413\) 34.9663 17.8162i 1.72058 0.876680i
\(414\) 7.58387 5.51001i 0.372727 0.270802i
\(415\) −1.59486 4.15100i −0.0782888 0.203765i
\(416\) 0.240648 + 0.740639i 0.0117987 + 0.0363128i
\(417\) 0.594169 0.594169i 0.0290966 0.0290966i
\(418\) 0 0
\(419\) 11.0599i 0.540311i −0.962817 0.270155i \(-0.912925\pi\)
0.962817 0.270155i \(-0.0870751\pi\)
\(420\) 0.584968 + 1.01249i 0.0285435 + 0.0494042i
\(421\) −6.36944 4.62767i −0.310428 0.225539i 0.421652 0.906758i \(-0.361450\pi\)
−0.732080 + 0.681219i \(0.761450\pi\)
\(422\) 9.25349 + 1.46561i 0.450453 + 0.0713447i
\(423\) 1.24593 + 2.44527i 0.0605790 + 0.118893i
\(424\) −7.61491 + 23.4363i −0.369813 + 1.13817i
\(425\) 2.50035 + 9.30889i 0.121285 + 0.451547i
\(426\) 6.16269 8.48222i 0.298583 0.410965i
\(427\) 14.8922 29.2275i 0.720682 1.41442i
\(428\) 0.649807 + 0.649807i 0.0314096 + 0.0314096i
\(429\) 0 0
\(430\) 22.9144 4.87787i 1.10503 0.235232i
\(431\) 6.94552 2.25674i 0.334554 0.108703i −0.136923 0.990582i \(-0.543721\pi\)
0.471477 + 0.881879i \(0.343721\pi\)
\(432\) −2.95510 18.6577i −0.142177 0.897671i
\(433\) 0.789604 4.98536i 0.0379460 0.239581i −0.961424 0.275070i \(-0.911299\pi\)
0.999370 + 0.0354890i \(0.0112989\pi\)
\(434\) 2.49154 + 0.809550i 0.119598 + 0.0388596i
\(435\) −1.17404 1.44892i −0.0562909 0.0694705i
\(436\) −1.74478 2.40149i −0.0835599 0.115010i
\(437\) −14.8706 + 2.35527i −0.711357 + 0.112668i
\(438\) −5.93740 3.02525i −0.283700 0.144552i
\(439\) 1.29778 0.0619394 0.0309697 0.999520i \(-0.490140\pi\)
0.0309697 + 0.999520i \(0.490140\pi\)
\(440\) 0 0
\(441\) 24.8439 1.18304
\(442\) 2.33086 + 1.18763i 0.110868 + 0.0564900i
\(443\) 15.2112 2.40922i 0.722707 0.114466i 0.215764 0.976445i \(-0.430776\pi\)
0.506942 + 0.861980i \(0.330776\pi\)
\(444\) 0.359706 + 0.495092i 0.0170709 + 0.0234960i
\(445\) −30.9817 3.24682i −1.46867 0.153914i
\(446\) 19.7907 + 6.43037i 0.937115 + 0.304487i
\(447\) −0.158952 + 1.00358i −0.00751816 + 0.0474678i
\(448\) −4.82591 30.4696i −0.228003 1.43955i
\(449\) −11.5295 + 3.74615i −0.544109 + 0.176792i −0.568159 0.822919i \(-0.692344\pi\)
0.0240497 + 0.999711i \(0.492344\pi\)
\(450\) −15.7902 6.05033i −0.744359 0.285215i
\(451\) 0 0
\(452\) −1.27736 1.27736i −0.0600818 0.0600818i
\(453\) 0.599688 1.17695i 0.0281758 0.0552981i
\(454\) −7.13299 + 9.81772i −0.334768 + 0.460768i
\(455\) −5.83636 + 6.48588i −0.273613 + 0.304063i
\(456\) −3.79153 + 11.6691i −0.177555 + 0.546458i
\(457\) −1.59383 3.12807i −0.0745563 0.146325i 0.850720 0.525620i \(-0.176167\pi\)
−0.925276 + 0.379295i \(0.876167\pi\)
\(458\) 28.3781 + 4.49465i 1.32602 + 0.210021i
\(459\) −6.89018 5.00601i −0.321606 0.233660i
\(460\) −0.238784 + 0.892235i −0.0111334 + 0.0416007i
\(461\) 5.45336i 0.253988i 0.991903 + 0.126994i \(0.0405329\pi\)
−0.991903 + 0.126994i \(0.959467\pi\)
\(462\) 0 0
\(463\) 15.3996 15.3996i 0.715681 0.715681i −0.252037 0.967718i \(-0.581100\pi\)
0.967718 + 0.252037i \(0.0811005\pi\)
\(464\) −1.32372 4.07400i −0.0614523 0.189131i
\(465\) 0.736658 0.283033i 0.0341617 0.0131253i
\(466\) 4.40372 3.19949i 0.203998 0.148214i
\(467\) −13.0834 + 6.66632i −0.605427 + 0.308481i −0.729700 0.683768i \(-0.760340\pi\)
0.124273 + 0.992248i \(0.460340\pi\)
\(468\) −0.283553 + 0.144478i −0.0131073 + 0.00667848i
\(469\) 14.7351 10.7057i 0.680402 0.494341i
\(470\) −3.56282 1.58498i −0.164341 0.0731096i
\(471\) −1.90857 5.87397i −0.0879422 0.270658i
\(472\) 17.8626 17.8626i 0.822193 0.822193i
\(473\) 0 0
\(474\) 2.78758i 0.128038i
\(475\) 18.1850 + 20.1719i 0.834385 + 0.925551i
\(476\) 0.979695 + 0.711790i 0.0449043 + 0.0326249i
\(477\) −20.6931 3.27747i −0.947473 0.150065i
\(478\) 2.13829 + 4.19663i 0.0978030 + 0.191949i
\(479\) 1.51842 4.67321i 0.0693783 0.213524i −0.910356 0.413826i \(-0.864192\pi\)
0.979734 + 0.200302i \(0.0641922\pi\)
\(480\) 1.16409 + 1.04751i 0.0531331 + 0.0478122i
\(481\) −2.68405 + 3.69428i −0.122382 + 0.168444i
\(482\) 16.9124 33.1924i 0.770338 1.51187i
\(483\) −6.87787 6.87787i −0.312954 0.312954i
\(484\) 0 0
\(485\) 6.23543 + 4.04665i 0.283136 + 0.183749i
\(486\) 22.2426 7.22706i 1.00895 0.327826i
\(487\) 1.67972 + 10.6054i 0.0761155 + 0.480574i 0.996071 + 0.0885527i \(0.0282242\pi\)
−0.919956 + 0.392022i \(0.871776\pi\)
\(488\) 3.30319 20.8555i 0.149529 0.944086i
\(489\) 12.1996 + 3.96390i 0.551686 + 0.179254i
\(490\) −27.4269 + 22.2236i −1.23902 + 1.00396i
\(491\) −1.91387 2.63421i −0.0863715 0.118880i 0.763645 0.645637i \(-0.223408\pi\)
−0.850016 + 0.526757i \(0.823408\pi\)
\(492\) 0.0707565 0.0112067i 0.00318995 0.000505238i
\(493\) −1.72079 0.876788i −0.0775007 0.0394886i
\(494\) 7.37092 0.331634
\(495\) 0 0
\(496\) 1.81272 0.0813935
\(497\) 32.2681 + 16.4414i 1.44742 + 0.737498i
\(498\) −2.39705 + 0.379656i −0.107414 + 0.0170128i
\(499\) 5.25588 + 7.23410i 0.235285 + 0.323843i 0.910290 0.413971i \(-0.135858\pi\)
−0.675005 + 0.737813i \(0.735858\pi\)
\(500\) 1.58409 0.516295i 0.0708428 0.0230894i
\(501\) −3.28580 1.06762i −0.146799 0.0476978i
\(502\) 3.73926 23.6088i 0.166891 1.05371i
\(503\) 3.02441 + 19.0954i 0.134852 + 0.851421i 0.958660 + 0.284553i \(0.0918451\pi\)
−0.823808 + 0.566868i \(0.808155\pi\)
\(504\) 25.0960 8.15419i 1.11787 0.363217i
\(505\) 6.18781 + 29.0681i 0.275354 + 1.29351i
\(506\) 0 0
\(507\) −7.14801 7.14801i −0.317454 0.317454i
\(508\) −0.0784471 + 0.153961i −0.00348053 + 0.00683092i
\(509\) 1.65845 2.28267i 0.0735097 0.101177i −0.770679 0.637224i \(-0.780083\pi\)
0.844189 + 0.536046i \(0.180083\pi\)
\(510\) 5.25324 0.276906i 0.232618 0.0122616i
\(511\) 7.11276 21.8908i 0.314650 0.968393i
\(512\) −8.90156 17.4703i −0.393397 0.772085i
\(513\) −23.7017 3.75398i −1.04645 0.165742i
\(514\) 19.2177 + 13.9625i 0.847656 + 0.615858i
\(515\) −21.7784 5.82845i −0.959673 0.256832i
\(516\) 0.886635i 0.0390319i
\(517\) 0 0
\(518\) −21.5550 + 21.5550i −0.947071 + 0.947071i
\(519\) 1.11382 + 3.42798i 0.0488912 + 0.150472i
\(520\) −2.28289 + 5.13164i −0.100111 + 0.225037i
\(521\) −7.68839 + 5.58594i −0.336835 + 0.244725i −0.743325 0.668930i \(-0.766752\pi\)
0.406491 + 0.913655i \(0.366752\pi\)
\(522\) 3.01884 1.53818i 0.132131 0.0673241i
\(523\) 13.2194 6.73563i 0.578045 0.294528i −0.140420 0.990092i \(-0.544845\pi\)
0.718465 + 0.695564i \(0.244845\pi\)
\(524\) 1.74248 1.26599i 0.0761207 0.0553049i
\(525\) −3.63757 + 17.1645i −0.158756 + 0.749121i
\(526\) 0.434277 + 1.33657i 0.0189354 + 0.0582771i
\(527\) 0.577895 0.577895i 0.0251735 0.0251735i
\(528\) 0 0
\(529\) 15.3169i 0.665953i
\(530\) 25.7763 14.8924i 1.11965 0.646883i
\(531\) 17.3757 + 12.6242i 0.754039 + 0.547842i
\(532\) 3.37007 + 0.533767i 0.146111 + 0.0231417i
\(533\) 0.242681 + 0.476289i 0.0105117 + 0.0206304i
\(534\) −5.25369 + 16.1692i −0.227349 + 0.699709i
\(535\) 0.725838 + 13.7700i 0.0313807 + 0.595329i
\(536\) 6.89134 9.48511i 0.297661 0.409695i
\(537\) −1.40577 + 2.75897i −0.0606633 + 0.119058i
\(538\) −29.4638 29.4638i −1.27027 1.27027i
\(539\) 0 0
\(540\) −0.801414 + 1.23489i −0.0344874 + 0.0531411i
\(541\) 29.7351 9.66153i 1.27841 0.415381i 0.410392 0.911909i \(-0.365392\pi\)
0.868021 + 0.496528i \(0.165392\pi\)
\(542\) 7.05176 + 44.5230i 0.302899 + 1.91243i
\(543\) −0.787429 + 4.97163i −0.0337918 + 0.213353i
\(544\) 1.54241 + 0.501159i 0.0661303 + 0.0214870i
\(545\) 4.64239 44.2984i 0.198858 1.89754i
\(546\) 2.79899 + 3.85248i 0.119786 + 0.164871i
\(547\) 31.1772 4.93799i 1.33304 0.211133i 0.551076 0.834455i \(-0.314217\pi\)
0.781966 + 0.623322i \(0.214217\pi\)
\(548\) −1.64270 0.836995i −0.0701725 0.0357547i
\(549\) 17.9525 0.766194
\(550\) 0 0
\(551\) −5.44169 −0.231824
\(552\) −5.57880 2.84254i −0.237449 0.120987i
\(553\) 9.51017 1.50626i 0.404414 0.0640528i
\(554\) 25.9779 + 35.7555i 1.10370 + 1.51911i
\(555\) −0.957078 + 9.13259i −0.0406257 + 0.387657i
\(556\) −0.143057 0.0464820i −0.00606696 0.00197128i
\(557\) −2.07471 + 13.0992i −0.0879082 + 0.555030i 0.903945 + 0.427648i \(0.140658\pi\)
−0.991854 + 0.127383i \(0.959342\pi\)
\(558\) 0.224289 + 1.41610i 0.00949491 + 0.0599485i
\(559\) 6.29208 2.04442i 0.266127 0.0864698i
\(560\) −21.9403 + 33.8076i −0.927149 + 1.42863i
\(561\) 0 0
\(562\) 8.83073 + 8.83073i 0.372502 + 0.372502i
\(563\) −13.3342 + 26.1698i −0.561968 + 1.10292i 0.418860 + 0.908051i \(0.362430\pi\)
−0.980828 + 0.194874i \(0.937570\pi\)
\(564\) −0.0867434 + 0.119392i −0.00365256 + 0.00502731i
\(565\) −1.42682 27.0684i −0.0600266 1.13878i
\(566\) 4.32248 13.3032i 0.181687 0.559176i
\(567\) 6.20650 + 12.1809i 0.260648 + 0.511551i
\(568\) 23.0252 + 3.64683i 0.966115 + 0.153018i
\(569\) −17.3540 12.6084i −0.727518 0.528573i 0.161259 0.986912i \(-0.448445\pi\)
−0.888777 + 0.458339i \(0.848445\pi\)
\(570\) 12.8343 7.41505i 0.537568 0.310582i
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) 0 0
\(573\) −9.74484 + 9.74484i −0.407097 + 0.407097i
\(574\) 1.10271 + 3.39380i 0.0460263 + 0.141654i
\(575\) −11.6187 + 7.55529i −0.484534 + 0.315077i
\(576\) 13.6590 9.92385i 0.569125 0.413494i
\(577\) −5.96290 + 3.03825i −0.248239 + 0.126484i −0.573683 0.819077i \(-0.694486\pi\)
0.325445 + 0.945561i \(0.394486\pi\)
\(578\) −17.3509 + 8.84070i −0.721700 + 0.367725i
\(579\) 11.4251 8.30081i 0.474810 0.344970i
\(580\) −0.135689 + 0.305010i −0.00563417 + 0.0126649i
\(581\) −2.59048 7.97268i −0.107471 0.330763i
\(582\) 2.86867 2.86867i 0.118910 0.118910i
\(583\) 0 0
\(584\) 14.8165i 0.613112i
\(585\) −4.61286 1.23452i −0.190718 0.0510409i
\(586\) 2.73660 + 1.98825i 0.113048 + 0.0821340i
\(587\) 36.0485 + 5.70952i 1.48788 + 0.235657i 0.846839 0.531849i \(-0.178503\pi\)
0.641041 + 0.767506i \(0.278503\pi\)
\(588\) 0.606512 + 1.19035i 0.0250121 + 0.0490890i
\(589\) 0.711594 2.19006i 0.0293207 0.0902400i
\(590\) −30.4748 + 1.60637i −1.25463 + 0.0661333i
\(591\) 6.66825 9.17805i 0.274295 0.377535i
\(592\) −9.57587 + 18.7937i −0.393566 + 0.772417i
\(593\) −26.6656 26.6656i −1.09502 1.09502i −0.994983 0.100040i \(-0.968103\pi\)
−0.100040 0.994983i \(-0.531897\pi\)
\(594\) 0 0
\(595\) 3.78328 + 17.7724i 0.155099 + 0.728599i
\(596\) 0.172988 0.0562073i 0.00708588 0.00230234i
\(597\) 2.52857 + 15.9648i 0.103487 + 0.653394i
\(598\) −0.588412 + 3.71509i −0.0240620 + 0.151921i
\(599\) −36.7124 11.9286i −1.50003 0.487388i −0.560002 0.828492i \(-0.689199\pi\)
−0.940026 + 0.341103i \(0.889199\pi\)
\(600\) 1.18739 + 11.2318i 0.0484749 + 0.458536i
\(601\) −22.4050 30.8379i −0.913920 1.25790i −0.965810 0.259250i \(-0.916525\pi\)
0.0518905 0.998653i \(-0.483475\pi\)
\(602\) 43.6213 6.90894i 1.77787 0.281587i
\(603\) 8.88156 + 4.52538i 0.361685 + 0.184288i
\(604\) −0.236459 −0.00962138
\(605\) 0 0
\(606\) 16.2198 0.658884
\(607\) −32.2834 16.4492i −1.31034 0.667653i −0.347491 0.937683i \(-0.612966\pi\)
−0.962852 + 0.270031i \(0.912966\pi\)
\(608\) 4.51336 0.714845i 0.183041 0.0289908i
\(609\) −2.06640 2.84415i −0.0837346 0.115251i
\(610\) −19.8190 + 16.0590i −0.802447 + 0.650211i
\(611\) −1.04729 0.340286i −0.0423689 0.0137665i
\(612\) −0.103676 + 0.654587i −0.00419087 + 0.0264601i
\(613\) 0.376892 + 2.37960i 0.0152225 + 0.0961113i 0.994130 0.108194i \(-0.0345066\pi\)
−0.978907 + 0.204305i \(0.934507\pi\)
\(614\) −24.5743 + 7.98466i −0.991736 + 0.322235i
\(615\) 0.901696 + 0.585180i 0.0363599 + 0.0235967i
\(616\) 0 0
\(617\) −25.5598 25.5598i −1.02900 1.02900i −0.999567 0.0294325i \(-0.990630\pi\)
−0.0294325 0.999567i \(-0.509370\pi\)
\(618\) −5.58599 + 10.9631i −0.224701 + 0.441001i
\(619\) 0.537145 0.739317i 0.0215897 0.0297157i −0.798086 0.602544i \(-0.794154\pi\)
0.819675 + 0.572828i \(0.194154\pi\)
\(620\) −0.105011 0.0944946i −0.00421734 0.00379499i
\(621\) 3.78415 11.6464i 0.151853 0.467355i
\(622\) 10.0585 + 19.7409i 0.403310 + 0.791540i
\(623\) −58.0020 9.18661i −2.32380 0.368054i
\(624\) 2.66569 + 1.93674i 0.106713 + 0.0775316i
\(625\) 22.8509 + 10.1407i 0.914038 + 0.405630i
\(626\) 38.2851i 1.53018i
\(627\) 0 0
\(628\) −0.781786 + 0.781786i −0.0311967 + 0.0311967i
\(629\) 2.93865 + 9.04423i 0.117172 + 0.360617i
\(630\) −29.1253 12.9569i −1.16038 0.516214i
\(631\) −18.6941 + 13.5820i −0.744199 + 0.540692i −0.894023 0.448020i \(-0.852129\pi\)
0.149824 + 0.988713i \(0.452129\pi\)
\(632\) 5.52255 2.81388i 0.219675 0.111930i
\(633\) 4.74042 2.41536i 0.188415 0.0960020i
\(634\) 33.5956 24.4087i 1.33425 0.969392i
\(635\) −2.42030 + 0.929906i −0.0960465 + 0.0369022i
\(636\) −0.348145 1.07148i −0.0138049 0.0424870i
\(637\) −7.04889 + 7.04889i −0.279287 + 0.279287i
\(638\) 0 0
\(639\) 19.8201i 0.784072i
\(640\) −7.17458 + 26.8084i −0.283600 + 1.05969i
\(641\) −7.06172 5.13064i −0.278921 0.202648i 0.439525 0.898230i \(-0.355147\pi\)
−0.718447 + 0.695582i \(0.755147\pi\)
\(642\) 7.43296 + 1.17727i 0.293356 + 0.0464630i
\(643\) 14.3186 + 28.1018i 0.564670 + 1.10823i 0.980082 + 0.198594i \(0.0636376\pi\)
−0.415412 + 0.909634i \(0.636362\pi\)
\(644\) −0.538058 + 1.65597i −0.0212024 + 0.0652544i
\(645\) 8.89912 9.88950i 0.350403 0.389399i
\(646\) 9.02265 12.4186i 0.354991 0.488604i
\(647\) 6.23845 12.2437i 0.245259 0.481348i −0.735257 0.677789i \(-0.762938\pi\)
0.980516 + 0.196441i \(0.0629384\pi\)
\(648\) 6.22265 + 6.22265i 0.244449 + 0.244449i
\(649\) 0 0
\(650\) 6.19675 2.76347i 0.243057 0.108392i
\(651\) 1.41487 0.459720i 0.0554532 0.0180178i
\(652\) −0.359211 2.26797i −0.0140678 0.0888205i
\(653\) −0.851181 + 5.37414i −0.0333093 + 0.210307i −0.998730 0.0503921i \(-0.983953\pi\)
0.965420 + 0.260699i \(0.0839529\pi\)
\(654\) −23.1192 7.51187i −0.904030 0.293737i
\(655\) 32.1423 + 3.36845i 1.25590 + 0.131616i
\(656\) 1.45134 + 1.99759i 0.0566652 + 0.0779929i
\(657\) 12.4420 1.97062i 0.485408 0.0768812i
\(658\) −6.54987 3.33733i −0.255341 0.130102i
\(659\) 42.1160 1.64061 0.820304 0.571928i \(-0.193805\pi\)
0.820304 + 0.571928i \(0.193805\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 32.1913 + 16.4023i 1.25115 + 0.637493i
\(663\) 1.46726 0.232390i 0.0569835 0.00902529i
\(664\) −3.17181 4.36562i −0.123090 0.169419i
\(665\) 32.2323 + 39.7789i 1.24991 + 1.54256i
\(666\) −15.8666 5.15536i −0.614817 0.199766i
\(667\) 0.434404 2.74272i 0.0168202 0.106198i
\(668\) 0.0967487 + 0.610847i 0.00374332 + 0.0236344i
\(669\) 11.2385 3.65162i 0.434507 0.141180i
\(670\) −13.8530 + 2.94894i −0.535189 + 0.113927i
\(671\) 0 0
\(672\) 2.08750 + 2.08750i 0.0805269 + 0.0805269i
\(673\) 2.51797 4.94179i 0.0970605 0.190492i −0.837371 0.546635i \(-0.815908\pi\)
0.934431 + 0.356143i \(0.115908\pi\)
\(674\) 26.7253 36.7842i 1.02942 1.41687i
\(675\) −21.3335 + 5.73014i −0.821126 + 0.220553i
\(676\) −0.559191 + 1.72101i −0.0215073 + 0.0661928i
\(677\) 1.05927 + 2.07893i 0.0407110 + 0.0798999i 0.910466 0.413584i \(-0.135723\pi\)
−0.869755 + 0.493484i \(0.835723\pi\)
\(678\) −14.6114 2.31421i −0.561146 0.0888767i
\(679\) 11.3369 + 8.23673i 0.435070 + 0.316097i
\(680\) 5.85139 + 10.1278i 0.224391 + 0.388384i
\(681\) 6.89132i 0.264076i
\(682\) 0 0
\(683\) −25.0400 + 25.0400i −0.958127 + 0.958127i −0.999158 0.0410307i \(-0.986936\pi\)
0.0410307 + 0.999158i \(0.486936\pi\)
\(684\) 0.577053 + 1.77599i 0.0220642 + 0.0679066i
\(685\) −9.92168 25.8235i −0.379088 0.986665i
\(686\) −18.8423 + 13.6897i −0.719401 + 0.522676i
\(687\) 14.5376 7.40730i 0.554646 0.282606i
\(688\) 27.2288 13.8738i 1.03809 0.528933i
\(689\) 6.80110 4.94129i 0.259101 0.188248i
\(690\) 2.71278 + 7.06065i 0.103274 + 0.268794i
\(691\) −0.556172 1.71172i −0.0211578 0.0651170i 0.939920 0.341394i \(-0.110899\pi\)
−0.961078 + 0.276277i \(0.910899\pi\)
\(692\) 0.456241 0.456241i 0.0173437 0.0173437i
\(693\) 0 0
\(694\) 44.2510i 1.67974i
\(695\) −1.12911 1.95431i −0.0428297 0.0741314i
\(696\) −1.83081 1.33016i −0.0693967 0.0504196i
\(697\) 1.09952 + 0.174147i 0.0416473 + 0.00659628i
\(698\) −14.2205 27.9094i −0.538255 1.05638i
\(699\) 0.955200 2.93980i 0.0361290 0.111194i
\(700\) 3.03335 0.814752i 0.114650 0.0307947i
\(701\) −10.4715 + 14.4128i −0.395502 + 0.544362i −0.959608 0.281340i \(-0.909221\pi\)
0.564106 + 0.825703i \(0.309221\pi\)
\(702\) −2.72174 + 5.34171i −0.102725 + 0.201610i
\(703\) 18.9468 + 18.9468i 0.714593 + 0.714593i
\(704\) 0 0
\(705\) −2.16587 + 0.461055i −0.0815713 + 0.0173643i
\(706\) 5.57255 1.81063i 0.209726 0.0681440i
\(707\) 8.76432 + 55.3357i 0.329616 + 2.08111i
\(708\) −0.180671 + 1.14071i −0.00679003 + 0.0428706i
\(709\) −9.55567 3.10483i −0.358871 0.116604i 0.124032 0.992278i \(-0.460417\pi\)
−0.482903 + 0.875674i \(0.660417\pi\)
\(710\) −17.7297 21.8808i −0.665383 0.821171i
\(711\) 3.09743 + 4.26324i 0.116163 + 0.159884i
\(712\) −37.3365 + 5.91351i −1.39924 + 0.221618i
\(713\) 1.04703 + 0.533487i 0.0392115 + 0.0199793i
\(714\) 9.91691 0.371131
\(715\) 0 0
\(716\) 0.554298 0.0207151
\(717\) 2.38314 + 1.21427i 0.0890001 + 0.0453478i
\(718\) 15.5509 2.46302i 0.580355 0.0919193i
\(719\) 4.03181 + 5.54931i 0.150361 + 0.206954i 0.877553 0.479480i \(-0.159175\pi\)
−0.727191 + 0.686435i \(0.759175\pi\)
\(720\) −21.9371 2.29897i −0.817548 0.0856774i
\(721\) −40.4204 13.1334i −1.50533 0.489113i
\(722\) 2.40884 15.2088i 0.0896478 0.566014i
\(723\) −3.30933 20.8943i −0.123075 0.777067i
\(724\) 0.856964 0.278444i 0.0318488 0.0103483i
\(725\) −4.57485 + 2.04017i −0.169906 + 0.0757702i
\(726\) 0 0
\(727\) −25.2212 25.2212i −0.935401 0.935401i 0.0626351 0.998036i \(-0.480050\pi\)
−0.998036 + 0.0626351i \(0.980050\pi\)
\(728\) −4.80685 + 9.43398i −0.178154 + 0.349647i
\(729\) 2.08750 2.87320i 0.0773149 0.106415i
\(730\) −11.9728 + 13.3052i −0.443132 + 0.492448i
\(731\) 4.25759 13.1035i 0.157473 0.484651i
\(732\) 0.438272 + 0.860158i 0.0161990 + 0.0317924i
\(733\) 7.61562 + 1.20620i 0.281289 + 0.0445519i 0.295485 0.955347i \(-0.404519\pi\)
−0.0141956 + 0.999899i \(0.504519\pi\)
\(734\) −41.0401 29.8174i −1.51482 1.10058i
\(735\) −5.18245 + 19.3646i −0.191157 + 0.714275i
\(736\) 2.33188i 0.0859543i
\(737\) 0 0
\(738\) −1.38095 + 1.38095i −0.0508336 + 0.0508336i
\(739\) −12.6089 38.8062i −0.463825 1.42751i −0.860454 0.509528i \(-0.829820\pi\)
0.396629 0.917979i \(-0.370180\pi\)
\(740\) 1.53442 0.589542i 0.0564064 0.0216720i
\(741\) 3.38633 2.46031i 0.124400 0.0903819i
\(742\) 50.0027 25.4776i 1.83566 0.935313i
\(743\) −39.5290 + 20.1411i −1.45018 + 0.738904i −0.988932 0.148368i \(-0.952598\pi\)
−0.461248 + 0.887271i \(0.652598\pi\)
\(744\) 0.774746 0.562886i 0.0284036 0.0206364i
\(745\) 2.49366 + 1.10934i 0.0913605 + 0.0406432i
\(746\) 6.34530 + 19.5288i 0.232318 + 0.715001i
\(747\) 3.24412 3.24412i 0.118696 0.118696i
\(748\) 0 0
\(749\) 25.9946i 0.949821i
\(750\) 8.00978 11.0456i 0.292476 0.403329i
\(751\) 10.6518 + 7.73896i 0.388688 + 0.282399i 0.764918 0.644128i \(-0.222780\pi\)
−0.376229 + 0.926527i \(0.622780\pi\)
\(752\) −5.02390 0.795708i −0.183203 0.0290165i
\(753\) −6.16240 12.0944i −0.224570 0.440744i
\(754\) −0.420104 + 1.29295i −0.0152993 + 0.0470864i
\(755\) −2.63746 2.37333i −0.0959869 0.0863743i
\(756\) −1.63123 + 2.24520i −0.0593274 + 0.0816571i
\(757\) 9.02166 17.7060i 0.327898 0.643535i −0.666929 0.745121i \(-0.732392\pi\)
0.994827 + 0.101586i \(0.0323916\pi\)
\(758\) −27.4703 27.4703i −0.997768 0.997768i
\(759\) 0 0
\(760\) 27.6455 + 17.9413i 1.00281 + 0.650799i
\(761\) −16.8706 + 5.48158i −0.611558 + 0.198707i −0.598389 0.801206i \(-0.704192\pi\)
−0.0131694 + 0.999913i \(0.504192\pi\)
\(762\) 0.221363 + 1.39763i 0.00801914 + 0.0506309i
\(763\) 13.1353 82.9328i 0.475528 3.00237i
\(764\) 2.34625 + 0.762341i 0.0848842 + 0.0275805i
\(765\) −7.72647 + 6.26065i −0.279351 + 0.226354i
\(766\) 20.7124 + 28.5082i 0.748371 + 1.03004i
\(767\) −8.51175 + 1.34813i −0.307342 + 0.0486781i
\(768\) 2.63847 + 1.34437i 0.0952076 + 0.0485107i
\(769\) −33.4001 −1.20444 −0.602218 0.798331i \(-0.705716\pi\)
−0.602218 + 0.798331i \(0.705716\pi\)
\(770\) 0 0
\(771\) 13.4894 0.485810
\(772\) −2.25247 1.14769i −0.0810683 0.0413064i
\(773\) −37.6915 + 5.96974i −1.35567 + 0.214717i −0.791614 0.611021i \(-0.790759\pi\)
−0.564054 + 0.825738i \(0.690759\pi\)
\(774\) 14.2073 + 19.5547i 0.510671 + 0.702878i
\(775\) −0.222849 2.10798i −0.00800496 0.0757208i
\(776\) 8.57893 + 2.78746i 0.307966 + 0.100064i
\(777\) −2.70797 + 17.0975i −0.0971480 + 0.613369i
\(778\) 1.73036 + 10.9251i 0.0620365 + 0.391683i
\(779\) 2.98315 0.969285i 0.106882 0.0347282i
\(780\) −0.0534639 0.251154i −0.00191432 0.00899276i
\(781\) 0 0
\(782\) 5.53895 + 5.53895i 0.198072 + 0.198072i
\(783\) 2.00936 3.94360i 0.0718088 0.140933i
\(784\) −27.0654 + 37.2523i −0.966621 + 1.33044i
\(785\) −16.5668 + 0.873259i −0.591293 + 0.0311680i
\(786\) 5.45050 16.7749i 0.194413 0.598341i
\(787\) −16.6820 32.7403i −0.594649 1.16706i −0.970662 0.240450i \(-0.922705\pi\)
0.376013 0.926614i \(-0.377295\pi\)
\(788\) −2.00581 0.317689i −0.0714541 0.0113172i
\(789\) 0.645642 + 0.469086i 0.0229855 + 0.0166999i
\(790\) −7.23305 1.93574i −0.257340 0.0688706i
\(791\) 51.0989i 1.81687i
\(792\) 0 0
\(793\) −5.09361 + 5.09361i −0.180879 + 0.180879i
\(794\) −10.3140 31.7434i −0.366032 1.12653i
\(795\) 6.87122 15.4456i 0.243697 0.547799i
\(796\) 2.34087 1.70074i 0.0829700 0.0602812i
\(797\) 17.9460 9.14395i 0.635680 0.323895i −0.106283 0.994336i \(-0.533895\pi\)
0.741963 + 0.670441i \(0.233895\pi\)
\(798\) 24.8968 12.6855i 0.881337 0.449063i
\(799\) −1.85529 + 1.34795i −0.0656355 + 0.0476870i
\(800\) 3.52638 2.29310i 0.124676 0.0810733i
\(801\) −9.93160 30.5663i −0.350916 1.08001i
\(802\) 25.0253 25.0253i 0.883674 0.883674i
\(803\) 0 0
\(804\) 0.536020i 0.0189040i
\(805\) −22.6224 + 13.0702i −0.797335 + 0.460663i
\(806\) −0.465424 0.338150i −0.0163939 0.0119108i
\(807\) −23.3708 3.70156i −0.822690 0.130301i
\(808\) 16.3728 + 32.1334i 0.575993 + 1.13045i
\(809\) −16.0484 + 49.3920i −0.564233 + 1.73653i 0.105987 + 0.994367i \(0.466200\pi\)
−0.670220 + 0.742162i \(0.733800\pi\)
\(810\) −0.559599 10.6163i −0.0196623 0.373017i
\(811\) 23.0252 31.6914i 0.808523 1.11284i −0.183027 0.983108i \(-0.558590\pi\)
0.991550 0.129728i \(-0.0414104\pi\)
\(812\) −0.285706 + 0.560729i −0.0100263 + 0.0196777i
\(813\) 18.1009 + 18.1009i 0.634826 + 0.634826i
\(814\) 0 0
\(815\) 18.7569 28.9022i 0.657025 1.01240i
\(816\) 6.52607 2.12045i 0.228458 0.0742306i
\(817\) −6.07296 38.3431i −0.212466 1.34146i
\(818\) 1.34290 8.47873i 0.0469533 0.296452i
\(819\) −8.56139 2.78176i −0.299159 0.0972027i
\(820\) 0.0200559 0.191377i 0.000700382 0.00668316i
\(821\) 14.6926 + 20.2226i 0.512775 + 0.705774i 0.984384 0.176034i \(-0.0563268\pi\)
−0.471609 + 0.881808i \(0.656327\pi\)
\(822\) −14.9121 + 2.36185i −0.520120 + 0.0823789i
\(823\) −20.4719 10.4310i −0.713606 0.363600i 0.0591972 0.998246i \(-0.481146\pi\)
−0.772803 + 0.634646i \(0.781146\pi\)
\(824\) −27.3580 −0.953062
\(825\) 0 0
\(826\) −57.5294 −2.00170
\(827\) 4.93382 + 2.51391i 0.171566 + 0.0874171i 0.537664 0.843159i \(-0.319307\pi\)
−0.366099 + 0.930576i \(0.619307\pi\)
\(828\) −0.941197 + 0.149071i −0.0327089 + 0.00518057i
\(829\) −8.80126 12.1139i −0.305680 0.420733i 0.628348 0.777933i \(-0.283732\pi\)
−0.934028 + 0.357200i \(0.883732\pi\)
\(830\) −0.679443 + 6.48336i −0.0235838 + 0.225041i
\(831\) 23.8694 + 7.75564i 0.828020 + 0.269040i
\(832\) −1.05976 + 6.69109i −0.0367407 + 0.231972i
\(833\) 3.24759 + 20.5045i 0.112522 + 0.710439i
\(834\) −1.17153 + 0.380652i −0.0405666 + 0.0131809i
\(835\) −5.05192 + 7.78443i −0.174829 + 0.269391i
\(836\) 0 0
\(837\) 1.32438 + 1.32438i 0.0457773 + 0.0457773i
\(838\) −7.36068 + 14.4461i −0.254270 + 0.499034i
\(839\) 7.40356 10.1901i 0.255599 0.351802i −0.661863 0.749625i \(-0.730234\pi\)
0.917462 + 0.397823i \(0.130234\pi\)
\(840\) 1.12076 + 21.2621i 0.0386698 + 0.733612i
\(841\) −8.65134 + 26.6261i −0.298322 + 0.918141i
\(842\) 5.23975 + 10.2836i 0.180574 + 0.354396i
\(843\) 7.00457 + 1.10941i 0.241250 + 0.0382103i
\(844\) −0.770496 0.559798i −0.0265216 0.0192691i
\(845\) −23.5109 + 13.5835i −0.808801 + 0.467288i
\(846\) 4.02315i 0.138319i
\(847\) 0 0
\(848\) 27.4579 27.4579i 0.942907 0.942907i
\(849\) −2.45461 7.55451i −0.0842420 0.259270i
\(850\) 2.92944 13.8231i 0.100479 0.474128i
\(851\) −11.0621 + 8.03706i −0.379203 + 0.275507i
\(852\) −0.949642 + 0.483867i −0.0325342 + 0.0165770i
\(853\) 44.3481 22.5965i 1.51845 0.773689i 0.521614 0.853181i \(-0.325330\pi\)
0.996835 + 0.0794926i \(0.0253300\pi\)
\(854\) −38.9035 + 28.2651i −1.33125 + 0.967211i
\(855\) −11.3891 + 25.6012i −0.389498 + 0.875541i
\(856\) 5.17078 + 15.9140i 0.176734 + 0.543930i
\(857\) 21.2860 21.2860i 0.727117 0.727117i −0.242927 0.970044i \(-0.578108\pi\)
0.970044 + 0.242927i \(0.0781077\pi\)
\(858\) 0 0
\(859\) 9.31402i 0.317790i −0.987295 0.158895i \(-0.949207\pi\)
0.987295 0.158895i \(-0.0507932\pi\)
\(860\) −2.30059 0.615694i −0.0784494 0.0209950i
\(861\) 1.63941 + 1.19110i 0.0558709 + 0.0405926i
\(862\) −10.5740 1.67475i −0.360151 0.0570424i
\(863\) −16.0664 31.5320i −0.546905 1.07336i −0.984695 0.174285i \(-0.944239\pi\)
0.437790 0.899077i \(-0.355761\pi\)
\(864\) −1.14852 + 3.53479i −0.0390735 + 0.120256i
\(865\) 9.66817 0.509623i 0.328727 0.0173277i
\(866\) −4.34927 + 5.98625i −0.147794 + 0.203421i
\(867\) −5.02038 + 9.85305i −0.170501 + 0.334627i
\(868\) −0.188310 0.188310i −0.00639166 0.00639166i
\(869\) 0 0
\(870\) 0.569202 + 2.67390i 0.0192978 + 0.0906538i
\(871\) −3.80391 + 1.23597i −0.128891 + 0.0418791i
\(872\) −8.45531 53.3847i −0.286333 1.80783i
\(873\) −1.19973 + 7.57478i −0.0406046 + 0.256368i
\(874\) 20.9911 + 6.82042i 0.710034 + 0.230704i
\(875\) 42.0115 + 21.3579i 1.42025 + 0.722027i
\(876\) 0.398163 + 0.548025i 0.0134527 + 0.0185160i
\(877\) −21.5902 + 3.41955i −0.729048 + 0.115470i −0.509915 0.860225i \(-0.670323\pi\)
−0.219133 + 0.975695i \(0.570323\pi\)
\(878\) −1.69512 0.863707i −0.0572076 0.0291487i
\(879\) 1.92089 0.0647901
\(880\) 0 0
\(881\) 46.4810 1.56599 0.782993 0.622031i \(-0.213692\pi\)
0.782993 + 0.622031i \(0.213692\pi\)
\(882\) −32.4505 16.5344i −1.09267 0.556741i
\(883\) 27.5798 4.36822i 0.928135 0.147002i 0.325976 0.945378i \(-0.394307\pi\)
0.602159 + 0.798376i \(0.294307\pi\)
\(884\) −0.156308 0.215140i −0.00525721 0.00723593i
\(885\) −13.4645 + 10.9101i −0.452603 + 0.366738i
\(886\) −21.4719 6.97665i −0.721363 0.234385i
\(887\) −1.10133 + 6.95351i −0.0369790 + 0.233476i −0.999255 0.0385999i \(-0.987710\pi\)
0.962276 + 0.272076i \(0.0877102\pi\)
\(888\) 1.74315 + 11.0058i 0.0584963 + 0.369331i
\(889\) −4.64858 + 1.51041i −0.155908 + 0.0506577i
\(890\) 38.3066 + 24.8601i 1.28404 + 0.833313i
\(891\) 0 0
\(892\) −1.49577 1.49577i −0.0500822 0.0500822i
\(893\) −2.93351 + 5.75734i −0.0981662 + 0.192662i
\(894\) 0.875532 1.20507i 0.0292822 0.0403035i
\(895\) 6.18263 + 5.56347i 0.206662 + 0.185966i
\(896\) −16.1666 + 49.7558i −0.540090 + 1.66223i
\(897\) 0.969718 + 1.90318i 0.0323780 + 0.0635453i
\(898\) 17.5527 + 2.78007i 0.585740 + 0.0927721i
\(899\) 0.343606 + 0.249644i 0.0114599 + 0.00832611i
\(900\) 1.15098 + 1.27673i 0.0383658 + 0.0425577i
\(901\) 17.5071i 0.583247i
\(902\) 0 0
\(903\) 17.7343 17.7343i 0.590160 0.590160i
\(904\) −10.1645 31.2830i −0.338065 1.04046i
\(905\) 12.3533 + 5.49555i 0.410637 + 0.182678i
\(906\) −1.56659 + 1.13820i −0.0520466 + 0.0378141i
\(907\) −26.3281 + 13.4148i −0.874211 + 0.445433i −0.832712 0.553706i \(-0.813213\pi\)
−0.0414984 + 0.999139i \(0.513213\pi\)
\(908\) 1.09916 0.560050i 0.0364769 0.0185859i
\(909\) −24.8061 + 18.0227i −0.822765 + 0.597774i
\(910\) 11.9398 4.58743i 0.395802 0.152072i
\(911\) 5.23886 + 16.1236i 0.173571 + 0.534198i 0.999565 0.0294813i \(-0.00938555\pi\)
−0.825994 + 0.563679i \(0.809386\pi\)
\(912\) 13.6715 13.6715i 0.452709 0.452709i
\(913\) 0 0
\(914\) 5.14655i 0.170233i
\(915\) −3.74490 + 13.9931i −0.123802 + 0.462598i
\(916\) −2.36292 1.71676i −0.0780729 0.0567233i
\(917\) 60.1748 + 9.53075i 1.98715 + 0.314733i
\(918\) 5.66813 + 11.1243i 0.187076 + 0.367158i
\(919\) −1.55222 + 4.77725i −0.0512030 + 0.157587i −0.973388 0.229161i \(-0.926402\pi\)
0.922185 + 0.386748i \(0.126402\pi\)
\(920\) −11.2497 + 12.5016i −0.370890 + 0.412166i
\(921\) −8.62467 + 11.8708i −0.284193 + 0.391158i
\(922\) 3.62937 7.12304i 0.119527 0.234585i
\(923\) −5.62351 5.62351i −0.185100 0.185100i
\(924\) 0 0
\(925\) 23.0321 + 8.82519i 0.757290 + 0.290170i
\(926\) −30.3635 + 9.86569i −0.997805 + 0.324207i
\(927\) −3.63865 22.9736i −0.119509 0.754551i
\(928\) −0.131845 + 0.832439i −0.00432804 + 0.0273262i
\(929\) −11.2348 3.65041i −0.368602 0.119766i 0.118858 0.992911i \(-0.462077\pi\)
−0.487460 + 0.873145i \(0.662077\pi\)
\(930\) −1.15057 0.120578i −0.0377287 0.00395389i
\(931\) 34.3822 + 47.3231i 1.12683 + 1.55095i
\(932\) −0.546524 + 0.0865609i −0.0179020 + 0.00283540i
\(933\) 11.2103 + 5.71194i 0.367009 + 0.187001i
\(934\) 21.5258 0.704346
\(935\) 0 0
\(936\) −5.79466 −0.189405
\(937\) 2.04229 + 1.04060i 0.0667187 + 0.0339949i 0.487032 0.873384i \(-0.338080\pi\)
−0.420313 + 0.907379i \(0.638080\pi\)
\(938\) −26.3715 + 4.17683i −0.861060 + 0.136378i
\(939\) 12.7791 + 17.5889i 0.417029 + 0.573991i
\(940\) 0.249555 + 0.307984i 0.00813960 + 0.0100453i
\(941\) −1.68653 0.547988i −0.0549794 0.0178639i 0.281398 0.959591i \(-0.409202\pi\)
−0.336378 + 0.941727i \(0.609202\pi\)
\(942\) −1.41638 + 8.94264i −0.0461480 + 0.291367i
\(943\) 0.250397 + 1.58094i 0.00815404 + 0.0514826i
\(944\) −37.8587 + 12.3010i −1.23219 + 0.400364i
\(945\) −40.7297 + 8.67026i −1.32494 + 0.282043i
\(946\) 0 0
\(947\) −8.63289 8.63289i −0.280531 0.280531i 0.552790 0.833321i \(-0.313563\pi\)
−0.833321 + 0.552790i \(0.813563\pi\)
\(948\) −0.128648 + 0.252485i −0.00417828 + 0.00820033i
\(949\) −2.97101 + 4.08925i −0.0964431 + 0.132743i
\(950\) −10.3278 38.4507i −0.335078 1.24751i
\(951\) 7.28714 22.4275i 0.236302 0.727262i
\(952\) 10.0105 + 19.6466i 0.324441 + 0.636752i
\(953\) 18.2074 + 2.88376i 0.589794 + 0.0934143i 0.444196 0.895930i \(-0.353489\pi\)
0.145598 + 0.989344i \(0.453489\pi\)
\(954\) 24.8476 + 18.0528i 0.804470 + 0.584482i
\(955\) 18.5184 + 32.0523i 0.599240 + 1.03719i
\(956\) 0.478792i 0.0154852i
\(957\) 0 0
\(958\) −5.09348 + 5.09348i −0.164563 + 0.164563i
\(959\) −16.1154 49.5982i −0.520395 1.60161i
\(960\) 4.88588 + 12.7166i 0.157691 + 0.410428i
\(961\) 24.9341 18.1157i 0.804327 0.584377i
\(962\) 5.96448 3.03906i 0.192303 0.0979831i
\(963\) −12.6759 + 6.45868i −0.408474 + 0.208128i
\(964\) −3.06368 + 2.22589i −0.0986743 + 0.0716911i
\(965\) −13.6047 35.4093i −0.437950 1.13987i
\(966\) 4.40628 + 13.5611i 0.141770 + 0.436322i
\(967\) 9.49113 9.49113i 0.305214 0.305214i −0.537836 0.843050i \(-0.680758\pi\)
0.843050 + 0.537836i \(0.180758\pi\)
\(968\) 0 0
\(969\) 8.71697i 0.280029i
\(970\) −5.45140 9.43550i −0.175034 0.302956i
\(971\) −41.4379 30.1064i −1.32981 0.966161i −0.999754 0.0221983i \(-0.992933\pi\)
−0.330053 0.943963i \(-0.607067\pi\)
\(972\) −2.34815 0.371911i −0.0753171 0.0119291i
\(973\) −1.93167 3.79111i −0.0619265 0.121538i
\(974\) 4.86416 14.9703i 0.155858 0.479681i
\(975\) 1.92449 3.33798i 0.0616329 0.106901i
\(976\) −19.5578 + 26.9190i −0.626029 + 0.861655i
\(977\) −6.57391 + 12.9020i −0.210318 + 0.412772i −0.971933 0.235257i \(-0.924407\pi\)
0.761615 + 0.648030i \(0.224407\pi\)
\(978\) −13.2967 13.2967i −0.425183 0.425183i
\(979\) 0 0
\(980\) 3.50981 0.747144i 0.112117 0.0238666i
\(981\) 43.7046 14.2005i 1.39538 0.453386i
\(982\) 0.746699 + 4.71447i 0.0238281 + 0.150445i
\(983\) −9.00238 + 56.8388i −0.287131 + 1.81288i 0.248734 + 0.968572i \(0.419986\pi\)
−0.535865 + 0.844304i \(0.680014\pi\)
\(984\) 1.24059 + 0.403091i 0.0395484 + 0.0128501i
\(985\) −19.1841 23.6758i −0.611257 0.754372i
\(986\) 1.66413 + 2.29048i 0.0529967 + 0.0729437i
\(987\) −4.12308 + 0.653031i −0.131239 + 0.0207862i
\(988\) −0.667621 0.340170i −0.0212399 0.0108222i
\(989\) 19.8105 0.629936
\(990\) 0 0
\(991\) 13.1102 0.416458 0.208229 0.978080i \(-0.433230\pi\)
0.208229 + 0.978080i \(0.433230\pi\)
\(992\) −0.317782 0.161918i −0.0100896 0.00514090i
\(993\) 20.2641 3.20952i 0.643062 0.101851i
\(994\) −31.2055 42.9507i −0.989779 1.36231i
\(995\) 43.1803 + 4.52521i 1.36891 + 0.143459i
\(996\) 0.234634 + 0.0762372i 0.00743466 + 0.00241567i
\(997\) 0.352744 2.22714i 0.0111715 0.0705343i −0.981473 0.191602i \(-0.938632\pi\)
0.992644 + 0.121068i \(0.0386318\pi\)
\(998\) −2.05059 12.9469i −0.0649104 0.409828i
\(999\) −20.7269 + 6.73459i −0.655772 + 0.213073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.m.e.457.1 32
5.3 odd 4 inner 605.2.m.e.578.1 32
11.2 odd 10 inner 605.2.m.e.112.1 32
11.3 even 5 605.2.e.b.362.4 32
11.4 even 5 605.2.m.c.602.4 32
11.5 even 5 605.2.m.d.282.4 32
11.6 odd 10 605.2.m.c.282.1 32
11.7 odd 10 605.2.m.d.602.1 32
11.8 odd 10 605.2.e.b.362.13 32
11.9 even 5 55.2.l.a.2.4 32
11.10 odd 2 55.2.l.a.17.4 yes 32
33.20 odd 10 495.2.bj.a.442.1 32
33.32 even 2 495.2.bj.a.127.1 32
44.31 odd 10 880.2.cm.a.497.3 32
44.43 even 2 880.2.cm.a.17.3 32
55.3 odd 20 605.2.e.b.483.13 32
55.8 even 20 605.2.e.b.483.4 32
55.9 even 10 275.2.bm.b.57.1 32
55.13 even 20 inner 605.2.m.e.233.1 32
55.18 even 20 605.2.m.d.118.4 32
55.28 even 20 605.2.m.c.403.4 32
55.32 even 4 275.2.bm.b.193.1 32
55.38 odd 20 605.2.m.d.403.1 32
55.42 odd 20 275.2.bm.b.68.1 32
55.43 even 4 55.2.l.a.28.4 yes 32
55.48 odd 20 605.2.m.c.118.1 32
55.53 odd 20 55.2.l.a.13.4 yes 32
55.54 odd 2 275.2.bm.b.182.1 32
165.53 even 20 495.2.bj.a.343.1 32
165.98 odd 4 495.2.bj.a.28.1 32
220.43 odd 4 880.2.cm.a.193.3 32
220.163 even 20 880.2.cm.a.673.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 11.9 even 5
55.2.l.a.13.4 yes 32 55.53 odd 20
55.2.l.a.17.4 yes 32 11.10 odd 2
55.2.l.a.28.4 yes 32 55.43 even 4
275.2.bm.b.57.1 32 55.9 even 10
275.2.bm.b.68.1 32 55.42 odd 20
275.2.bm.b.182.1 32 55.54 odd 2
275.2.bm.b.193.1 32 55.32 even 4
495.2.bj.a.28.1 32 165.98 odd 4
495.2.bj.a.127.1 32 33.32 even 2
495.2.bj.a.343.1 32 165.53 even 20
495.2.bj.a.442.1 32 33.20 odd 10
605.2.e.b.362.4 32 11.3 even 5
605.2.e.b.362.13 32 11.8 odd 10
605.2.e.b.483.4 32 55.8 even 20
605.2.e.b.483.13 32 55.3 odd 20
605.2.m.c.118.1 32 55.48 odd 20
605.2.m.c.282.1 32 11.6 odd 10
605.2.m.c.403.4 32 55.28 even 20
605.2.m.c.602.4 32 11.4 even 5
605.2.m.d.118.4 32 55.18 even 20
605.2.m.d.282.4 32 11.5 even 5
605.2.m.d.403.1 32 55.38 odd 20
605.2.m.d.602.1 32 11.7 odd 10
605.2.m.e.112.1 32 11.2 odd 10 inner
605.2.m.e.233.1 32 55.13 even 20 inner
605.2.m.e.457.1 32 1.1 even 1 trivial
605.2.m.e.578.1 32 5.3 odd 4 inner
880.2.cm.a.17.3 32 44.43 even 2
880.2.cm.a.193.3 32 220.43 odd 4
880.2.cm.a.497.3 32 44.31 odd 10
880.2.cm.a.673.3 32 220.163 even 20