Properties

Label 880.2.cm.a.193.3
Level $880$
Weight $2$
Character 880.193
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 193.3
Character \(\chi\) \(=\) 880.193
Dual form 880.2.cm.a.497.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.130227 + 0.822224i) q^{3} +(-1.11862 + 1.93615i) q^{5} +(4.16343 + 0.659422i) q^{7} +(2.19408 - 0.712899i) q^{9} +(0.920480 - 3.18633i) q^{11} +(-0.824787 - 0.420250i) q^{13} +(-1.73763 - 0.667616i) q^{15} +(1.71765 - 0.875188i) q^{17} +(4.39439 + 3.19271i) q^{19} +3.50915i q^{21} +(-1.95998 - 1.95998i) q^{23} +(-2.49738 - 4.33164i) q^{25} +(2.00570 + 3.93640i) q^{27} +(0.810497 - 0.588860i) q^{29} +(-0.131006 - 0.403196i) q^{31} +(2.73975 + 0.341892i) q^{33} +(-5.93404 + 7.32339i) q^{35} +(-0.771690 + 4.87226i) q^{37} +(0.238130 - 0.732888i) q^{39} +(0.339428 - 0.467182i) q^{41} +(-5.05373 + 5.05373i) q^{43} +(-1.07406 + 5.04553i) q^{45} +(1.17495 - 0.186094i) q^{47} +(10.2419 + 3.32780i) q^{49} +(0.943286 + 1.29832i) q^{51} +(-4.12294 + 8.09173i) q^{53} +(5.13956 + 5.34649i) q^{55} +(-2.05285 + 4.02895i) q^{57} +(-5.47214 - 7.53175i) q^{59} +(7.40093 + 2.40471i) q^{61} +(9.60498 - 1.52128i) q^{63} +(1.73629 - 1.12681i) q^{65} +(3.05526 - 3.05526i) q^{67} +(1.35630 - 1.86679i) q^{69} +(-2.65487 + 8.17086i) q^{71} +(-0.854195 + 5.39318i) q^{73} +(3.23635 - 2.61750i) q^{75} +(5.93349 - 12.6591i) q^{77} +(0.705861 + 2.17242i) q^{79} +(2.62377 - 1.90628i) q^{81} +(-0.902846 - 1.77193i) q^{83} +(-0.226904 + 4.30464i) q^{85} +(0.589724 + 0.589724i) q^{87} -13.9313i q^{89} +(-3.15682 - 2.29356i) q^{91} +(0.314457 - 0.160224i) q^{93} +(-11.0972 + 4.93678i) q^{95} +(-2.96200 - 1.50922i) q^{97} +(-0.251929 - 7.64727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.130227 + 0.822224i 0.0751869 + 0.474711i 0.996338 + 0.0855054i \(0.0272505\pi\)
−0.921151 + 0.389206i \(0.872750\pi\)
\(4\) 0 0
\(5\) −1.11862 + 1.93615i −0.500262 + 0.865874i
\(6\) 0 0
\(7\) 4.16343 + 0.659422i 1.57363 + 0.249238i 0.881375 0.472417i \(-0.156618\pi\)
0.692253 + 0.721655i \(0.256618\pi\)
\(8\) 0 0
\(9\) 2.19408 0.712899i 0.731359 0.237633i
\(10\) 0 0
\(11\) 0.920480 3.18633i 0.277535 0.960716i
\(12\) 0 0
\(13\) −0.824787 0.420250i −0.228755 0.116556i 0.335857 0.941913i \(-0.390974\pi\)
−0.564612 + 0.825357i \(0.690974\pi\)
\(14\) 0 0
\(15\) −1.73763 0.667616i −0.448653 0.172378i
\(16\) 0 0
\(17\) 1.71765 0.875188i 0.416592 0.212264i −0.233115 0.972449i \(-0.574892\pi\)
0.649707 + 0.760185i \(0.274892\pi\)
\(18\) 0 0
\(19\) 4.39439 + 3.19271i 1.00814 + 0.732458i 0.963818 0.266560i \(-0.0858869\pi\)
0.0443230 + 0.999017i \(0.485887\pi\)
\(20\) 0 0
\(21\) 3.50915i 0.765758i
\(22\) 0 0
\(23\) −1.95998 1.95998i −0.408685 0.408685i 0.472595 0.881280i \(-0.343317\pi\)
−0.881280 + 0.472595i \(0.843317\pi\)
\(24\) 0 0
\(25\) −2.49738 4.33164i −0.499475 0.866328i
\(26\) 0 0
\(27\) 2.00570 + 3.93640i 0.385996 + 0.757561i
\(28\) 0 0
\(29\) 0.810497 0.588860i 0.150505 0.109349i −0.509984 0.860184i \(-0.670349\pi\)
0.660490 + 0.750835i \(0.270349\pi\)
\(30\) 0 0
\(31\) −0.131006 0.403196i −0.0235294 0.0724161i 0.938602 0.345001i \(-0.112121\pi\)
−0.962132 + 0.272585i \(0.912121\pi\)
\(32\) 0 0
\(33\) 2.73975 + 0.341892i 0.476929 + 0.0595158i
\(34\) 0 0
\(35\) −5.93404 + 7.32339i −1.00304 + 1.23788i
\(36\) 0 0
\(37\) −0.771690 + 4.87226i −0.126865 + 0.800995i 0.839413 + 0.543494i \(0.182899\pi\)
−0.966278 + 0.257501i \(0.917101\pi\)
\(38\) 0 0
\(39\) 0.238130 0.732888i 0.0381313 0.117356i
\(40\) 0 0
\(41\) 0.339428 0.467182i 0.0530097 0.0729616i −0.781689 0.623668i \(-0.785642\pi\)
0.834699 + 0.550707i \(0.185642\pi\)
\(42\) 0 0
\(43\) −5.05373 + 5.05373i −0.770687 + 0.770687i −0.978227 0.207540i \(-0.933454\pi\)
0.207540 + 0.978227i \(0.433454\pi\)
\(44\) 0 0
\(45\) −1.07406 + 5.04553i −0.160111 + 0.752143i
\(46\) 0 0
\(47\) 1.17495 0.186094i 0.171384 0.0271446i −0.0701524 0.997536i \(-0.522349\pi\)
0.241537 + 0.970392i \(0.422349\pi\)
\(48\) 0 0
\(49\) 10.2419 + 3.32780i 1.46313 + 0.475400i
\(50\) 0 0
\(51\) 0.943286 + 1.29832i 0.132086 + 0.181801i
\(52\) 0 0
\(53\) −4.12294 + 8.09173i −0.566330 + 1.11149i 0.413285 + 0.910602i \(0.364381\pi\)
−0.979615 + 0.200883i \(0.935619\pi\)
\(54\) 0 0
\(55\) 5.13956 + 5.34649i 0.693018 + 0.720920i
\(56\) 0 0
\(57\) −2.05285 + 4.02895i −0.271907 + 0.533647i
\(58\) 0 0
\(59\) −5.47214 7.53175i −0.712411 0.980550i −0.999742 0.0227186i \(-0.992768\pi\)
0.287331 0.957831i \(-0.407232\pi\)
\(60\) 0 0
\(61\) 7.40093 + 2.40471i 0.947591 + 0.307891i 0.741737 0.670691i \(-0.234002\pi\)
0.205855 + 0.978583i \(0.434002\pi\)
\(62\) 0 0
\(63\) 9.60498 1.52128i 1.21011 0.191663i
\(64\) 0 0
\(65\) 1.73629 1.12681i 0.215361 0.139764i
\(66\) 0 0
\(67\) 3.05526 3.05526i 0.373259 0.373259i −0.495404 0.868663i \(-0.664980\pi\)
0.868663 + 0.495404i \(0.164980\pi\)
\(68\) 0 0
\(69\) 1.35630 1.86679i 0.163280 0.224735i
\(70\) 0 0
\(71\) −2.65487 + 8.17086i −0.315075 + 0.969702i 0.660648 + 0.750696i \(0.270282\pi\)
−0.975723 + 0.219006i \(0.929718\pi\)
\(72\) 0 0
\(73\) −0.854195 + 5.39318i −0.0999760 + 0.631224i 0.885917 + 0.463844i \(0.153530\pi\)
−0.985893 + 0.167379i \(0.946470\pi\)
\(74\) 0 0
\(75\) 3.23635 2.61750i 0.373702 0.302243i
\(76\) 0 0
\(77\) 5.93349 12.6591i 0.676184 1.44264i
\(78\) 0 0
\(79\) 0.705861 + 2.17242i 0.0794156 + 0.244416i 0.982880 0.184247i \(-0.0589847\pi\)
−0.903464 + 0.428663i \(0.858985\pi\)
\(80\) 0 0
\(81\) 2.62377 1.90628i 0.291530 0.211809i
\(82\) 0 0
\(83\) −0.902846 1.77193i −0.0991002 0.194495i 0.836134 0.548526i \(-0.184811\pi\)
−0.935234 + 0.354031i \(0.884811\pi\)
\(84\) 0 0
\(85\) −0.226904 + 4.30464i −0.0246112 + 0.466904i
\(86\) 0 0
\(87\) 0.589724 + 0.589724i 0.0632250 + 0.0632250i
\(88\) 0 0
\(89\) 13.9313i 1.47671i −0.674410 0.738357i \(-0.735602\pi\)
0.674410 0.738357i \(-0.264398\pi\)
\(90\) 0 0
\(91\) −3.15682 2.29356i −0.330925 0.240431i
\(92\) 0 0
\(93\) 0.314457 0.160224i 0.0326076 0.0166144i
\(94\) 0 0
\(95\) −11.0972 + 4.93678i −1.13855 + 0.506502i
\(96\) 0 0
\(97\) −2.96200 1.50922i −0.300746 0.153238i 0.297105 0.954845i \(-0.403979\pi\)
−0.597851 + 0.801607i \(0.703979\pi\)
\(98\) 0 0
\(99\) −0.251929 7.64727i −0.0253199 0.768579i
\(100\) 0 0
\(101\) −12.6404 + 4.10712i −1.25777 + 0.408673i −0.860698 0.509116i \(-0.829973\pi\)
−0.397069 + 0.917789i \(0.629973\pi\)
\(102\) 0 0
\(103\) 9.95825 + 1.57723i 0.981215 + 0.155409i 0.626378 0.779519i \(-0.284536\pi\)
0.354837 + 0.934928i \(0.384536\pi\)
\(104\) 0 0
\(105\) −6.79424 3.92540i −0.663050 0.383080i
\(106\) 0 0
\(107\) −0.964682 6.09076i −0.0932593 0.588816i −0.989419 0.145085i \(-0.953654\pi\)
0.896160 0.443731i \(-0.146346\pi\)
\(108\) 0 0
\(109\) −19.9193 −1.90793 −0.953964 0.299922i \(-0.903039\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(110\) 0 0
\(111\) −4.10659 −0.389780
\(112\) 0 0
\(113\) −1.89632 11.9729i −0.178391 1.12632i −0.900602 0.434644i \(-0.856874\pi\)
0.722211 0.691673i \(-0.243126\pi\)
\(114\) 0 0
\(115\) 5.98731 1.60235i 0.558319 0.149420i
\(116\) 0 0
\(117\) −2.10924 0.334071i −0.194999 0.0308849i
\(118\) 0 0
\(119\) 7.72845 2.51112i 0.708465 0.230194i
\(120\) 0 0
\(121\) −9.30543 5.86591i −0.845949 0.533265i
\(122\) 0 0
\(123\) 0.428331 + 0.218246i 0.0386213 + 0.0196785i
\(124\) 0 0
\(125\) 11.1803 + 0.0101588i 1.00000 + 0.000908633i
\(126\) 0 0
\(127\) 1.03315 0.526416i 0.0916772 0.0467119i −0.407551 0.913183i \(-0.633617\pi\)
0.499228 + 0.866471i \(0.333617\pi\)
\(128\) 0 0
\(129\) −4.81343 3.49716i −0.423799 0.307908i
\(130\) 0 0
\(131\) 14.4532i 1.26278i −0.775465 0.631390i \(-0.782485\pi\)
0.775465 0.631390i \(-0.217515\pi\)
\(132\) 0 0
\(133\) 16.1904 + 16.1904i 1.40388 + 1.40388i
\(134\) 0 0
\(135\) −9.86509 0.520003i −0.849051 0.0447548i
\(136\) 0 0
\(137\) 5.61663 + 11.0232i 0.479861 + 0.941780i 0.996340 + 0.0854799i \(0.0272423\pi\)
−0.516479 + 0.856300i \(0.672758\pi\)
\(138\) 0 0
\(139\) 0.816606 0.593299i 0.0692636 0.0503229i −0.552615 0.833437i \(-0.686370\pi\)
0.621878 + 0.783114i \(0.286370\pi\)
\(140\) 0 0
\(141\) 0.306022 + 0.941839i 0.0257717 + 0.0793172i
\(142\) 0 0
\(143\) −2.09826 + 2.24121i −0.175465 + 0.187420i
\(144\) 0 0
\(145\) 0.233485 + 2.22796i 0.0193899 + 0.185022i
\(146\) 0 0
\(147\) −1.40242 + 8.85451i −0.115669 + 0.730308i
\(148\) 0 0
\(149\) 0.377177 1.16083i 0.0308996 0.0950990i −0.934417 0.356180i \(-0.884079\pi\)
0.965317 + 0.261081i \(0.0840790\pi\)
\(150\) 0 0
\(151\) −0.932668 + 1.28371i −0.0758995 + 0.104467i −0.845279 0.534326i \(-0.820566\pi\)
0.769379 + 0.638792i \(0.220566\pi\)
\(152\) 0 0
\(153\) 3.14474 3.14474i 0.254237 0.254237i
\(154\) 0 0
\(155\) 0.927195 + 0.197375i 0.0744741 + 0.0158535i
\(156\) 0 0
\(157\) 7.32783 1.16061i 0.584824 0.0926271i 0.142991 0.989724i \(-0.454328\pi\)
0.441834 + 0.897097i \(0.354328\pi\)
\(158\) 0 0
\(159\) −7.19014 2.33622i −0.570215 0.185274i
\(160\) 0 0
\(161\) −6.86780 9.45272i −0.541258 0.744978i
\(162\) 0 0
\(163\) −6.99546 + 13.7294i −0.547927 + 1.07537i 0.436522 + 0.899694i \(0.356210\pi\)
−0.984449 + 0.175673i \(0.943790\pi\)
\(164\) 0 0
\(165\) −3.72670 + 4.92213i −0.290123 + 0.383187i
\(166\) 0 0
\(167\) 1.88413 3.69782i 0.145799 0.286146i −0.806545 0.591172i \(-0.798665\pi\)
0.952344 + 0.305026i \(0.0986653\pi\)
\(168\) 0 0
\(169\) −7.13754 9.82399i −0.549042 0.755691i
\(170\) 0 0
\(171\) 11.9177 + 3.87229i 0.911369 + 0.296122i
\(172\) 0 0
\(173\) −4.27643 + 0.677320i −0.325131 + 0.0514957i −0.316867 0.948470i \(-0.602631\pi\)
−0.00826456 + 0.999966i \(0.502631\pi\)
\(174\) 0 0
\(175\) −7.54127 19.6813i −0.570066 1.48777i
\(176\) 0 0
\(177\) 5.48016 5.48016i 0.411914 0.411914i
\(178\) 0 0
\(179\) 2.18633 3.00922i 0.163414 0.224920i −0.719456 0.694538i \(-0.755609\pi\)
0.882869 + 0.469619i \(0.155609\pi\)
\(180\) 0 0
\(181\) 1.86849 5.75062i 0.138884 0.427440i −0.857290 0.514834i \(-0.827854\pi\)
0.996174 + 0.0873933i \(0.0278537\pi\)
\(182\) 0 0
\(183\) −1.01340 + 6.39838i −0.0749129 + 0.472982i
\(184\) 0 0
\(185\) −8.57022 6.94432i −0.630095 0.510557i
\(186\) 0 0
\(187\) −1.20758 6.27861i −0.0883066 0.459137i
\(188\) 0 0
\(189\) 5.75482 + 17.7115i 0.418602 + 1.28832i
\(190\) 0 0
\(191\) −13.3930 + 9.73057i −0.969082 + 0.704079i −0.955242 0.295825i \(-0.904405\pi\)
−0.0138398 + 0.999904i \(0.504405\pi\)
\(192\) 0 0
\(193\) 7.70155 + 15.1151i 0.554370 + 1.08801i 0.982841 + 0.184456i \(0.0590524\pi\)
−0.428471 + 0.903556i \(0.640948\pi\)
\(194\) 0 0
\(195\) 1.15261 + 1.28088i 0.0825398 + 0.0917256i
\(196\) 0 0
\(197\) −9.63624 9.63624i −0.686554 0.686554i 0.274915 0.961469i \(-0.411350\pi\)
−0.961469 + 0.274915i \(0.911350\pi\)
\(198\) 0 0
\(199\) 19.4166i 1.37640i −0.725519 0.688202i \(-0.758400\pi\)
0.725519 0.688202i \(-0.241600\pi\)
\(200\) 0 0
\(201\) 2.90999 + 2.11423i 0.205255 + 0.149126i
\(202\) 0 0
\(203\) 3.76275 1.91722i 0.264093 0.134562i
\(204\) 0 0
\(205\) 0.524845 + 1.17978i 0.0366568 + 0.0823996i
\(206\) 0 0
\(207\) −5.69763 2.90309i −0.396012 0.201778i
\(208\) 0 0
\(209\) 14.2180 11.0632i 0.983478 0.765254i
\(210\) 0 0
\(211\) −6.07815 + 1.97491i −0.418437 + 0.135959i −0.510666 0.859779i \(-0.670601\pi\)
0.0922284 + 0.995738i \(0.470601\pi\)
\(212\) 0 0
\(213\) −7.06401 1.11883i −0.484018 0.0766609i
\(214\) 0 0
\(215\) −4.13159 15.4380i −0.281772 1.05286i
\(216\) 0 0
\(217\) −0.279559 1.76507i −0.0189777 0.119820i
\(218\) 0 0
\(219\) −4.54564 −0.307166
\(220\) 0 0
\(221\) −1.78450 −0.120038
\(222\) 0 0
\(223\) 2.22058 + 14.0202i 0.148701 + 0.938860i 0.943352 + 0.331794i \(0.107654\pi\)
−0.794651 + 0.607066i \(0.792346\pi\)
\(224\) 0 0
\(225\) −8.56746 7.72357i −0.571164 0.514905i
\(226\) 0 0
\(227\) −8.17622 1.29499i −0.542675 0.0859512i −0.120922 0.992662i \(-0.538585\pi\)
−0.421753 + 0.906711i \(0.638585\pi\)
\(228\) 0 0
\(229\) 18.6401 6.05655i 1.23178 0.400228i 0.380418 0.924815i \(-0.375780\pi\)
0.851357 + 0.524587i \(0.175780\pi\)
\(230\) 0 0
\(231\) 11.1813 + 3.23010i 0.735676 + 0.212525i
\(232\) 0 0
\(233\) 3.30844 + 1.68573i 0.216743 + 0.110436i 0.558991 0.829173i \(-0.311188\pi\)
−0.342249 + 0.939609i \(0.611188\pi\)
\(234\) 0 0
\(235\) −0.954019 + 2.48306i −0.0622333 + 0.161977i
\(236\) 0 0
\(237\) −1.69429 + 0.863285i −0.110056 + 0.0560764i
\(238\) 0 0
\(239\) 2.59930 + 1.88850i 0.168135 + 0.122157i 0.668671 0.743559i \(-0.266864\pi\)
−0.500536 + 0.865716i \(0.666864\pi\)
\(240\) 0 0
\(241\) 25.4119i 1.63693i −0.574559 0.818463i \(-0.694826\pi\)
0.574559 0.818463i \(-0.305174\pi\)
\(242\) 0 0
\(243\) 11.2809 + 11.2809i 0.723671 + 0.723671i
\(244\) 0 0
\(245\) −17.8999 + 16.1074i −1.14359 + 1.02906i
\(246\) 0 0
\(247\) −2.28270 4.48005i −0.145245 0.285059i
\(248\) 0 0
\(249\) 1.33935 0.973096i 0.0848780 0.0616674i
\(250\) 0 0
\(251\) −5.03867 15.5074i −0.318038 0.978820i −0.974486 0.224448i \(-0.927942\pi\)
0.656448 0.754371i \(-0.272058\pi\)
\(252\) 0 0
\(253\) −8.04929 + 4.44104i −0.506055 + 0.279206i
\(254\) 0 0
\(255\) −3.56893 + 0.374017i −0.223495 + 0.0234218i
\(256\) 0 0
\(257\) −2.53487 + 16.0045i −0.158121 + 0.998335i 0.773207 + 0.634154i \(0.218651\pi\)
−0.931328 + 0.364182i \(0.881349\pi\)
\(258\) 0 0
\(259\) −6.42576 + 19.7764i −0.399277 + 1.22885i
\(260\) 0 0
\(261\) 1.35849 1.86981i 0.0840887 0.115738i
\(262\) 0 0
\(263\) 0.677874 0.677874i 0.0417995 0.0417995i −0.685898 0.727698i \(-0.740590\pi\)
0.727698 + 0.685898i \(0.240590\pi\)
\(264\) 0 0
\(265\) −11.0548 17.0342i −0.679092 1.04640i
\(266\) 0 0
\(267\) 11.4546 1.81424i 0.701013 0.111030i
\(268\) 0 0
\(269\) −27.0327 8.78345i −1.64821 0.535536i −0.669860 0.742487i \(-0.733646\pi\)
−0.978351 + 0.206951i \(0.933646\pi\)
\(270\) 0 0
\(271\) −18.0744 24.8772i −1.09794 1.51118i −0.838087 0.545536i \(-0.816326\pi\)
−0.259853 0.965648i \(-0.583674\pi\)
\(272\) 0 0
\(273\) 1.47472 2.89430i 0.0892540 0.175171i
\(274\) 0 0
\(275\) −16.1008 + 3.97029i −0.970917 + 0.239417i
\(276\) 0 0
\(277\) 13.6871 26.8625i 0.822379 1.61401i 0.0335176 0.999438i \(-0.489329\pi\)
0.788861 0.614571i \(-0.210671\pi\)
\(278\) 0 0
\(279\) −0.574875 0.791248i −0.0344169 0.0473708i
\(280\) 0 0
\(281\) 8.10210 + 2.63253i 0.483331 + 0.157044i 0.540540 0.841319i \(-0.318220\pi\)
−0.0572089 + 0.998362i \(0.518220\pi\)
\(282\) 0 0
\(283\) −9.42432 + 1.49267i −0.560218 + 0.0887297i −0.430120 0.902772i \(-0.641529\pi\)
−0.130097 + 0.991501i \(0.541529\pi\)
\(284\) 0 0
\(285\) −5.50430 8.48150i −0.326046 0.502401i
\(286\) 0 0
\(287\) 1.72125 1.72125i 0.101602 0.101602i
\(288\) 0 0
\(289\) −7.80797 + 10.7468i −0.459292 + 0.632162i
\(290\) 0 0
\(291\) 0.855180 2.63197i 0.0501315 0.154289i
\(292\) 0 0
\(293\) −0.360965 + 2.27904i −0.0210878 + 0.133143i −0.995986 0.0895072i \(-0.971471\pi\)
0.974898 + 0.222650i \(0.0714708\pi\)
\(294\) 0 0
\(295\) 20.7039 2.16972i 1.20543 0.126326i
\(296\) 0 0
\(297\) 14.3889 2.76744i 0.834928 0.160583i
\(298\) 0 0
\(299\) 0.792887 + 2.44025i 0.0458538 + 0.141124i
\(300\) 0 0
\(301\) −24.3734 + 17.7083i −1.40486 + 1.02069i
\(302\) 0 0
\(303\) −5.02310 9.85838i −0.288569 0.566349i
\(304\) 0 0
\(305\) −12.9347 + 11.6394i −0.740639 + 0.666468i
\(306\) 0 0
\(307\) −12.4635 12.4635i −0.711327 0.711327i 0.255486 0.966813i \(-0.417765\pi\)
−0.966813 + 0.255486i \(0.917765\pi\)
\(308\) 0 0
\(309\) 8.39331i 0.477479i
\(310\) 0 0
\(311\) 12.2271 + 8.88353i 0.693337 + 0.503739i 0.877755 0.479109i \(-0.159040\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(312\) 0 0
\(313\) 23.2697 11.8565i 1.31528 0.670169i 0.351331 0.936251i \(-0.385729\pi\)
0.963950 + 0.266082i \(0.0857293\pi\)
\(314\) 0 0
\(315\) −7.79890 + 20.2985i −0.439418 + 1.14369i
\(316\) 0 0
\(317\) 25.2398 + 12.8603i 1.41761 + 0.722307i 0.983896 0.178744i \(-0.0572035\pi\)
0.433712 + 0.901051i \(0.357203\pi\)
\(318\) 0 0
\(319\) −1.13026 3.12455i −0.0632824 0.174941i
\(320\) 0 0
\(321\) 4.88234 1.58637i 0.272506 0.0885425i
\(322\) 0 0
\(323\) 10.3423 + 1.63805i 0.575458 + 0.0911436i
\(324\) 0 0
\(325\) 0.239432 + 4.62220i 0.0132813 + 0.256394i
\(326\) 0 0
\(327\) −2.59405 16.3782i −0.143451 0.905714i
\(328\) 0 0
\(329\) 5.01454 0.276461
\(330\) 0 0
\(331\) 24.6455 1.35464 0.677319 0.735690i \(-0.263142\pi\)
0.677319 + 0.735690i \(0.263142\pi\)
\(332\) 0 0
\(333\) 1.78028 + 11.2403i 0.0975588 + 0.615962i
\(334\) 0 0
\(335\) 2.49777 + 9.33313i 0.136468 + 0.509923i
\(336\) 0 0
\(337\) −30.6340 4.85195i −1.66874 0.264302i −0.750657 0.660692i \(-0.770263\pi\)
−0.918082 + 0.396390i \(0.870263\pi\)
\(338\) 0 0
\(339\) 9.59746 3.11840i 0.521263 0.169369i
\(340\) 0 0
\(341\) −1.40530 + 0.0462960i −0.0761015 + 0.00250707i
\(342\) 0 0
\(343\) 14.1559 + 7.21277i 0.764345 + 0.389453i
\(344\) 0 0
\(345\) 2.09720 + 4.71424i 0.112910 + 0.253806i
\(346\) 0 0
\(347\) 26.8957 13.7041i 1.44384 0.735672i 0.455829 0.890068i \(-0.349343\pi\)
0.988009 + 0.154395i \(0.0493430\pi\)
\(348\) 0 0
\(349\) 17.2865 + 12.5594i 0.925323 + 0.672287i 0.944843 0.327523i \(-0.106214\pi\)
−0.0195201 + 0.999809i \(0.506214\pi\)
\(350\) 0 0
\(351\) 4.08959i 0.218286i
\(352\) 0 0
\(353\) −2.82626 2.82626i −0.150427 0.150427i 0.627882 0.778309i \(-0.283922\pi\)
−0.778309 + 0.627882i \(0.783922\pi\)
\(354\) 0 0
\(355\) −12.8502 14.2803i −0.682019 0.757921i
\(356\) 0 0
\(357\) 3.07116 + 6.02750i 0.162543 + 0.319009i
\(358\) 0 0
\(359\) 8.68908 6.31298i 0.458592 0.333187i −0.334387 0.942436i \(-0.608529\pi\)
0.792979 + 0.609249i \(0.208529\pi\)
\(360\) 0 0
\(361\) 3.24592 + 9.98992i 0.170838 + 0.525785i
\(362\) 0 0
\(363\) 3.61127 8.41505i 0.189542 0.441676i
\(364\) 0 0
\(365\) −9.48649 7.68677i −0.496546 0.402344i
\(366\) 0 0
\(367\) −5.41331 + 34.1783i −0.282572 + 1.78409i 0.282721 + 0.959202i \(0.408763\pi\)
−0.565293 + 0.824890i \(0.691237\pi\)
\(368\) 0 0
\(369\) 0.411677 1.26701i 0.0214310 0.0659579i
\(370\) 0 0
\(371\) −22.5015 + 30.9706i −1.16822 + 1.60791i
\(372\) 0 0
\(373\) −9.90454 + 9.90454i −0.512838 + 0.512838i −0.915395 0.402557i \(-0.868121\pi\)
0.402557 + 0.915395i \(0.368121\pi\)
\(374\) 0 0
\(375\) 1.44763 + 9.19406i 0.0747555 + 0.474779i
\(376\) 0 0
\(377\) −0.915956 + 0.145073i −0.0471741 + 0.00747165i
\(378\) 0 0
\(379\) 25.2037 + 8.18919i 1.29463 + 0.420651i 0.873710 0.486447i \(-0.161708\pi\)
0.420919 + 0.907098i \(0.361708\pi\)
\(380\) 0 0
\(381\) 0.567376 + 0.780926i 0.0290676 + 0.0400081i
\(382\) 0 0
\(383\) −10.9129 + 21.4177i −0.557622 + 1.09439i 0.424373 + 0.905487i \(0.360495\pi\)
−0.981995 + 0.188907i \(0.939505\pi\)
\(384\) 0 0
\(385\) 17.8726 + 25.6489i 0.910872 + 1.30719i
\(386\) 0 0
\(387\) −7.48548 + 14.6911i −0.380508 + 0.746789i
\(388\) 0 0
\(389\) 4.43509 + 6.10438i 0.224868 + 0.309505i 0.906512 0.422179i \(-0.138735\pi\)
−0.681644 + 0.731684i \(0.738735\pi\)
\(390\) 0 0
\(391\) −5.08193 1.65122i −0.257004 0.0835057i
\(392\) 0 0
\(393\) 11.8838 1.88220i 0.599456 0.0949445i
\(394\) 0 0
\(395\) −4.99573 1.06346i −0.251362 0.0535083i
\(396\) 0 0
\(397\) 16.0995 16.0995i 0.808008 0.808008i −0.176324 0.984332i \(-0.556421\pi\)
0.984332 + 0.176324i \(0.0564206\pi\)
\(398\) 0 0
\(399\) −11.2037 + 15.4205i −0.560886 + 0.771993i
\(400\) 0 0
\(401\) −7.46030 + 22.9604i −0.372550 + 1.14659i 0.572568 + 0.819858i \(0.305947\pi\)
−0.945117 + 0.326732i \(0.894053\pi\)
\(402\) 0 0
\(403\) −0.0613908 + 0.387606i −0.00305809 + 0.0193080i
\(404\) 0 0
\(405\) 0.755849 + 7.21243i 0.0375584 + 0.358389i
\(406\) 0 0
\(407\) 14.8143 + 6.94368i 0.734319 + 0.344185i
\(408\) 0 0
\(409\) 1.80956 + 5.56925i 0.0894769 + 0.275382i 0.985775 0.168070i \(-0.0537536\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(410\) 0 0
\(411\) −8.33214 + 6.05365i −0.410994 + 0.298605i
\(412\) 0 0
\(413\) −17.8162 34.9663i −0.876680 1.72058i
\(414\) 0 0
\(415\) 4.44068 + 0.234075i 0.217984 + 0.0114903i
\(416\) 0 0
\(417\) 0.594169 + 0.594169i 0.0290966 + 0.0290966i
\(418\) 0 0
\(419\) 11.0599i 0.540311i −0.962817 0.270155i \(-0.912925\pi\)
0.962817 0.270155i \(-0.0870751\pi\)
\(420\) 0 0
\(421\) −6.36944 4.62767i −0.310428 0.225539i 0.421652 0.906758i \(-0.361450\pi\)
−0.732080 + 0.681219i \(0.761450\pi\)
\(422\) 0 0
\(423\) 2.44527 1.24593i 0.118893 0.0605790i
\(424\) 0 0
\(425\) −8.08063 5.25458i −0.391968 0.254885i
\(426\) 0 0
\(427\) 29.2275 + 14.8922i 1.41442 + 0.720682i
\(428\) 0 0
\(429\) −2.11603 1.43337i −0.102163 0.0692037i
\(430\) 0 0
\(431\) 6.94552 2.25674i 0.334554 0.108703i −0.136923 0.990582i \(-0.543721\pi\)
0.471477 + 0.881879i \(0.343721\pi\)
\(432\) 0 0
\(433\) 4.98536 + 0.789604i 0.239581 + 0.0379460i 0.275070 0.961424i \(-0.411299\pi\)
−0.0354890 + 0.999370i \(0.511299\pi\)
\(434\) 0 0
\(435\) −1.80147 + 0.482118i −0.0863740 + 0.0231158i
\(436\) 0 0
\(437\) −2.35527 14.8706i −0.112668 0.711357i
\(438\) 0 0
\(439\) −1.29778 −0.0619394 −0.0309697 0.999520i \(-0.509860\pi\)
−0.0309697 + 0.999520i \(0.509860\pi\)
\(440\) 0 0
\(441\) 24.8439 1.18304
\(442\) 0 0
\(443\) −2.40922 15.2112i −0.114466 0.722707i −0.976445 0.215764i \(-0.930776\pi\)
0.861980 0.506942i \(-0.169224\pi\)
\(444\) 0 0
\(445\) 26.9731 + 15.5838i 1.27865 + 0.738744i
\(446\) 0 0
\(447\) 1.00358 + 0.158952i 0.0474678 + 0.00751816i
\(448\) 0 0
\(449\) 11.5295 3.74615i 0.544109 0.176792i −0.0240497 0.999711i \(-0.507656\pi\)
0.568159 + 0.822919i \(0.307656\pi\)
\(450\) 0 0
\(451\) −1.17616 1.51156i −0.0553833 0.0711766i
\(452\) 0 0
\(453\) −1.17695 0.599688i −0.0552981 0.0281758i
\(454\) 0 0
\(455\) 7.97198 3.54646i 0.373732 0.166261i
\(456\) 0 0
\(457\) 3.12807 1.59383i 0.146325 0.0745563i −0.379295 0.925276i \(-0.623833\pi\)
0.525620 + 0.850720i \(0.323833\pi\)
\(458\) 0 0
\(459\) 6.89018 + 5.00601i 0.321606 + 0.233660i
\(460\) 0 0
\(461\) 5.45336i 0.253988i −0.991903 0.126994i \(-0.959467\pi\)
0.991903 0.126994i \(-0.0405329\pi\)
\(462\) 0 0
\(463\) −15.3996 15.3996i −0.715681 0.715681i 0.252037 0.967718i \(-0.418900\pi\)
−0.967718 + 0.252037i \(0.918900\pi\)
\(464\) 0 0
\(465\) −0.0415401 + 0.788065i −0.00192638 + 0.0365457i
\(466\) 0 0
\(467\) −6.66632 13.0834i −0.308481 0.605427i 0.683768 0.729700i \(-0.260340\pi\)
−0.992248 + 0.124273i \(0.960340\pi\)
\(468\) 0 0
\(469\) 14.7351 10.7057i 0.680402 0.494341i
\(470\) 0 0
\(471\) 1.90857 + 5.87397i 0.0879422 + 0.270658i
\(472\) 0 0
\(473\) 11.4510 + 20.7547i 0.526518 + 0.954303i
\(474\) 0 0
\(475\) 2.85523 27.0083i 0.131007 1.23923i
\(476\) 0 0
\(477\) −3.27747 + 20.6931i −0.150065 + 0.947473i
\(478\) 0 0
\(479\) −1.51842 + 4.67321i −0.0693783 + 0.213524i −0.979734 0.200302i \(-0.935808\pi\)
0.910356 + 0.413826i \(0.135808\pi\)
\(480\) 0 0
\(481\) 2.68405 3.69428i 0.122382 0.168444i
\(482\) 0 0
\(483\) 6.87787 6.87787i 0.312954 0.312954i
\(484\) 0 0
\(485\) 6.23543 4.04665i 0.283136 0.183749i
\(486\) 0 0
\(487\) −10.6054 + 1.67972i −0.480574 + 0.0761155i −0.392022 0.919956i \(-0.628224\pi\)
−0.0885527 + 0.996071i \(0.528224\pi\)
\(488\) 0 0
\(489\) −12.1996 3.96390i −0.551686 0.179254i
\(490\) 0 0
\(491\) −1.91387 2.63421i −0.0863715 0.118880i 0.763645 0.645637i \(-0.223408\pi\)
−0.850016 + 0.526757i \(0.823408\pi\)
\(492\) 0 0
\(493\) 0.876788 1.72079i 0.0394886 0.0775007i
\(494\) 0 0
\(495\) 15.0881 + 8.06662i 0.678159 + 0.362567i
\(496\) 0 0
\(497\) −16.4414 + 32.2681i −0.737498 + 1.44742i
\(498\) 0 0
\(499\) 5.25588 + 7.23410i 0.235285 + 0.323843i 0.910290 0.413971i \(-0.135858\pi\)
−0.675005 + 0.737813i \(0.735858\pi\)
\(500\) 0 0
\(501\) 3.28580 + 1.06762i 0.146799 + 0.0476978i
\(502\) 0 0
\(503\) −19.0954 + 3.02441i −0.851421 + 0.134852i −0.566868 0.823808i \(-0.691845\pi\)
−0.284553 + 0.958660i \(0.591845\pi\)
\(504\) 0 0
\(505\) 6.18781 29.0681i 0.275354 1.29351i
\(506\) 0 0
\(507\) 7.14801 7.14801i 0.317454 0.317454i
\(508\) 0 0
\(509\) −1.65845 + 2.28267i −0.0735097 + 0.101177i −0.844189 0.536046i \(-0.819917\pi\)
0.770679 + 0.637224i \(0.219917\pi\)
\(510\) 0 0
\(511\) −7.11276 + 21.8908i −0.314650 + 0.968393i
\(512\) 0 0
\(513\) −3.75398 + 23.7017i −0.165742 + 1.04645i
\(514\) 0 0
\(515\) −14.1933 + 17.5164i −0.625430 + 0.771863i
\(516\) 0 0
\(517\) 0.488562 3.91508i 0.0214869 0.172185i
\(518\) 0 0
\(519\) −1.11382 3.42798i −0.0488912 0.150472i
\(520\) 0 0
\(521\) −7.68839 + 5.58594i −0.336835 + 0.244725i −0.743325 0.668930i \(-0.766752\pi\)
0.406491 + 0.913655i \(0.366752\pi\)
\(522\) 0 0
\(523\) 6.73563 + 13.2194i 0.294528 + 0.578045i 0.990092 0.140420i \(-0.0448453\pi\)
−0.695564 + 0.718465i \(0.744845\pi\)
\(524\) 0 0
\(525\) 15.2004 8.76366i 0.663398 0.382477i
\(526\) 0 0
\(527\) −0.577895 0.577895i −0.0251735 0.0251735i
\(528\) 0 0
\(529\) 15.3169i 0.665953i
\(530\) 0 0
\(531\) −17.3757 12.6242i −0.754039 0.547842i
\(532\) 0 0
\(533\) −0.476289 + 0.242681i −0.0206304 + 0.0105117i
\(534\) 0 0
\(535\) 12.8718 + 4.94548i 0.556495 + 0.213812i
\(536\) 0 0
\(537\) 2.75897 + 1.40577i 0.119058 + 0.0606633i
\(538\) 0 0
\(539\) 20.0309 29.5710i 0.862794 1.27371i
\(540\) 0 0
\(541\) −29.7351 + 9.66153i −1.27841 + 0.415381i −0.868021 0.496528i \(-0.834608\pi\)
−0.410392 + 0.911909i \(0.634608\pi\)
\(542\) 0 0
\(543\) 4.97163 + 0.787429i 0.213353 + 0.0337918i
\(544\) 0 0
\(545\) 22.2822 38.5669i 0.954464 1.65202i
\(546\) 0 0
\(547\) −4.93799 31.1772i −0.211133 1.33304i −0.834455 0.551076i \(-0.814217\pi\)
0.623322 0.781966i \(-0.285783\pi\)
\(548\) 0 0
\(549\) 17.9525 0.766194
\(550\) 0 0
\(551\) 5.44169 0.231824
\(552\) 0 0
\(553\) 1.50626 + 9.51017i 0.0640528 + 0.404414i
\(554\) 0 0
\(555\) 4.59371 7.95098i 0.194992 0.337500i
\(556\) 0 0
\(557\) −13.0992 2.07471i −0.555030 0.0879082i −0.127383 0.991854i \(-0.540658\pi\)
−0.427648 + 0.903945i \(0.640658\pi\)
\(558\) 0 0
\(559\) 6.29208 2.04442i 0.266127 0.0864698i
\(560\) 0 0
\(561\) 5.00516 1.81054i 0.211318 0.0764412i
\(562\) 0 0
\(563\) −26.1698 13.3342i −1.10292 0.561968i −0.194874 0.980828i \(-0.562430\pi\)
−0.908051 + 0.418860i \(0.862430\pi\)
\(564\) 0 0
\(565\) 25.3027 + 9.72158i 1.06449 + 0.408990i
\(566\) 0 0
\(567\) 12.1809 6.20650i 0.511551 0.260648i
\(568\) 0 0
\(569\) −17.3540 12.6084i −0.727518 0.528573i 0.161259 0.986912i \(-0.448445\pi\)
−0.888777 + 0.458339i \(0.848445\pi\)
\(570\) 0 0
\(571\) 28.7176i 1.20179i 0.799326 + 0.600897i \(0.205190\pi\)
−0.799326 + 0.600897i \(0.794810\pi\)
\(572\) 0 0
\(573\) −9.74484 9.74484i −0.407097 0.407097i
\(574\) 0 0
\(575\) −3.59513 + 13.3848i −0.149927 + 0.558183i
\(576\) 0 0
\(577\) 3.03825 + 5.96290i 0.126484 + 0.248239i 0.945561 0.325445i \(-0.105514\pi\)
−0.819077 + 0.573683i \(0.805514\pi\)
\(578\) 0 0
\(579\) −11.4251 + 8.30081i −0.474810 + 0.344970i
\(580\) 0 0
\(581\) −2.59048 7.97268i −0.107471 0.330763i
\(582\) 0 0
\(583\) 21.9879 + 20.5853i 0.910644 + 0.852558i
\(584\) 0 0
\(585\) 3.00625 3.71012i 0.124293 0.153394i
\(586\) 0 0
\(587\) −5.70952 + 36.0485i −0.235657 + 1.48788i 0.531849 + 0.846839i \(0.321497\pi\)
−0.767506 + 0.641041i \(0.778503\pi\)
\(588\) 0 0
\(589\) 0.711594 2.19006i 0.0293207 0.0902400i
\(590\) 0 0
\(591\) 6.66825 9.17805i 0.274295 0.377535i
\(592\) 0 0
\(593\) −26.6656 + 26.6656i −1.09502 + 1.09502i −0.100040 + 0.994983i \(0.531897\pi\)
−0.994983 + 0.100040i \(0.968103\pi\)
\(594\) 0 0
\(595\) −3.78328 + 17.7724i −0.155099 + 0.728599i
\(596\) 0 0
\(597\) 15.9648 2.52857i 0.653394 0.103487i
\(598\) 0 0
\(599\) −36.7124 11.9286i −1.50003 0.487388i −0.560002 0.828492i \(-0.689199\pi\)
−0.940026 + 0.341103i \(0.889199\pi\)
\(600\) 0 0
\(601\) 22.4050 + 30.8379i 0.913920 + 1.25790i 0.965810 + 0.259250i \(0.0834753\pi\)
−0.0518905 + 0.998653i \(0.516525\pi\)
\(602\) 0 0
\(603\) 4.52538 8.88156i 0.184288 0.361685i
\(604\) 0 0
\(605\) 21.7665 11.4550i 0.884936 0.465713i
\(606\) 0 0
\(607\) −16.4492 + 32.2834i −0.667653 + 1.31034i 0.270031 + 0.962852i \(0.412966\pi\)
−0.937683 + 0.347491i \(0.887034\pi\)
\(608\) 0 0
\(609\) 2.06640 + 2.84415i 0.0837346 + 0.115251i
\(610\) 0 0
\(611\) −1.04729 0.340286i −0.0423689 0.0137665i
\(612\) 0 0
\(613\) 2.37960 0.376892i 0.0961113 0.0152225i −0.108194 0.994130i \(-0.534507\pi\)
0.204305 + 0.978907i \(0.434507\pi\)
\(614\) 0 0
\(615\) −0.901696 + 0.585180i −0.0363599 + 0.0235967i
\(616\) 0 0
\(617\) −25.5598 + 25.5598i −1.02900 + 1.02900i −0.0294325 + 0.999567i \(0.509370\pi\)
−0.999567 + 0.0294325i \(0.990630\pi\)
\(618\) 0 0
\(619\) 0.537145 0.739317i 0.0215897 0.0297157i −0.798086 0.602544i \(-0.794154\pi\)
0.819675 + 0.572828i \(0.194154\pi\)
\(620\) 0 0
\(621\) 3.78415 11.6464i 0.151853 0.467355i
\(622\) 0 0
\(623\) 9.18661 58.0020i 0.368054 2.32380i
\(624\) 0 0
\(625\) −12.5262 + 21.6355i −0.501049 + 0.865419i
\(626\) 0 0
\(627\) 10.9480 + 10.2496i 0.437219 + 0.409331i
\(628\) 0 0
\(629\) 2.93865 + 9.04423i 0.117172 + 0.360617i
\(630\) 0 0
\(631\) 18.6941 13.5820i 0.744199 0.540692i −0.149824 0.988713i \(-0.547871\pi\)
0.894023 + 0.448020i \(0.147871\pi\)
\(632\) 0 0
\(633\) −2.41536 4.74042i −0.0960020 0.188415i
\(634\) 0 0
\(635\) −0.136480 + 2.58920i −0.00541606 + 0.102749i
\(636\) 0 0
\(637\) −7.04889 7.04889i −0.279287 0.279287i
\(638\) 0 0
\(639\) 19.8201i 0.784072i
\(640\) 0 0
\(641\) −7.06172 5.13064i −0.278921 0.202648i 0.439525 0.898230i \(-0.355147\pi\)
−0.718447 + 0.695582i \(0.755147\pi\)
\(642\) 0 0
\(643\) 28.1018 14.3186i 1.10823 0.564670i 0.198594 0.980082i \(-0.436362\pi\)
0.909634 + 0.415412i \(0.136362\pi\)
\(644\) 0 0
\(645\) 12.1555 5.40754i 0.478620 0.212922i
\(646\) 0 0
\(647\) 12.2437 + 6.23845i 0.481348 + 0.245259i 0.677789 0.735257i \(-0.262938\pi\)
−0.196441 + 0.980516i \(0.562938\pi\)
\(648\) 0 0
\(649\) −29.0356 + 10.5032i −1.13975 + 0.412288i
\(650\) 0 0
\(651\) 1.41487 0.459720i 0.0554532 0.0180178i
\(652\) 0 0
\(653\) −5.37414 0.851181i −0.210307 0.0333093i 0.0503921 0.998730i \(-0.483953\pi\)
−0.260699 + 0.965420i \(0.583953\pi\)
\(654\) 0 0
\(655\) 27.9836 + 16.1676i 1.09341 + 0.631721i
\(656\) 0 0
\(657\) 1.97062 + 12.4420i 0.0768812 + 0.485408i
\(658\) 0 0
\(659\) −42.1160 −1.64061 −0.820304 0.571928i \(-0.806195\pi\)
−0.820304 + 0.571928i \(0.806195\pi\)
\(660\) 0 0
\(661\) −19.5844 −0.761745 −0.380872 0.924628i \(-0.624376\pi\)
−0.380872 + 0.924628i \(0.624376\pi\)
\(662\) 0 0
\(663\) −0.232390 1.46726i −0.00902529 0.0569835i
\(664\) 0 0
\(665\) −49.4579 + 13.2362i −1.91790 + 0.513276i
\(666\) 0 0
\(667\) −2.74272 0.434404i −0.106198 0.0168202i
\(668\) 0 0
\(669\) −11.2385 + 3.65162i −0.434507 + 0.141180i
\(670\) 0 0
\(671\) 14.4746 21.3683i 0.558786 0.824915i
\(672\) 0 0
\(673\) −4.94179 2.51797i −0.190492 0.0970605i 0.356143 0.934431i \(-0.384092\pi\)
−0.546635 + 0.837371i \(0.684092\pi\)
\(674\) 0 0
\(675\) 12.0421 18.5186i 0.463500 0.712782i
\(676\) 0 0
\(677\) −2.07893 + 1.05927i −0.0798999 + 0.0407110i −0.493484 0.869755i \(-0.664277\pi\)
0.413584 + 0.910466i \(0.364277\pi\)
\(678\) 0 0
\(679\) −11.3369 8.23673i −0.435070 0.316097i
\(680\) 0 0
\(681\) 6.89132i 0.264076i
\(682\) 0 0
\(683\) 25.0400 + 25.0400i 0.958127 + 0.958127i 0.999158 0.0410307i \(-0.0130641\pi\)
−0.0410307 + 0.999158i \(0.513064\pi\)
\(684\) 0 0
\(685\) −27.6256 1.45618i −1.05552 0.0556380i
\(686\) 0 0
\(687\) 7.40730 + 14.5376i 0.282606 + 0.554646i
\(688\) 0 0
\(689\) 6.80110 4.94129i 0.259101 0.188248i
\(690\) 0 0
\(691\) 0.556172 + 1.71172i 0.0211578 + 0.0651170i 0.961078 0.276277i \(-0.0891008\pi\)
−0.939920 + 0.341394i \(0.889101\pi\)
\(692\) 0 0
\(693\) 3.99389 32.0050i 0.151715 1.21577i
\(694\) 0 0
\(695\) 0.235245 + 2.24475i 0.00892336 + 0.0851482i
\(696\) 0 0
\(697\) 0.174147 1.09952i 0.00659628 0.0416473i
\(698\) 0 0
\(699\) −0.955200 + 2.93980i −0.0361290 + 0.111194i
\(700\) 0 0
\(701\) 10.4715 14.4128i 0.395502 0.544362i −0.564106 0.825703i \(-0.690779\pi\)
0.959608 + 0.281340i \(0.0907790\pi\)
\(702\) 0 0
\(703\) −18.9468 + 18.9468i −0.714593 + 0.714593i
\(704\) 0 0
\(705\) −2.16587 0.461055i −0.0815713 0.0173643i
\(706\) 0 0
\(707\) −55.3357 + 8.76432i −2.08111 + 0.329616i
\(708\) 0 0
\(709\) 9.55567 + 3.10483i 0.358871 + 0.116604i 0.482903 0.875674i \(-0.339583\pi\)
−0.124032 + 0.992278i \(0.539583\pi\)
\(710\) 0 0
\(711\) 3.09743 + 4.26324i 0.116163 + 0.159884i
\(712\) 0 0
\(713\) −0.533487 + 1.04703i −0.0199793 + 0.0392115i
\(714\) 0 0
\(715\) −1.99218 6.56961i −0.0745034 0.245690i
\(716\) 0 0
\(717\) −1.21427 + 2.38314i −0.0453478 + 0.0890001i
\(718\) 0 0
\(719\) 4.03181 + 5.54931i 0.150361 + 0.206954i 0.877553 0.479480i \(-0.159175\pi\)
−0.727191 + 0.686435i \(0.759175\pi\)
\(720\) 0 0
\(721\) 40.4204 + 13.1334i 1.50533 + 0.489113i
\(722\) 0 0
\(723\) 20.8943 3.30933i 0.777067 0.123075i
\(724\) 0 0
\(725\) −4.57485 2.04017i −0.169906 0.0757702i
\(726\) 0 0
\(727\) 25.2212 25.2212i 0.935401 0.935401i −0.0626351 0.998036i \(-0.519950\pi\)
0.998036 + 0.0626351i \(0.0199504\pi\)
\(728\) 0 0
\(729\) −2.08750 + 2.87320i −0.0773149 + 0.106415i
\(730\) 0 0
\(731\) −4.25759 + 13.1035i −0.157473 + 0.484651i
\(732\) 0 0
\(733\) 1.20620 7.61562i 0.0445519 0.281289i −0.955347 0.295485i \(-0.904519\pi\)
0.999899 + 0.0141956i \(0.00451876\pi\)
\(734\) 0 0
\(735\) −15.5749 12.6201i −0.574490 0.465501i
\(736\) 0 0
\(737\) −6.92277 12.5474i −0.255004 0.462189i
\(738\) 0 0
\(739\) 12.6089 + 38.8062i 0.463825 + 1.42751i 0.860454 + 0.509528i \(0.170180\pi\)
−0.396629 + 0.917979i \(0.629820\pi\)
\(740\) 0 0
\(741\) 3.38633 2.46031i 0.124400 0.0903819i
\(742\) 0 0
\(743\) −20.1411 39.5290i −0.738904 1.45018i −0.887271 0.461248i \(-0.847402\pi\)
0.148368 0.988932i \(-0.452598\pi\)
\(744\) 0 0
\(745\) 1.82563 + 2.02880i 0.0668859 + 0.0743296i
\(746\) 0 0
\(747\) −3.24412 3.24412i −0.118696 0.118696i
\(748\) 0 0
\(749\) 25.9946i 0.949821i
\(750\) 0 0
\(751\) −10.6518 7.73896i −0.388688 0.282399i 0.376229 0.926527i \(-0.377220\pi\)
−0.764918 + 0.644128i \(0.777220\pi\)
\(752\) 0 0
\(753\) 12.0944 6.16240i 0.440744 0.224570i
\(754\) 0 0
\(755\) −1.44215 3.24177i −0.0524853 0.117980i
\(756\) 0 0
\(757\) −17.7060 9.02166i −0.643535 0.327898i 0.101586 0.994827i \(-0.467608\pi\)
−0.745121 + 0.666929i \(0.767608\pi\)
\(758\) 0 0
\(759\) −4.69977 6.03997i −0.170591 0.219237i
\(760\) 0 0
\(761\) 16.8706 5.48158i 0.611558 0.198707i 0.0131694 0.999913i \(-0.495808\pi\)
0.598389 + 0.801206i \(0.295808\pi\)
\(762\) 0 0
\(763\) −82.9328 13.1353i −3.00237 0.475528i
\(764\) 0 0
\(765\) 2.57093 + 9.60647i 0.0929521 + 0.347323i
\(766\) 0 0
\(767\) 1.34813 + 8.51175i 0.0486781 + 0.307342i
\(768\) 0 0
\(769\) −33.4001 −1.20444 −0.602218 0.798331i \(-0.705716\pi\)
−0.602218 + 0.798331i \(0.705716\pi\)
\(770\) 0 0
\(771\) −13.4894 −0.485810
\(772\) 0 0
\(773\) −5.96974 37.6915i −0.214717 1.35567i −0.825738 0.564054i \(-0.809241\pi\)
0.611021 0.791614i \(-0.290759\pi\)
\(774\) 0 0
\(775\) −1.41933 + 1.57440i −0.0509837 + 0.0565542i
\(776\) 0 0
\(777\) −17.0975 2.70797i −0.613369 0.0971480i
\(778\) 0 0
\(779\) 2.98315 0.969285i 0.106882 0.0347282i
\(780\) 0 0
\(781\) 23.5913 + 15.9804i 0.844163 + 0.571824i
\(782\) 0 0
\(783\) 3.94360 + 2.00936i 0.140933 + 0.0718088i
\(784\) 0 0
\(785\) −5.94993 + 15.4861i −0.212362 + 0.552722i
\(786\) 0 0
\(787\) −32.7403 + 16.6820i −1.16706 + 0.594649i −0.926614 0.376013i \(-0.877295\pi\)
−0.240450 + 0.970662i \(0.577295\pi\)
\(788\) 0 0
\(789\) 0.645642 + 0.469086i 0.0229855 + 0.0166999i
\(790\) 0 0
\(791\) 51.0989i 1.81687i
\(792\) 0 0
\(793\) −5.09361 5.09361i −0.180879 0.180879i
\(794\) 0 0
\(795\) 12.5663 11.3079i 0.445681 0.401049i
\(796\) 0 0
\(797\) −9.14395 17.9460i −0.323895 0.635680i 0.670441 0.741963i \(-0.266105\pi\)
−0.994336 + 0.106283i \(0.966105\pi\)
\(798\) 0 0
\(799\) 1.85529 1.34795i 0.0656355 0.0476870i
\(800\) 0 0
\(801\) −9.93160 30.5663i −0.350916 1.08001i
\(802\) 0 0
\(803\) 16.3982 + 7.68606i 0.578679 + 0.271235i
\(804\) 0 0
\(805\) 25.9844 2.72311i 0.915829 0.0959770i
\(806\) 0 0
\(807\) 3.70156 23.3708i 0.130301 0.822690i
\(808\) 0 0
\(809\) −16.0484 + 49.3920i −0.564233 + 1.73653i 0.105987 + 0.994367i \(0.466200\pi\)
−0.670220 + 0.742162i \(0.733800\pi\)
\(810\) 0 0
\(811\) 23.0252 31.6914i 0.808523 1.11284i −0.183027 0.983108i \(-0.558590\pi\)
0.991550 0.129728i \(-0.0414104\pi\)
\(812\) 0 0
\(813\) 18.1009 18.1009i 0.634826 0.634826i
\(814\) 0 0
\(815\) −18.7569 28.9022i −0.657025 1.01240i
\(816\) 0 0
\(817\) −38.3431 + 6.07296i −1.34146 + 0.212466i
\(818\) 0 0
\(819\) −8.56139 2.78176i −0.299159 0.0972027i
\(820\) 0 0
\(821\) −14.6926 20.2226i −0.512775 0.705774i 0.471609 0.881808i \(-0.343673\pi\)
−0.984384 + 0.176034i \(0.943673\pi\)
\(822\) 0 0
\(823\) −10.4310 + 20.4719i −0.363600 + 0.713606i −0.998246 0.0591972i \(-0.981146\pi\)
0.634646 + 0.772803i \(0.281146\pi\)
\(824\) 0 0
\(825\) −5.36123 12.7215i −0.186654 0.442904i
\(826\) 0 0
\(827\) 2.51391 4.93382i 0.0874171 0.171566i −0.843159 0.537664i \(-0.819307\pi\)
0.930576 + 0.366099i \(0.119307\pi\)
\(828\) 0 0
\(829\) 8.80126 + 12.1139i 0.305680 + 0.420733i 0.934028 0.357200i \(-0.116268\pi\)
−0.628348 + 0.777933i \(0.716268\pi\)
\(830\) 0 0
\(831\) 23.8694 + 7.75564i 0.828020 + 0.269040i
\(832\) 0 0
\(833\) 20.5045 3.24759i 0.710439 0.112522i
\(834\) 0 0
\(835\) 5.05192 + 7.78443i 0.174829 + 0.269391i
\(836\) 0 0
\(837\) 1.32438 1.32438i 0.0457773 0.0457773i
\(838\) 0 0
\(839\) 7.40356 10.1901i 0.255599 0.351802i −0.661863 0.749625i \(-0.730234\pi\)
0.917462 + 0.397823i \(0.130234\pi\)
\(840\) 0 0
\(841\) −8.65134 + 26.6261i −0.298322 + 0.918141i
\(842\) 0 0
\(843\) −1.10941 + 7.00457i −0.0382103 + 0.241250i
\(844\) 0 0
\(845\) 27.0049 2.83006i 0.928998 0.0973572i
\(846\) 0 0
\(847\) −34.8744 30.5585i −1.19830 1.05000i
\(848\) 0 0
\(849\) −2.45461 7.55451i −0.0842420 0.259270i
\(850\) 0 0
\(851\) 11.0621 8.03706i 0.379203 0.275507i
\(852\) 0 0
\(853\) −22.5965 44.3481i −0.773689 1.51845i −0.853181 0.521614i \(-0.825330\pi\)
0.0794926 0.996835i \(-0.474670\pi\)
\(854\) 0 0
\(855\) −20.8287 + 18.7429i −0.712328 + 0.640992i
\(856\) 0 0
\(857\) 21.2860 + 21.2860i 0.727117 + 0.727117i 0.970044 0.242927i \(-0.0781077\pi\)
−0.242927 + 0.970044i \(0.578108\pi\)
\(858\) 0 0
\(859\) 9.31402i 0.317790i −0.987295 0.158895i \(-0.949207\pi\)
0.987295 0.158895i \(-0.0507932\pi\)
\(860\) 0 0
\(861\) 1.63941 + 1.19110i 0.0558709 + 0.0405926i
\(862\) 0 0
\(863\) −31.5320 + 16.0664i −1.07336 + 0.546905i −0.899077 0.437790i \(-0.855761\pi\)
−0.174285 + 0.984695i \(0.555761\pi\)
\(864\) 0 0
\(865\) 3.47231 9.03749i 0.118062 0.307284i
\(866\) 0 0
\(867\) −9.85305 5.02038i −0.334627 0.170501i
\(868\) 0 0
\(869\) 7.57178 0.249443i 0.256855 0.00846176i
\(870\) 0 0
\(871\) −3.80391 + 1.23597i −0.128891 + 0.0418791i
\(872\) 0 0
\(873\) −7.57478 1.19973i −0.256368 0.0406046i
\(874\) 0 0
\(875\) 46.5418 + 7.41486i 1.57340 + 0.250668i
\(876\) 0 0
\(877\) −3.41955 21.5902i −0.115470 0.729048i −0.975695 0.219133i \(-0.929677\pi\)
0.860225 0.509915i \(-0.170323\pi\)
\(878\) 0 0
\(879\) −1.92089 −0.0647901
\(880\) 0 0
\(881\) 46.4810 1.56599 0.782993 0.622031i \(-0.213692\pi\)
0.782993 + 0.622031i \(0.213692\pi\)
\(882\) 0 0
\(883\) −4.36822 27.5798i −0.147002 0.928135i −0.945378 0.325976i \(-0.894307\pi\)
0.798376 0.602159i \(-0.205693\pi\)
\(884\) 0 0
\(885\) 4.48021 + 16.7407i 0.150601 + 0.562731i
\(886\) 0 0
\(887\) 6.95351 + 1.10133i 0.233476 + 0.0369790i 0.272076 0.962276i \(-0.412290\pi\)
−0.0385999 + 0.999255i \(0.512290\pi\)
\(888\) 0 0
\(889\) 4.64858 1.51041i 0.155908 0.0506577i
\(890\) 0 0
\(891\) −3.65892 10.1149i −0.122578 0.338862i
\(892\) 0 0
\(893\) 5.75734 + 2.93351i 0.192662 + 0.0981662i
\(894\) 0 0
\(895\) 3.38064 + 7.59923i 0.113002 + 0.254014i
\(896\) 0 0
\(897\) −1.90318 + 0.969718i −0.0635453 + 0.0323780i
\(898\) 0 0
\(899\) −0.343606 0.249644i −0.0114599 0.00832611i
\(900\) 0 0
\(901\) 17.5071i 0.583247i
\(902\) 0 0
\(903\) −17.7343 17.7343i −0.590160 0.590160i
\(904\) 0 0
\(905\) 9.04395 + 10.0504i 0.300631 + 0.334088i
\(906\) 0 0
\(907\) −13.4148 26.3281i −0.445433 0.874211i −0.999139 0.0414984i \(-0.986787\pi\)
0.553706 0.832712i \(-0.313213\pi\)
\(908\) 0 0
\(909\) −24.8061 + 18.0227i −0.822765 + 0.597774i
\(910\) 0 0
\(911\) −5.23886 16.1236i −0.173571 0.534198i 0.825994 0.563679i \(-0.190614\pi\)
−0.999565 + 0.0294813i \(0.990614\pi\)
\(912\) 0 0
\(913\) −6.47702 + 1.24574i −0.214358 + 0.0412279i
\(914\) 0 0
\(915\) −11.2546 9.11946i −0.372066 0.301480i
\(916\) 0 0
\(917\) 9.53075 60.1748i 0.314733 1.98715i
\(918\) 0 0
\(919\) 1.55222 4.77725i 0.0512030 0.157587i −0.922185 0.386748i \(-0.873598\pi\)
0.973388 + 0.229161i \(0.0735983\pi\)
\(920\) 0 0
\(921\) 8.62467 11.8708i 0.284193 0.391158i
\(922\) 0 0
\(923\) 5.62351 5.62351i 0.185100 0.185100i
\(924\) 0 0
\(925\) 23.0321 8.82519i 0.757290 0.290170i
\(926\) 0 0
\(927\) 22.9736 3.63865i 0.754551 0.119509i
\(928\) 0 0
\(929\) 11.2348 + 3.65041i 0.368602 + 0.119766i 0.487460 0.873145i \(-0.337923\pi\)
−0.118858 + 0.992911i \(0.537923\pi\)
\(930\) 0 0
\(931\) 34.3822 + 47.3231i 1.12683 + 1.55095i
\(932\) 0 0
\(933\) −5.71194 + 11.2103i −0.187001 + 0.367009i
\(934\) 0 0
\(935\) 13.5072 + 4.68533i 0.441731 + 0.153227i
\(936\) 0 0
\(937\) −1.04060 + 2.04229i −0.0339949 + 0.0667187i −0.907379 0.420313i \(-0.861920\pi\)
0.873384 + 0.487032i \(0.161920\pi\)
\(938\) 0 0
\(939\) 12.7791 + 17.5889i 0.417029 + 0.573991i
\(940\) 0 0
\(941\) 1.68653 + 0.547988i 0.0549794 + 0.0178639i 0.336378 0.941727i \(-0.390798\pi\)
−0.281398 + 0.959591i \(0.590798\pi\)
\(942\) 0 0
\(943\) −1.58094 + 0.250397i −0.0514826 + 0.00815404i
\(944\) 0 0
\(945\) −40.7297 8.67026i −1.32494 0.282043i
\(946\) 0 0
\(947\) 8.63289 8.63289i 0.280531 0.280531i −0.552790 0.833321i \(-0.686437\pi\)
0.833321 + 0.552790i \(0.186437\pi\)
\(948\) 0 0
\(949\) 2.97101 4.08925i 0.0964431 0.132743i
\(950\) 0 0
\(951\) −7.28714 + 22.4275i −0.236302 + 0.727262i
\(952\) 0 0
\(953\) 2.88376 18.2074i 0.0934143 0.589794i −0.895930 0.444196i \(-0.853489\pi\)
0.989344 0.145598i \(-0.0465107\pi\)
\(954\) 0 0
\(955\) −3.85821 36.8157i −0.124849 1.19133i
\(956\) 0 0
\(957\) 2.42189 1.33623i 0.0782884 0.0431941i
\(958\) 0 0
\(959\) 16.1154 + 49.5982i 0.520395 + 1.60161i
\(960\) 0 0
\(961\) 24.9341 18.1157i 0.804327 0.584377i
\(962\) 0 0
\(963\) −6.45868 12.6759i −0.208128 0.408474i
\(964\) 0 0
\(965\) −37.8803 1.99673i −1.21941 0.0642770i
\(966\) 0 0
\(967\) −9.49113 9.49113i −0.305214 0.305214i 0.537836 0.843050i \(-0.319242\pi\)
−0.843050 + 0.537836i \(0.819242\pi\)
\(968\) 0 0
\(969\) 8.71697i 0.280029i
\(970\) 0 0
\(971\) 41.4379 + 30.1064i 1.32981 + 0.966161i 0.999754 + 0.0221983i \(0.00706650\pi\)
0.330053 + 0.943963i \(0.392933\pi\)
\(972\) 0 0
\(973\) 3.79111 1.93167i 0.121538 0.0619265i
\(974\) 0 0
\(975\) −3.76931 + 0.798805i −0.120714 + 0.0255822i
\(976\) 0 0
\(977\) 12.9020 + 6.57391i 0.412772 + 0.210318i 0.648030 0.761615i \(-0.275593\pi\)
−0.235257 + 0.971933i \(0.575593\pi\)
\(978\) 0 0
\(979\) −44.3897 12.8235i −1.41870 0.409840i
\(980\) 0 0
\(981\) −43.7046 + 14.2005i −1.39538 + 0.453386i
\(982\) 0 0
\(983\) 56.8388 + 9.00238i 1.81288 + 0.287131i 0.968572 0.248734i \(-0.0800143\pi\)
0.844304 + 0.535865i \(0.180014\pi\)
\(984\) 0 0
\(985\) 29.4365 7.87794i 0.937926 0.251012i
\(986\) 0 0
\(987\) 0.653031 + 4.12308i 0.0207862 + 0.131239i
\(988\) 0 0
\(989\) 19.8105 0.629936
\(990\) 0 0
\(991\) −13.1102 −0.416458 −0.208229 0.978080i \(-0.566770\pi\)
−0.208229 + 0.978080i \(0.566770\pi\)
\(992\) 0 0
\(993\) 3.20952 + 20.2641i 0.101851 + 0.643062i
\(994\) 0 0
\(995\) 37.5934 + 21.7198i 1.19179 + 0.688563i
\(996\) 0 0
\(997\) 2.22714 + 0.352744i 0.0705343 + 0.0111715i 0.191602 0.981473i \(-0.438632\pi\)
−0.121068 + 0.992644i \(0.538632\pi\)
\(998\) 0 0
\(999\) −20.7269 + 6.73459i −0.655772 + 0.213073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.193.3 32
4.3 odd 2 55.2.l.a.28.4 yes 32
5.2 odd 4 inner 880.2.cm.a.17.3 32
11.2 odd 10 inner 880.2.cm.a.673.3 32
12.11 even 2 495.2.bj.a.28.1 32
20.3 even 4 275.2.bm.b.182.1 32
20.7 even 4 55.2.l.a.17.4 yes 32
20.19 odd 2 275.2.bm.b.193.1 32
44.3 odd 10 605.2.e.b.483.4 32
44.7 even 10 605.2.m.c.118.1 32
44.15 odd 10 605.2.m.d.118.4 32
44.19 even 10 605.2.e.b.483.13 32
44.27 odd 10 605.2.m.c.403.4 32
44.31 odd 10 605.2.m.e.233.1 32
44.35 even 10 55.2.l.a.13.4 yes 32
44.39 even 10 605.2.m.d.403.1 32
44.43 even 2 605.2.m.e.578.1 32
55.2 even 20 inner 880.2.cm.a.497.3 32
60.47 odd 4 495.2.bj.a.127.1 32
132.35 odd 10 495.2.bj.a.343.1 32
220.7 odd 20 605.2.m.c.602.4 32
220.27 even 20 605.2.m.c.282.1 32
220.47 even 20 605.2.e.b.362.13 32
220.79 even 10 275.2.bm.b.68.1 32
220.87 odd 4 605.2.m.e.457.1 32
220.107 odd 20 605.2.e.b.362.4 32
220.123 odd 20 275.2.bm.b.57.1 32
220.127 odd 20 605.2.m.d.282.4 32
220.147 even 20 605.2.m.d.602.1 32
220.167 odd 20 55.2.l.a.2.4 32
220.207 even 20 605.2.m.e.112.1 32
660.167 even 20 495.2.bj.a.442.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.4 32 220.167 odd 20
55.2.l.a.13.4 yes 32 44.35 even 10
55.2.l.a.17.4 yes 32 20.7 even 4
55.2.l.a.28.4 yes 32 4.3 odd 2
275.2.bm.b.57.1 32 220.123 odd 20
275.2.bm.b.68.1 32 220.79 even 10
275.2.bm.b.182.1 32 20.3 even 4
275.2.bm.b.193.1 32 20.19 odd 2
495.2.bj.a.28.1 32 12.11 even 2
495.2.bj.a.127.1 32 60.47 odd 4
495.2.bj.a.343.1 32 132.35 odd 10
495.2.bj.a.442.1 32 660.167 even 20
605.2.e.b.362.4 32 220.107 odd 20
605.2.e.b.362.13 32 220.47 even 20
605.2.e.b.483.4 32 44.3 odd 10
605.2.e.b.483.13 32 44.19 even 10
605.2.m.c.118.1 32 44.7 even 10
605.2.m.c.282.1 32 220.27 even 20
605.2.m.c.403.4 32 44.27 odd 10
605.2.m.c.602.4 32 220.7 odd 20
605.2.m.d.118.4 32 44.15 odd 10
605.2.m.d.282.4 32 220.127 odd 20
605.2.m.d.403.1 32 44.39 even 10
605.2.m.d.602.1 32 220.147 even 20
605.2.m.e.112.1 32 220.207 even 20
605.2.m.e.233.1 32 44.31 odd 10
605.2.m.e.457.1 32 220.87 odd 4
605.2.m.e.578.1 32 44.43 even 2
880.2.cm.a.17.3 32 5.2 odd 4 inner
880.2.cm.a.193.3 32 1.1 even 1 trivial
880.2.cm.a.497.3 32 55.2 even 20 inner
880.2.cm.a.673.3 32 11.2 odd 10 inner