Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M6(Γ1(45)).
|
Total |
New |
Old |
Modular forms
| 392 |
275 |
117 |
Cusp forms
| 328 |
249 |
79 |
Eisenstein series
| 64 |
26 |
38 |
Decomposition of S6new(Γ1(45))
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) we list available newforms together with their dimension.
Label |
χ |
Newforms |
Dimension |
χ degree |
45.6.a |
χ45(1,⋅) |
45.6.a.a |
1 |
1 |
45.6.a.b |
1 |
45.6.a.c |
1 |
45.6.a.d |
2 |
45.6.a.e |
2 |
45.6.a.f |
2 |
45.6.b |
χ45(19,⋅) |
45.6.b.a |
2 |
1 |
45.6.b.b |
2 |
45.6.b.c |
4 |
45.6.b.d |
4 |
45.6.e |
χ45(16,⋅) |
45.6.e.a |
18 |
2 |
45.6.e.b |
22 |
45.6.f |
χ45(8,⋅) |
45.6.f.a |
20 |
2 |
45.6.j |
χ45(4,⋅) |
45.6.j.a |
56 |
2 |
45.6.l |
χ45(2,⋅) |
45.6.l.a |
112 |
4 |
Decomposition of S6old(Γ1(45)) into lower level spaces