Properties

Label 45.6.a.d
Level $45$
Weight $6$
Character orbit 45.a
Self dual yes
Analytic conductor $7.217$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,6,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.21727189158\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{145})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{2} + (5 \beta + 8) q^{4} - 25 q^{5} + (20 \beta + 30) q^{7} + (9 \beta - 132) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 2) q^{2} + (5 \beta + 8) q^{4} - 25 q^{5} + (20 \beta + 30) q^{7} + (9 \beta - 132) q^{8} + (25 \beta + 50) q^{10} + (20 \beta - 410) q^{11} + ( - 80 \beta - 20) q^{13} + ( - 90 \beta - 780) q^{14} + ( - 55 \beta - 316) q^{16} + (32 \beta - 986) q^{17} + ( - 320 \beta - 596) q^{19} + ( - 125 \beta - 200) q^{20} + (350 \beta + 100) q^{22} + (504 \beta + 408) q^{23} + 625 q^{25} + (260 \beta + 2920) q^{26} + (410 \beta + 3840) q^{28} + ( - 1280 \beta - 10) q^{29} + (440 \beta - 3132) q^{31} + (193 \beta + 6836) q^{32} + (890 \beta + 820) q^{34} + ( - 500 \beta - 750) q^{35} + ( - 1440 \beta - 5560) q^{37} + (1556 \beta + 12712) q^{38} + ( - 225 \beta + 3300) q^{40} + (1360 \beta - 880) q^{41} + ( - 1280 \beta + 13480) q^{43} + ( - 1790 \beta + 320) q^{44} + ( - 1920 \beta - 18960) q^{46} + ( - 184 \beta - 9368) q^{47} + (1600 \beta - 1507) q^{49} + ( - 625 \beta - 1250) q^{50} + ( - 1140 \beta - 14560) q^{52} + (608 \beta - 25034) q^{53} + ( - 500 \beta + 10250) q^{55} + ( - 2190 \beta + 2520) q^{56} + (3850 \beta + 46100) q^{58} + (980 \beta - 32090) q^{59} + (5440 \beta - 27278) q^{61} + (1812 \beta - 9576) q^{62} + ( - 5655 \beta - 10508) q^{64} + (2000 \beta + 500) q^{65} + (8120 \beta - 1020) q^{67} + ( - 4514 \beta - 2128) q^{68} + (2250 \beta + 19500) q^{70} + (1480 \beta - 33340) q^{71} + ( - 4640 \beta + 51190) q^{73} + (9880 \beta + 62960) q^{74} + ( - 7140 \beta - 62368) q^{76} + ( - 7200 \beta + 2100) q^{77} + ( - 2680 \beta - 21804) q^{79} + (1375 \beta + 7900) q^{80} + ( - 3200 \beta - 47200) q^{82} + ( - 10728 \beta + 34044) q^{83} + ( - 800 \beta + 24650) q^{85} + ( - 9640 \beta + 19120) q^{86} + ( - 6150 \beta + 60600) q^{88} + (8400 \beta + 39300) q^{89} + ( - 4400 \beta - 58200) q^{91} + (8592 \beta + 93984) q^{92} + (9920 \beta + 25360) q^{94} + (8000 \beta + 14900) q^{95} + ( - 2880 \beta + 6530) q^{97} + ( - 3293 \beta - 54586) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{2} + 21 q^{4} - 50 q^{5} + 80 q^{7} - 255 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 5 q^{2} + 21 q^{4} - 50 q^{5} + 80 q^{7} - 255 q^{8} + 125 q^{10} - 800 q^{11} - 120 q^{13} - 1650 q^{14} - 687 q^{16} - 1940 q^{17} - 1512 q^{19} - 525 q^{20} + 550 q^{22} + 1320 q^{23} + 1250 q^{25} + 6100 q^{26} + 8090 q^{28} - 1300 q^{29} - 5824 q^{31} + 13865 q^{32} + 2530 q^{34} - 2000 q^{35} - 12560 q^{37} + 26980 q^{38} + 6375 q^{40} - 400 q^{41} + 25680 q^{43} - 1150 q^{44} - 39840 q^{46} - 18920 q^{47} - 1414 q^{49} - 3125 q^{50} - 30260 q^{52} - 49460 q^{53} + 20000 q^{55} + 2850 q^{56} + 96050 q^{58} - 63200 q^{59} - 49116 q^{61} - 17340 q^{62} - 26671 q^{64} + 3000 q^{65} + 6080 q^{67} - 8770 q^{68} + 41250 q^{70} - 65200 q^{71} + 97740 q^{73} + 135800 q^{74} - 131876 q^{76} - 3000 q^{77} - 46288 q^{79} + 17175 q^{80} - 97600 q^{82} + 57360 q^{83} + 48500 q^{85} + 28600 q^{86} + 115050 q^{88} + 87000 q^{89} - 120800 q^{91} + 196560 q^{92} + 60640 q^{94} + 37800 q^{95} + 10180 q^{97} - 112465 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.52080
−5.52080
−8.52080 0 40.6040 −25.0000 0 160.416 −73.3128 0 213.020
1.2 3.52080 0 −19.6040 −25.0000 0 −80.4159 −181.687 0 −88.0199
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.6.a.d 2
3.b odd 2 1 45.6.a.f yes 2
4.b odd 2 1 720.6.a.y 2
5.b even 2 1 225.6.a.r 2
5.c odd 4 2 225.6.b.j 4
12.b even 2 1 720.6.a.be 2
15.d odd 2 1 225.6.a.k 2
15.e even 4 2 225.6.b.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.6.a.d 2 1.a even 1 1 trivial
45.6.a.f yes 2 3.b odd 2 1
225.6.a.k 2 15.d odd 2 1
225.6.a.r 2 5.b even 2 1
225.6.b.j 4 5.c odd 4 2
225.6.b.k 4 15.e even 4 2
720.6.a.y 2 4.b odd 2 1
720.6.a.be 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 5T_{2} - 30 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(45))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5T - 30 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 80T - 12900 \) Copy content Toggle raw display
$11$ \( T^{2} + 800T + 145500 \) Copy content Toggle raw display
$13$ \( T^{2} + 120T - 228400 \) Copy content Toggle raw display
$17$ \( T^{2} + 1940 T + 903780 \) Copy content Toggle raw display
$19$ \( T^{2} + 1512 T - 3140464 \) Copy content Toggle raw display
$23$ \( T^{2} - 1320 T - 8772480 \) Copy content Toggle raw display
$29$ \( T^{2} + 1300 T - 58969500 \) Copy content Toggle raw display
$31$ \( T^{2} + 5824 T + 1461744 \) Copy content Toggle raw display
$37$ \( T^{2} + 12560 T - 35729600 \) Copy content Toggle raw display
$41$ \( T^{2} + 400 T - 67008000 \) Copy content Toggle raw display
$43$ \( T^{2} - 25680 T + 105473600 \) Copy content Toggle raw display
$47$ \( T^{2} + 18920 T + 88264320 \) Copy content Toggle raw display
$53$ \( T^{2} + 49460 T + 598172580 \) Copy content Toggle raw display
$59$ \( T^{2} + 63200 T + 963745500 \) Copy content Toggle raw display
$61$ \( T^{2} + 49116 T - 469672636 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 2380880400 \) Copy content Toggle raw display
$71$ \( T^{2} + 65200 T + 983358000 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1607828900 \) Copy content Toggle raw display
$79$ \( T^{2} + 46288 T + 275282736 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3349469520 \) Copy content Toggle raw display
$89$ \( T^{2} - 87000 T - 665550000 \) Copy content Toggle raw display
$97$ \( T^{2} - 10180 T - 274763900 \) Copy content Toggle raw display
show more
show less