Properties

Label 45.6.b.b
Level 45
Weight 6
Character orbit 45.b
Analytic conductor 7.217
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.21727189158\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Defining polynomial: \(x^{2} - x + 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} -12 q^{4} + ( 45 - 5 \beta ) q^{5} -9 \beta q^{7} -20 \beta q^{8} +O(q^{10})\) \( q -\beta q^{2} -12 q^{4} + ( 45 - 5 \beta ) q^{5} -9 \beta q^{7} -20 \beta q^{8} + ( -220 - 45 \beta ) q^{10} -252 q^{11} -18 \beta q^{13} -396 q^{14} -1264 q^{16} + 104 \beta q^{17} -220 q^{19} + ( -540 + 60 \beta ) q^{20} + 252 \beta q^{22} -367 \beta q^{23} + ( 925 - 450 \beta ) q^{25} -792 q^{26} + 108 \beta q^{28} + 6930 q^{29} + 6752 q^{31} + 624 \beta q^{32} + 4576 q^{34} + ( -1980 - 405 \beta ) q^{35} + 2106 \beta q^{37} + 220 \beta q^{38} + ( -4400 - 900 \beta ) q^{40} + 198 q^{41} -63 \beta q^{43} + 3024 q^{44} -16148 q^{46} + 1589 \beta q^{47} + 13243 q^{49} + ( -19800 - 925 \beta ) q^{50} + 216 \beta q^{52} + 878 \beta q^{53} + ( -11340 + 1260 \beta ) q^{55} -7920 q^{56} -6930 \beta q^{58} + 24660 q^{59} -5698 q^{61} -6752 \beta q^{62} -12992 q^{64} + ( -3960 - 810 \beta ) q^{65} -6579 \beta q^{67} -1248 \beta q^{68} + ( -17820 + 1980 \beta ) q^{70} -53352 q^{71} + 10692 \beta q^{73} + 92664 q^{74} + 2640 q^{76} + 2268 \beta q^{77} + 51920 q^{79} + ( -56880 + 6320 \beta ) q^{80} -198 \beta q^{82} + 9323 \beta q^{83} + ( 22880 + 4680 \beta ) q^{85} -2772 q^{86} + 5040 \beta q^{88} + 9990 q^{89} -7128 q^{91} + 4404 \beta q^{92} + 69916 q^{94} + ( -9900 + 1100 \beta ) q^{95} -15264 \beta q^{97} -13243 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 24q^{4} + 90q^{5} + O(q^{10}) \) \( 2q - 24q^{4} + 90q^{5} - 440q^{10} - 504q^{11} - 792q^{14} - 2528q^{16} - 440q^{19} - 1080q^{20} + 1850q^{25} - 1584q^{26} + 13860q^{29} + 13504q^{31} + 9152q^{34} - 3960q^{35} - 8800q^{40} + 396q^{41} + 6048q^{44} - 32296q^{46} + 26486q^{49} - 39600q^{50} - 22680q^{55} - 15840q^{56} + 49320q^{59} - 11396q^{61} - 25984q^{64} - 7920q^{65} - 35640q^{70} - 106704q^{71} + 185328q^{74} + 5280q^{76} + 103840q^{79} - 113760q^{80} + 45760q^{85} - 5544q^{86} + 19980q^{89} - 14256q^{91} + 139832q^{94} - 19800q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.500000 + 1.65831i
0.500000 1.65831i
6.63325i 0 −12.0000 45.0000 33.1662i 0 59.6992i 132.665i 0 −220.000 298.496i
19.2 6.63325i 0 −12.0000 45.0000 + 33.1662i 0 59.6992i 132.665i 0 −220.000 + 298.496i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.6.b.b 2
3.b odd 2 1 5.6.b.a 2
4.b odd 2 1 720.6.f.f 2
5.b even 2 1 inner 45.6.b.b 2
5.c odd 4 2 225.6.a.n 2
12.b even 2 1 80.6.c.a 2
15.d odd 2 1 5.6.b.a 2
15.e even 4 2 25.6.a.c 2
20.d odd 2 1 720.6.f.f 2
21.c even 2 1 245.6.b.a 2
24.f even 2 1 320.6.c.g 2
24.h odd 2 1 320.6.c.f 2
60.h even 2 1 80.6.c.a 2
60.l odd 4 2 400.6.a.t 2
105.g even 2 1 245.6.b.a 2
120.i odd 2 1 320.6.c.f 2
120.m even 2 1 320.6.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.6.b.a 2 3.b odd 2 1
5.6.b.a 2 15.d odd 2 1
25.6.a.c 2 15.e even 4 2
45.6.b.b 2 1.a even 1 1 trivial
45.6.b.b 2 5.b even 2 1 inner
80.6.c.a 2 12.b even 2 1
80.6.c.a 2 60.h even 2 1
225.6.a.n 2 5.c odd 4 2
245.6.b.a 2 21.c even 2 1
245.6.b.a 2 105.g even 2 1
320.6.c.f 2 24.h odd 2 1
320.6.c.f 2 120.i odd 2 1
320.6.c.g 2 24.f even 2 1
320.6.c.g 2 120.m even 2 1
400.6.a.t 2 60.l odd 4 2
720.6.f.f 2 4.b odd 2 1
720.6.f.f 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 44 \) acting on \(S_{6}^{\mathrm{new}}(45, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 20 T^{2} + 1024 T^{4} \)
$3$ 1
$5$ \( 1 - 90 T + 3125 T^{2} \)
$7$ \( 1 - 30050 T^{2} + 282475249 T^{4} \)
$11$ \( ( 1 + 252 T + 161051 T^{2} )^{2} \)
$13$ \( 1 - 728330 T^{2} + 137858491849 T^{4} \)
$17$ \( 1 - 2363810 T^{2} + 2015993900449 T^{4} \)
$19$ \( ( 1 + 220 T + 2476099 T^{2} )^{2} \)
$23$ \( 1 - 6946370 T^{2} + 41426511213649 T^{4} \)
$29$ \( ( 1 - 6930 T + 20511149 T^{2} )^{2} \)
$31$ \( ( 1 - 6752 T + 28629151 T^{2} )^{2} \)
$37$ \( 1 + 56462470 T^{2} + 4808584372417849 T^{4} \)
$41$ \( ( 1 - 198 T + 115856201 T^{2} )^{2} \)
$43$ \( 1 - 293842250 T^{2} + 21611482313284249 T^{4} \)
$47$ \( 1 - 347593490 T^{2} + 52599132235830049 T^{4} \)
$53$ \( 1 - 802472090 T^{2} + 174887470365513049 T^{4} \)
$59$ \( ( 1 - 24660 T + 714924299 T^{2} )^{2} \)
$61$ \( ( 1 + 5698 T + 844596301 T^{2} )^{2} \)
$67$ \( 1 - 795787610 T^{2} + 1822837804551761449 T^{4} \)
$71$ \( ( 1 + 53352 T + 1804229351 T^{2} )^{2} \)
$73$ \( 1 + 883886830 T^{2} + 4297625829703557649 T^{4} \)
$79$ \( ( 1 - 51920 T + 3077056399 T^{2} )^{2} \)
$83$ \( 1 - 4053674810 T^{2} + 15516041187205853449 T^{4} \)
$89$ \( ( 1 - 9990 T + 5584059449 T^{2} )^{2} \)
$97$ \( 1 - 6923133890 T^{2} + 73742412689492826049 T^{4} \)
show more
show less