Properties

Label 5.6
Level 5
Weight 6
Dimension 3
Nonzero newspaces 2
Newforms 2
Sturm bound 12
Trace bound 1

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newforms: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(5))\).

Total New Old
Modular forms 7 5 2
Cusp forms 3 3 0
Eisenstein series 4 2 2

Trace form

\( 3q + 2q^{2} - 4q^{3} - 52q^{4} - 65q^{5} + 256q^{6} + 192q^{7} - 120q^{8} - 533q^{9} + O(q^{10}) \) \( 3q + 2q^{2} - 4q^{3} - 52q^{4} - 65q^{5} + 256q^{6} + 192q^{7} - 120q^{8} - 533q^{9} - 390q^{10} + 356q^{11} + 112q^{12} + 286q^{13} + 1176q^{14} + 1220q^{15} - 1872q^{16} - 1678q^{17} - 454q^{18} + 620q^{19} + 380q^{20} - 3144q^{21} - 296q^{22} + 2976q^{23} + 5760q^{24} + 2475q^{25} + 2156q^{26} + 1880q^{27} - 5376q^{28} - 17270q^{29} - 12080q^{30} + 11056q^{31} + 5152q^{32} + 592q^{33} + 5796q^{34} + 8760q^{35} + 10028q^{36} + 182q^{37} + 2120q^{38} - 5896q^{39} - 11800q^{40} - 9794q^{41} - 1536q^{42} - 1244q^{43} - 1904q^{44} + 8095q^{45} - 26344q^{46} - 12088q^{47} - 2624q^{48} + 46543q^{49} + 40850q^{50} - 20744q^{51} - 8008q^{52} + 23846q^{53} + 27520q^{54} - 26380q^{55} - 7200q^{56} - 4240q^{57} - 6820q^{58} - 69340q^{59} - 13040q^{60} + 20906q^{61} - 4896q^{62} - 43584q^{63} - 36672q^{64} + 15070q^{65} + 67712q^{66} + 60972q^{67} + 46984q^{68} + 84984q^{69} - 26040q^{70} + 74056q^{71} + 27240q^{72} - 38774q^{73} - 184964q^{74} - 121300q^{75} - 24400q^{76} - 28416q^{77} - 2288q^{78} + 70480q^{79} + 130160q^{80} - 97997q^{81} - 18796q^{82} + 16716q^{83} + 50016q^{84} + 3810q^{85} + 3056q^{86} + 13640q^{87} + 17760q^{88} + 81390q^{89} + 55970q^{90} + 40656q^{91} - 83328q^{92} + 9792q^{93} + 115656q^{94} + 46300q^{95} - 185344q^{96} - 119038q^{97} + 40114q^{98} - 43516q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.6.a \(\chi_{5}(1, \cdot)\) 5.6.a.a 1 1
5.6.b \(\chi_{5}(4, \cdot)\) 5.6.b.a 2 1