Properties

Label 5.6
Level 5
Weight 6
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 12
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(5))\).

Total New Old
Modular forms 7 5 2
Cusp forms 3 3 0
Eisenstein series 4 2 2

Trace form

\( 3 q + 2 q^{2} - 4 q^{3} - 52 q^{4} - 65 q^{5} + 256 q^{6} + 192 q^{7} - 120 q^{8} - 533 q^{9} - 390 q^{10} + 356 q^{11} + 112 q^{12} + 286 q^{13} + 1176 q^{14} + 1220 q^{15} - 1872 q^{16} - 1678 q^{17}+ \cdots - 43516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.6.a \(\chi_{5}(1, \cdot)\) 5.6.a.a 1 1
5.6.b \(\chi_{5}(4, \cdot)\) 5.6.b.a 2 1