Properties

Label 45.6.a
Level $45$
Weight $6$
Character orbit 45.a
Rep. character $\chi_{45}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $6$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(45))\).

Total New Old
Modular forms 34 9 25
Cusp forms 26 9 17
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(5\)

Trace form

\( 9 q - 6 q^{2} + 144 q^{4} - 25 q^{5} + 120 q^{7} + 348 q^{8} + O(q^{10}) \) \( 9 q - 6 q^{2} + 144 q^{4} - 25 q^{5} + 120 q^{7} + 348 q^{8} + 150 q^{10} - 684 q^{11} - 738 q^{13} + 2484 q^{14} + 2244 q^{16} - 978 q^{17} - 1260 q^{19} - 3100 q^{20} - 6024 q^{22} - 3240 q^{23} + 5625 q^{25} + 2040 q^{26} + 10080 q^{28} + 5442 q^{29} - 9840 q^{31} + 21900 q^{32} + 2724 q^{34} - 5000 q^{35} - 9930 q^{37} - 58224 q^{38} + 3300 q^{40} + 27822 q^{41} + 1596 q^{43} - 16860 q^{44} - 59952 q^{46} + 13248 q^{47} + 26193 q^{49} - 3750 q^{50} - 7392 q^{52} - 43590 q^{53} + 27900 q^{55} + 154140 q^{56} + 141828 q^{58} + 11844 q^{59} - 69666 q^{61} + 24600 q^{62} - 57012 q^{64} - 70550 q^{65} + 41268 q^{67} - 287712 q^{68} + 3000 q^{70} + 178680 q^{71} + 218490 q^{73} + 125184 q^{74} - 147576 q^{76} - 1440 q^{77} - 23136 q^{79} - 121600 q^{80} - 251220 q^{82} - 37668 q^{83} + 90450 q^{85} + 112896 q^{86} + 7392 q^{88} - 81234 q^{89} - 209232 q^{91} + 252960 q^{92} - 184872 q^{94} - 82100 q^{95} - 13902 q^{97} - 276198 q^{98} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
45.6.a.a 45.a 1.a $1$ $7.217$ \(\Q\) None 15.6.a.b \(-7\) \(0\) \(25\) \(12\) $-$ $-$ $\mathrm{SU}(2)$ \(q-7q^{2}+17q^{4}+5^{2}q^{5}+12q^{7}+105q^{8}+\cdots\)
45.6.a.b 45.a 1.a $1$ $7.217$ \(\Q\) None 5.6.a.a \(-2\) \(0\) \(-25\) \(192\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-28q^{4}-5^{2}q^{5}+192q^{7}+\cdots\)
45.6.a.c 45.a 1.a $1$ $7.217$ \(\Q\) None 15.6.a.a \(2\) \(0\) \(25\) \(-132\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-28q^{4}+5^{2}q^{5}-132q^{7}+\cdots\)
45.6.a.d 45.a 1.a $2$ $7.217$ \(\Q(\sqrt{145}) \) None 45.6.a.d \(-5\) \(0\) \(-50\) \(80\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+(8+5\beta )q^{4}-5^{2}q^{5}+\cdots\)
45.6.a.e 45.a 1.a $2$ $7.217$ \(\Q(\sqrt{409}) \) None 15.6.a.c \(1\) \(0\) \(-50\) \(-112\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(70+\beta )q^{4}-5^{2}q^{5}+(-2^{6}+\cdots)q^{7}+\cdots\)
45.6.a.f 45.a 1.a $2$ $7.217$ \(\Q(\sqrt{145}) \) None 45.6.a.d \(5\) \(0\) \(50\) \(80\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}+(13-5\beta )q^{4}+5^{2}q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)