Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(45))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 9 | 25 |
Cusp forms | 26 | 9 | 17 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
45.6.a.a | $1$ | $7.217$ | \(\Q\) | None | \(-7\) | \(0\) | \(25\) | \(12\) | $-$ | $-$ | \(q-7q^{2}+17q^{4}+5^{2}q^{5}+12q^{7}+105q^{8}+\cdots\) | |
45.6.a.b | $1$ | $7.217$ | \(\Q\) | None | \(-2\) | \(0\) | \(-25\) | \(192\) | $-$ | $+$ | \(q-2q^{2}-28q^{4}-5^{2}q^{5}+192q^{7}+\cdots\) | |
45.6.a.c | $1$ | $7.217$ | \(\Q\) | None | \(2\) | \(0\) | \(25\) | \(-132\) | $-$ | $-$ | \(q+2q^{2}-28q^{4}+5^{2}q^{5}-132q^{7}+\cdots\) | |
45.6.a.d | $2$ | $7.217$ | \(\Q(\sqrt{145}) \) | None | \(-5\) | \(0\) | \(-50\) | \(80\) | $+$ | $+$ | \(q+(-2-\beta )q^{2}+(8+5\beta )q^{4}-5^{2}q^{5}+\cdots\) | |
45.6.a.e | $2$ | $7.217$ | \(\Q(\sqrt{409}) \) | None | \(1\) | \(0\) | \(-50\) | \(-112\) | $-$ | $+$ | \(q+\beta q^{2}+(70+\beta )q^{4}-5^{2}q^{5}+(-2^{6}+\cdots)q^{7}+\cdots\) | |
45.6.a.f | $2$ | $7.217$ | \(\Q(\sqrt{145}) \) | None | \(5\) | \(0\) | \(50\) | \(80\) | $+$ | $-$ | \(q+(3-\beta )q^{2}+(13-5\beta )q^{4}+5^{2}q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)