Properties

Label 9.6
Level 9
Weight 6
Dimension 9
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 36
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(36\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(9))\).

Total New Old
Modular forms 19 14 5
Cusp forms 11 9 2
Eisenstein series 8 5 3

Trace form

\( 9 q + 9 q^{2} - 12 q^{3} - 45 q^{4} + 72 q^{5} + 171 q^{6} - 12 q^{7} - 918 q^{8} - 414 q^{9} + 24 q^{10} + 1008 q^{11} + 2724 q^{12} + 456 q^{13} + 1152 q^{14} - 2052 q^{15} - 1425 q^{16} - 5238 q^{17}+ \cdots + 33696 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.6.a \(\chi_{9}(1, \cdot)\) 9.6.a.a 1 1
9.6.c \(\chi_{9}(4, \cdot)\) 9.6.c.a 8 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)