Properties

Label 425.3.u.b.226.1
Level $425$
Weight $3$
Character 425.226
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,0,-8,-8,24,-16,0,-8,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 226.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 425.226
Dual form 425.3.u.b.126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.841487 + 2.03153i) q^{2} +(-0.0897902 - 0.134381i) q^{3} +(-0.590587 + 0.590587i) q^{4} +(0.197441 - 0.295491i) q^{6} +(-1.21824 - 6.12453i) q^{7} +(6.42935 + 2.66313i) q^{8} +(3.43416 - 8.29078i) q^{9} +(-12.1433 - 8.11392i) q^{11} +(0.132392 + 0.0263345i) q^{12} +(-4.79884 - 4.79884i) q^{13} +(11.4170 - 7.62861i) q^{14} +18.6433i q^{16} +(-6.50562 - 15.7060i) q^{17} +19.7328 q^{18} +(-9.56175 - 23.0841i) q^{19} +(-0.713631 + 0.713631i) q^{21} +(6.26521 - 31.4973i) q^{22} +(-7.27639 + 10.8899i) q^{23} +(-0.219421 - 1.10310i) q^{24} +(5.71082 - 13.7871i) q^{26} +(-2.84909 + 0.566719i) q^{27} +(4.33654 + 2.89759i) q^{28} +(32.3980 + 6.44436i) q^{29} +(-1.00960 + 0.674593i) q^{31} +(-12.1570 + 5.03558i) q^{32} +2.36038i q^{33} +(26.4327 - 26.4327i) q^{34} +(2.86826 + 6.92459i) q^{36} +(25.8238 + 38.6481i) q^{37} +(38.8500 - 38.8500i) q^{38} +(-0.213982 + 1.07576i) q^{39} +(6.13577 + 30.8466i) q^{41} +(-2.05027 - 0.849251i) q^{42} +(27.8948 - 67.3441i) q^{43} +(11.9637 - 2.37972i) q^{44} +(-28.2461 - 5.61851i) q^{46} +(10.4882 + 10.4882i) q^{47} +(2.50529 - 1.67398i) q^{48} +(9.24438 - 3.82915i) q^{49} +(-1.52643 + 2.28447i) q^{51} +5.66826 q^{52} +(1.97838 + 4.77624i) q^{53} +(-3.54878 - 5.31112i) q^{54} +(8.47786 - 42.6211i) q^{56} +(-2.24350 + 3.35764i) q^{57} +(14.1706 + 71.2404i) q^{58} +(26.1013 + 10.8115i) q^{59} +(-81.0541 + 16.1227i) q^{61} +(-2.22002 - 1.48337i) q^{62} +(-54.9608 - 10.9324i) q^{63} +(32.2713 + 32.2713i) q^{64} +(-4.79518 + 1.98623i) q^{66} +44.5324i q^{67} +(13.1179 + 5.43359i) q^{68} +2.11674 q^{69} +(32.1978 + 48.1875i) q^{71} +(44.1588 - 44.1588i) q^{72} +(0.262865 - 1.32151i) q^{73} +(-56.7843 + 84.9838i) q^{74} +(19.2802 + 7.98612i) q^{76} +(-34.9004 + 84.2570i) q^{77} +(-2.36550 + 0.470527i) q^{78} +(-24.7128 - 16.5125i) q^{79} +(-56.7774 - 56.7774i) q^{81} +(-57.5026 + 38.4220i) q^{82} +(62.2748 - 25.7951i) q^{83} -0.842922i q^{84} +160.285 q^{86} +(-2.04303 - 4.93230i) q^{87} +(-56.4655 - 84.5065i) q^{88} +(90.1397 - 90.1397i) q^{89} +(-23.5444 + 35.2368i) q^{91} +(-2.13408 - 10.7288i) q^{92} +(0.181304 + 0.0750988i) q^{93} +(-12.4814 + 30.1327i) q^{94} +(1.76826 + 1.18151i) q^{96} +(66.3366 + 13.1952i) q^{97} +(15.5581 + 15.5581i) q^{98} +(-108.973 + 72.8134i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} - 8 q^{6} - 8 q^{7} + 24 q^{8} - 16 q^{9} - 8 q^{11} - 48 q^{12} - 16 q^{13} + 8 q^{14} - 56 q^{18} - 64 q^{21} + 104 q^{22} + 56 q^{23} - 80 q^{24} + 176 q^{26} - 40 q^{27} - 152 q^{28}+ \cdots - 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.841487 + 2.03153i 0.420744 + 1.01577i 0.982129 + 0.188210i \(0.0602687\pi\)
−0.561385 + 0.827555i \(0.689731\pi\)
\(3\) −0.0897902 0.134381i −0.0299301 0.0447935i 0.816203 0.577765i \(-0.196075\pi\)
−0.846133 + 0.532972i \(0.821075\pi\)
\(4\) −0.590587 + 0.590587i −0.147647 + 0.147647i
\(5\) 0 0
\(6\) 0.197441 0.295491i 0.0329068 0.0492485i
\(7\) −1.21824 6.12453i −0.174035 0.874933i −0.964835 0.262858i \(-0.915335\pi\)
0.790800 0.612075i \(-0.209665\pi\)
\(8\) 6.42935 + 2.66313i 0.803669 + 0.332891i
\(9\) 3.43416 8.29078i 0.381573 0.921198i
\(10\) 0 0
\(11\) −12.1433 8.11392i −1.10394 0.737629i −0.136478 0.990643i \(-0.543578\pi\)
−0.967463 + 0.253014i \(0.918578\pi\)
\(12\) 0.132392 + 0.0263345i 0.0110327 + 0.00219454i
\(13\) −4.79884 4.79884i −0.369141 0.369141i 0.498023 0.867164i \(-0.334060\pi\)
−0.867164 + 0.498023i \(0.834060\pi\)
\(14\) 11.4170 7.62861i 0.815502 0.544901i
\(15\) 0 0
\(16\) 18.6433i 1.16520i
\(17\) −6.50562 15.7060i −0.382683 0.923880i
\(18\) 19.7328 1.09627
\(19\) −9.56175 23.0841i −0.503250 1.21495i −0.947704 0.319151i \(-0.896602\pi\)
0.444454 0.895802i \(-0.353398\pi\)
\(20\) 0 0
\(21\) −0.713631 + 0.713631i −0.0339824 + 0.0339824i
\(22\) 6.26521 31.4973i 0.284782 1.43170i
\(23\) −7.27639 + 10.8899i −0.316365 + 0.473474i −0.955238 0.295839i \(-0.904401\pi\)
0.638873 + 0.769312i \(0.279401\pi\)
\(24\) −0.219421 1.10310i −0.00914253 0.0459626i
\(25\) 0 0
\(26\) 5.71082 13.7871i 0.219647 0.530274i
\(27\) −2.84909 + 0.566719i −0.105522 + 0.0209896i
\(28\) 4.33654 + 2.89759i 0.154877 + 0.103485i
\(29\) 32.3980 + 6.44436i 1.11717 + 0.222219i 0.718945 0.695067i \(-0.244625\pi\)
0.398228 + 0.917287i \(0.369625\pi\)
\(30\) 0 0
\(31\) −1.00960 + 0.674593i −0.0325678 + 0.0217611i −0.571748 0.820430i \(-0.693734\pi\)
0.539180 + 0.842191i \(0.318734\pi\)
\(32\) −12.1570 + 5.03558i −0.379905 + 0.157362i
\(33\) 2.36038i 0.0715267i
\(34\) 26.4327 26.4327i 0.777433 0.777433i
\(35\) 0 0
\(36\) 2.86826 + 6.92459i 0.0796739 + 0.192350i
\(37\) 25.8238 + 38.6481i 0.697941 + 1.04454i 0.995944 + 0.0899781i \(0.0286797\pi\)
−0.298002 + 0.954565i \(0.596320\pi\)
\(38\) 38.8500 38.8500i 1.02237 1.02237i
\(39\) −0.213982 + 1.07576i −0.00548671 + 0.0275836i
\(40\) 0 0
\(41\) 6.13577 + 30.8466i 0.149653 + 0.752356i 0.980602 + 0.196008i \(0.0627979\pi\)
−0.830949 + 0.556348i \(0.812202\pi\)
\(42\) −2.05027 0.849251i −0.0488161 0.0202203i
\(43\) 27.8948 67.3441i 0.648717 1.56614i −0.165901 0.986142i \(-0.553053\pi\)
0.814617 0.579999i \(-0.196947\pi\)
\(44\) 11.9637 2.37972i 0.271902 0.0540846i
\(45\) 0 0
\(46\) −28.2461 5.61851i −0.614047 0.122141i
\(47\) 10.4882 + 10.4882i 0.223153 + 0.223153i 0.809825 0.586672i \(-0.199562\pi\)
−0.586672 + 0.809825i \(0.699562\pi\)
\(48\) 2.50529 1.67398i 0.0521936 0.0348747i
\(49\) 9.24438 3.82915i 0.188661 0.0781458i
\(50\) 0 0
\(51\) −1.52643 + 2.28447i −0.0299301 + 0.0447935i
\(52\) 5.66826 0.109005
\(53\) 1.97838 + 4.77624i 0.0373280 + 0.0901178i 0.941444 0.337169i \(-0.109469\pi\)
−0.904116 + 0.427287i \(0.859469\pi\)
\(54\) −3.54878 5.31112i −0.0657181 0.0983541i
\(55\) 0 0
\(56\) 8.47786 42.6211i 0.151390 0.761091i
\(57\) −2.24350 + 3.35764i −0.0393597 + 0.0589059i
\(58\) 14.1706 + 71.2404i 0.244321 + 1.22828i
\(59\) 26.1013 + 10.8115i 0.442394 + 0.183246i 0.592751 0.805386i \(-0.298042\pi\)
−0.150356 + 0.988632i \(0.548042\pi\)
\(60\) 0 0
\(61\) −81.0541 + 16.1227i −1.32876 + 0.264306i −0.807891 0.589332i \(-0.799391\pi\)
−0.520866 + 0.853639i \(0.674391\pi\)
\(62\) −2.22002 1.48337i −0.0358068 0.0239254i
\(63\) −54.9608 10.9324i −0.872393 0.173530i
\(64\) 32.2713 + 32.2713i 0.504239 + 0.504239i
\(65\) 0 0
\(66\) −4.79518 + 1.98623i −0.0726543 + 0.0300944i
\(67\) 44.5324i 0.664663i 0.943163 + 0.332332i \(0.107835\pi\)
−0.943163 + 0.332332i \(0.892165\pi\)
\(68\) 13.1179 + 5.43359i 0.192910 + 0.0799058i
\(69\) 2.11674 0.0306774
\(70\) 0 0
\(71\) 32.1978 + 48.1875i 0.453491 + 0.678697i 0.985813 0.167845i \(-0.0536807\pi\)
−0.532323 + 0.846541i \(0.678681\pi\)
\(72\) 44.1588 44.1588i 0.613317 0.613317i
\(73\) 0.262865 1.32151i 0.00360089 0.0181029i −0.978943 0.204133i \(-0.934562\pi\)
0.982544 + 0.186031i \(0.0595623\pi\)
\(74\) −56.7843 + 84.9838i −0.767356 + 1.14843i
\(75\) 0 0
\(76\) 19.2802 + 7.98612i 0.253687 + 0.105081i
\(77\) −34.9004 + 84.2570i −0.453252 + 1.09425i
\(78\) −2.36550 + 0.470527i −0.0303269 + 0.00603240i
\(79\) −24.7128 16.5125i −0.312820 0.209020i 0.389242 0.921136i \(-0.372737\pi\)
−0.702062 + 0.712116i \(0.747737\pi\)
\(80\) 0 0
\(81\) −56.7774 56.7774i −0.700956 0.700956i
\(82\) −57.5026 + 38.4220i −0.701252 + 0.468561i
\(83\) 62.2748 25.7951i 0.750298 0.310784i 0.0254351 0.999676i \(-0.491903\pi\)
0.724863 + 0.688893i \(0.241903\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) −2.04303 4.93230i −0.0234831 0.0566931i
\(88\) −56.4655 84.5065i −0.641653 0.960302i
\(89\) 90.1397 90.1397i 1.01281 1.01281i 0.0128890 0.999917i \(-0.495897\pi\)
0.999917 0.0128890i \(-0.00410281\pi\)
\(90\) 0 0
\(91\) −23.5444 + 35.2368i −0.258730 + 0.387217i
\(92\) −2.13408 10.7288i −0.0231966 0.116617i
\(93\) 0.181304 + 0.0750988i 0.00194951 + 0.000807514i
\(94\) −12.4814 + 30.1327i −0.132781 + 0.320561i
\(95\) 0 0
\(96\) 1.76826 + 1.18151i 0.0184194 + 0.0123074i
\(97\) 66.3366 + 13.1952i 0.683882 + 0.136033i 0.524791 0.851231i \(-0.324144\pi\)
0.159091 + 0.987264i \(0.449144\pi\)
\(98\) 15.5581 + 15.5581i 0.158756 + 0.158756i
\(99\) −108.973 + 72.8134i −1.10074 + 0.735489i
\(100\) 0 0
\(101\) 34.6405i 0.342975i −0.985186 0.171488i \(-0.945143\pi\)
0.985186 0.171488i \(-0.0548573\pi\)
\(102\) −5.92544 1.17864i −0.0580926 0.0115553i
\(103\) −151.166 −1.46763 −0.733817 0.679347i \(-0.762263\pi\)
−0.733817 + 0.679347i \(0.762263\pi\)
\(104\) −18.0735 43.6333i −0.173784 0.419551i
\(105\) 0 0
\(106\) −8.03830 + 8.03830i −0.0758330 + 0.0758330i
\(107\) 1.86075 9.35463i 0.0173902 0.0874264i −0.971116 0.238610i \(-0.923308\pi\)
0.988506 + 0.151183i \(0.0483083\pi\)
\(108\) 1.34794 2.01733i 0.0124809 0.0186790i
\(109\) 22.6951 + 114.096i 0.208212 + 1.04675i 0.933574 + 0.358385i \(0.116673\pi\)
−0.725362 + 0.688368i \(0.758327\pi\)
\(110\) 0 0
\(111\) 2.87483 6.94044i 0.0258993 0.0625265i
\(112\) 114.181 22.7121i 1.01948 0.202786i
\(113\) 54.8360 + 36.6403i 0.485274 + 0.324250i 0.774026 0.633154i \(-0.218240\pi\)
−0.288751 + 0.957404i \(0.593240\pi\)
\(114\) −8.70902 1.73233i −0.0763949 0.0151959i
\(115\) 0 0
\(116\) −22.9398 + 15.3279i −0.197757 + 0.132137i
\(117\) −56.2660 + 23.3062i −0.480906 + 0.199198i
\(118\) 62.1233i 0.526468i
\(119\) −88.2661 + 58.9775i −0.741732 + 0.495609i
\(120\) 0 0
\(121\) 35.3203 + 85.2709i 0.291904 + 0.704718i
\(122\) −100.960 151.097i −0.827539 1.23850i
\(123\) 3.59425 3.59425i 0.0292216 0.0292216i
\(124\) 0.197851 0.994662i 0.00159557 0.00802147i
\(125\) 0 0
\(126\) −24.0393 120.854i −0.190788 0.959158i
\(127\) −88.2580 36.5576i −0.694945 0.287855i 0.00711395 0.999975i \(-0.497736\pi\)
−0.702059 + 0.712119i \(0.747736\pi\)
\(128\) −58.5465 + 141.344i −0.457395 + 1.10425i
\(129\) −11.5544 + 2.29832i −0.0895691 + 0.0178164i
\(130\) 0 0
\(131\) 42.0736 + 8.36897i 0.321173 + 0.0638852i 0.353044 0.935607i \(-0.385147\pi\)
−0.0318711 + 0.999492i \(0.510147\pi\)
\(132\) −1.39401 1.39401i −0.0105607 0.0105607i
\(133\) −129.731 + 86.6833i −0.975419 + 0.651754i
\(134\) −90.4690 + 37.4735i −0.675142 + 0.279653i
\(135\) 0 0
\(136\) 118.304i 0.869885i
\(137\) 63.8232 0.465863 0.232931 0.972493i \(-0.425168\pi\)
0.232931 + 0.972493i \(0.425168\pi\)
\(138\) 1.78121 + 4.30022i 0.0129073 + 0.0311610i
\(139\) −145.186 217.286i −1.04450 1.56321i −0.805868 0.592095i \(-0.798301\pi\)
−0.238632 0.971110i \(-0.576699\pi\)
\(140\) 0 0
\(141\) 0.467671 2.35114i 0.00331682 0.0166748i
\(142\) −70.8002 + 105.960i −0.498593 + 0.746197i
\(143\) 19.3365 + 97.2113i 0.135220 + 0.679799i
\(144\) 154.567 + 64.0239i 1.07338 + 0.444610i
\(145\) 0 0
\(146\) 2.90589 0.578017i 0.0199033 0.00395902i
\(147\) −1.34462 0.898445i −0.00914706 0.00611187i
\(148\) −38.0763 7.57384i −0.257272 0.0511746i
\(149\) −83.6010 83.6010i −0.561080 0.561080i 0.368534 0.929614i \(-0.379860\pi\)
−0.929614 + 0.368534i \(0.879860\pi\)
\(150\) 0 0
\(151\) 25.5851 10.5977i 0.169437 0.0701833i −0.296352 0.955079i \(-0.595770\pi\)
0.465790 + 0.884895i \(0.345770\pi\)
\(152\) 173.880i 1.14395i
\(153\) −152.556 −0.997098
\(154\) −200.539 −1.30220
\(155\) 0 0
\(156\) −0.508954 0.761703i −0.00326252 0.00488271i
\(157\) 55.8958 55.8958i 0.356024 0.356024i −0.506321 0.862345i \(-0.668995\pi\)
0.862345 + 0.506321i \(0.168995\pi\)
\(158\) 12.7503 64.0998i 0.0806978 0.405695i
\(159\) 0.464195 0.694716i 0.00291946 0.00436929i
\(160\) 0 0
\(161\) 75.5599 + 31.2979i 0.469316 + 0.194397i
\(162\) 67.5676 163.123i 0.417084 1.00693i
\(163\) 54.4489 10.8306i 0.334042 0.0664451i −0.0252196 0.999682i \(-0.508029\pi\)
0.359262 + 0.933237i \(0.383029\pi\)
\(164\) −21.8413 14.5939i −0.133179 0.0889871i
\(165\) 0 0
\(166\) 104.807 + 104.807i 0.631367 + 0.631367i
\(167\) 42.9537 28.7008i 0.257208 0.171861i −0.420281 0.907394i \(-0.638068\pi\)
0.677489 + 0.735533i \(0.263068\pi\)
\(168\) −6.48868 + 2.68770i −0.0386231 + 0.0159982i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) 23.2982 + 56.2468i 0.135455 + 0.327016i
\(173\) 10.2620 + 15.3581i 0.0593178 + 0.0887754i 0.859943 0.510390i \(-0.170499\pi\)
−0.800625 + 0.599166i \(0.795499\pi\)
\(174\) 8.30094 8.30094i 0.0477066 0.0477066i
\(175\) 0 0
\(176\) 151.270 226.392i 0.859489 1.28632i
\(177\) −0.890783 4.47827i −0.00503267 0.0253010i
\(178\) 258.973 + 107.270i 1.45490 + 0.602641i
\(179\) 23.9825 57.8989i 0.133980 0.323457i −0.842624 0.538503i \(-0.818990\pi\)
0.976604 + 0.215046i \(0.0689900\pi\)
\(180\) 0 0
\(181\) 86.9711 + 58.1122i 0.480503 + 0.321062i 0.772124 0.635472i \(-0.219194\pi\)
−0.291621 + 0.956534i \(0.594194\pi\)
\(182\) −91.3969 18.1800i −0.502181 0.0998899i
\(183\) 9.44444 + 9.44444i 0.0516090 + 0.0516090i
\(184\) −75.7837 + 50.6370i −0.411868 + 0.275201i
\(185\) 0 0
\(186\) 0.431520i 0.00232000i
\(187\) −48.4369 + 243.509i −0.259021 + 1.30219i
\(188\) −12.3883 −0.0658954
\(189\) 6.94177 + 16.7589i 0.0367289 + 0.0886715i
\(190\) 0 0
\(191\) −137.930 + 137.930i −0.722145 + 0.722145i −0.969042 0.246897i \(-0.920589\pi\)
0.246897 + 0.969042i \(0.420589\pi\)
\(192\) 1.43899 7.23428i 0.00749473 0.0376785i
\(193\) −49.1142 + 73.5045i −0.254478 + 0.380853i −0.936609 0.350377i \(-0.886053\pi\)
0.682131 + 0.731230i \(0.261053\pi\)
\(194\) 29.0150 + 145.868i 0.149562 + 0.751899i
\(195\) 0 0
\(196\) −3.19816 + 7.72105i −0.0163172 + 0.0393931i
\(197\) −252.430 + 50.2114i −1.28137 + 0.254880i −0.788398 0.615165i \(-0.789089\pi\)
−0.492972 + 0.870045i \(0.664089\pi\)
\(198\) −239.622 160.110i −1.21021 0.808637i
\(199\) 223.079 + 44.3732i 1.12100 + 0.222981i 0.720594 0.693357i \(-0.243869\pi\)
0.400406 + 0.916338i \(0.368869\pi\)
\(200\) 0 0
\(201\) 5.98429 3.99858i 0.0297726 0.0198934i
\(202\) 70.3732 29.1495i 0.348382 0.144305i
\(203\) 206.273i 1.01612i
\(204\) −0.447686 2.25067i −0.00219454 0.0110327i
\(205\) 0 0
\(206\) −127.204 307.099i −0.617498 1.49077i
\(207\) 65.2975 + 97.7246i 0.315447 + 0.472100i
\(208\) 89.4660 89.4660i 0.430125 0.430125i
\(209\) −71.1910 + 357.901i −0.340627 + 1.71245i
\(210\) 0 0
\(211\) 1.57784 + 7.93236i 0.00747794 + 0.0375941i 0.984344 0.176257i \(-0.0563991\pi\)
−0.976866 + 0.213852i \(0.931399\pi\)
\(212\) −3.98919 1.65238i −0.0188169 0.00779423i
\(213\) 3.58441 8.65353i 0.0168282 0.0406269i
\(214\) 20.5700 4.09163i 0.0961215 0.0191198i
\(215\) 0 0
\(216\) −19.8270 3.94384i −0.0917918 0.0182585i
\(217\) 5.36151 + 5.36151i 0.0247074 + 0.0247074i
\(218\) −212.692 + 142.116i −0.975651 + 0.651909i
\(219\) −0.201188 + 0.0833348i −0.000918667 + 0.000380524i
\(220\) 0 0
\(221\) −44.1509 + 106.590i −0.199778 + 0.482306i
\(222\) 16.5188 0.0744092
\(223\) −18.7769 45.3315i −0.0842014 0.203280i 0.876171 0.482001i \(-0.160090\pi\)
−0.960372 + 0.278720i \(0.910090\pi\)
\(224\) 45.6507 + 68.3211i 0.203798 + 0.305005i
\(225\) 0 0
\(226\) −28.2920 + 142.233i −0.125186 + 0.629351i
\(227\) 93.3694 139.737i 0.411319 0.615582i −0.566743 0.823894i \(-0.691797\pi\)
0.978062 + 0.208312i \(0.0667969\pi\)
\(228\) −0.657994 3.30796i −0.00288594 0.0145086i
\(229\) 114.723 + 47.5197i 0.500972 + 0.207510i 0.618836 0.785520i \(-0.287605\pi\)
−0.117864 + 0.993030i \(0.537605\pi\)
\(230\) 0 0
\(231\) 14.4562 2.87552i 0.0625810 0.0124481i
\(232\) 191.136 + 127.713i 0.823863 + 0.550487i
\(233\) 346.291 + 68.8815i 1.48623 + 0.295629i 0.870436 0.492281i \(-0.163837\pi\)
0.615791 + 0.787910i \(0.288837\pi\)
\(234\) −94.6943 94.6943i −0.404677 0.404677i
\(235\) 0 0
\(236\) −21.8002 + 9.02993i −0.0923737 + 0.0382624i
\(237\) 4.80358i 0.0202683i
\(238\) −194.089 129.686i −0.815502 0.544901i
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) 0 0
\(241\) 160.021 + 239.488i 0.663988 + 0.993728i 0.998678 + 0.0513996i \(0.0163682\pi\)
−0.334691 + 0.942328i \(0.608632\pi\)
\(242\) −143.509 + 143.509i −0.593011 + 0.593011i
\(243\) −7.63219 + 38.3696i −0.0314082 + 0.157900i
\(244\) 38.3477 57.3913i 0.157163 0.235210i
\(245\) 0 0
\(246\) 10.3263 + 4.27731i 0.0419770 + 0.0173875i
\(247\) −64.8915 + 156.662i −0.262719 + 0.634259i
\(248\) −8.28761 + 1.64851i −0.0334178 + 0.00664721i
\(249\) −9.05802 6.05237i −0.0363776 0.0243067i
\(250\) 0 0
\(251\) 191.096 + 191.096i 0.761337 + 0.761337i 0.976564 0.215227i \(-0.0690490\pi\)
−0.215227 + 0.976564i \(0.569049\pi\)
\(252\) 38.9156 26.0026i 0.154427 0.103185i
\(253\) 176.720 73.1996i 0.698496 0.289327i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) 20.2061 + 48.7819i 0.0786230 + 0.189813i 0.958303 0.285753i \(-0.0922436\pi\)
−0.879680 + 0.475565i \(0.842244\pi\)
\(258\) −14.3920 21.5391i −0.0557829 0.0834850i
\(259\) 205.242 205.242i 0.792439 0.792439i
\(260\) 0 0
\(261\) 164.689 246.474i 0.630991 0.944345i
\(262\) 18.4026 + 92.5162i 0.0702390 + 0.353115i
\(263\) 468.907 + 194.228i 1.78292 + 0.738509i 0.991947 + 0.126654i \(0.0404239\pi\)
0.790970 + 0.611854i \(0.209576\pi\)
\(264\) −6.28599 + 15.1757i −0.0238106 + 0.0574838i
\(265\) 0 0
\(266\) −285.266 190.609i −1.07243 0.716575i
\(267\) −20.2067 4.01936i −0.0756805 0.0150538i
\(268\) −26.3003 26.3003i −0.0981353 0.0981353i
\(269\) 146.551 97.9225i 0.544801 0.364024i −0.252509 0.967595i \(-0.581256\pi\)
0.797310 + 0.603570i \(0.206256\pi\)
\(270\) 0 0
\(271\) 464.255i 1.71312i 0.516050 + 0.856559i \(0.327402\pi\)
−0.516050 + 0.856559i \(0.672598\pi\)
\(272\) 292.810 121.286i 1.07651 0.445905i
\(273\) 6.84919 0.0250886
\(274\) 53.7064 + 129.659i 0.196009 + 0.473207i
\(275\) 0 0
\(276\) −1.25012 + 1.25012i −0.00452941 + 0.00452941i
\(277\) −34.4498 + 173.191i −0.124368 + 0.625238i 0.867445 + 0.497534i \(0.165761\pi\)
−0.991812 + 0.127704i \(0.959239\pi\)
\(278\) 319.250 477.792i 1.14838 1.71868i
\(279\) 2.12578 + 10.6870i 0.00761930 + 0.0383048i
\(280\) 0 0
\(281\) 152.875 369.073i 0.544040 1.31343i −0.377811 0.925883i \(-0.623323\pi\)
0.921851 0.387545i \(-0.126677\pi\)
\(282\) 5.16995 1.02837i 0.0183332 0.00364669i
\(283\) −297.348 198.682i −1.05070 0.702055i −0.0947249 0.995503i \(-0.530197\pi\)
−0.955975 + 0.293448i \(0.905197\pi\)
\(284\) −47.4745 9.44326i −0.167164 0.0332509i
\(285\) 0 0
\(286\) −181.216 + 121.085i −0.633623 + 0.423373i
\(287\) 181.446 75.1574i 0.632216 0.261872i
\(288\) 118.084i 0.410013i
\(289\) −204.354 + 204.354i −0.707107 + 0.707107i
\(290\) 0 0
\(291\) −4.18320 10.0991i −0.0143753 0.0347050i
\(292\) 0.625222 + 0.935711i 0.00214117 + 0.00320449i
\(293\) 169.002 169.002i 0.576800 0.576800i −0.357220 0.934020i \(-0.616275\pi\)
0.934020 + 0.357220i \(0.116275\pi\)
\(294\) 0.693739 3.48766i 0.00235966 0.0118628i
\(295\) 0 0
\(296\) 63.1058 + 317.254i 0.213195 + 1.07181i
\(297\) 39.1958 + 16.2354i 0.131972 + 0.0546647i
\(298\) 99.4888 240.187i 0.333855 0.805997i
\(299\) 87.1770 17.3406i 0.291562 0.0579953i
\(300\) 0 0
\(301\) −446.433 88.8011i −1.48317 0.295020i
\(302\) 43.0590 + 43.0590i 0.142579 + 0.142579i
\(303\) −4.65501 + 3.11038i −0.0153631 + 0.0102653i
\(304\) 430.363 178.262i 1.41567 0.586389i
\(305\) 0 0
\(306\) −128.374 309.922i −0.419523 1.01282i
\(307\) −409.955 −1.33536 −0.667679 0.744450i \(-0.732712\pi\)
−0.667679 + 0.744450i \(0.732712\pi\)
\(308\) −29.1493 70.3727i −0.0946407 0.228483i
\(309\) 13.5733 + 20.3138i 0.0439264 + 0.0657405i
\(310\) 0 0
\(311\) 42.2576 212.443i 0.135877 0.683098i −0.851455 0.524428i \(-0.824279\pi\)
0.987332 0.158670i \(-0.0507207\pi\)
\(312\) −4.24064 + 6.34657i −0.0135918 + 0.0203416i
\(313\) 92.3584 + 464.317i 0.295075 + 1.48344i 0.789246 + 0.614077i \(0.210472\pi\)
−0.494171 + 0.869365i \(0.664528\pi\)
\(314\) 160.590 + 66.5184i 0.511432 + 0.211842i
\(315\) 0 0
\(316\) 24.3471 4.84294i 0.0770479 0.0153258i
\(317\) −213.145 142.419i −0.672383 0.449272i 0.171939 0.985108i \(-0.444997\pi\)
−0.844322 + 0.535836i \(0.819997\pi\)
\(318\) 1.80195 + 0.358430i 0.00566651 + 0.00112714i
\(319\) −341.131 341.131i −1.06938 1.06938i
\(320\) 0 0
\(321\) −1.42416 + 0.589905i −0.00443663 + 0.00183771i
\(322\) 179.839i 0.558506i
\(323\) −300.353 + 300.353i −0.929884 + 0.929884i
\(324\) 67.0640 0.206988
\(325\) 0 0
\(326\) 67.8206 + 101.501i 0.208039 + 0.311352i
\(327\) 13.2945 13.2945i 0.0406560 0.0406560i
\(328\) −42.6993 + 214.664i −0.130181 + 0.654464i
\(329\) 51.4579 77.0122i 0.156407 0.234080i
\(330\) 0 0
\(331\) 208.580 + 86.3966i 0.630151 + 0.261017i 0.674817 0.737985i \(-0.264222\pi\)
−0.0446663 + 0.999002i \(0.514222\pi\)
\(332\) −21.5444 + 52.0129i −0.0648929 + 0.156665i
\(333\) 409.106 81.3763i 1.22855 0.244373i
\(334\) 94.4515 + 63.1105i 0.282789 + 0.188954i
\(335\) 0 0
\(336\) −13.3044 13.3044i −0.0395965 0.0395965i
\(337\) 300.276 200.638i 0.891027 0.595365i −0.0235742 0.999722i \(-0.507505\pi\)
0.914601 + 0.404357i \(0.132505\pi\)
\(338\) 249.761 103.454i 0.738938 0.306078i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) −188.680 455.513i −0.551695 1.33191i
\(343\) −204.708 306.367i −0.596815 0.893197i
\(344\) 358.691 358.691i 1.04271 1.04271i
\(345\) 0 0
\(346\) −22.5652 + 33.7712i −0.0652173 + 0.0976046i
\(347\) −3.09377 15.5534i −0.00891575 0.0448225i 0.976071 0.217451i \(-0.0697741\pi\)
−0.984987 + 0.172628i \(0.944774\pi\)
\(348\) 4.11954 + 1.70637i 0.0118377 + 0.00490336i
\(349\) −121.062 + 292.270i −0.346883 + 0.837448i 0.650102 + 0.759847i \(0.274726\pi\)
−0.996984 + 0.0776015i \(0.975274\pi\)
\(350\) 0 0
\(351\) 16.3919 + 10.9527i 0.0467005 + 0.0312043i
\(352\) 188.484 + 37.4919i 0.535467 + 0.106511i
\(353\) −191.613 191.613i −0.542812 0.542812i 0.381540 0.924352i \(-0.375394\pi\)
−0.924352 + 0.381540i \(0.875394\pi\)
\(354\) 8.34816 5.57806i 0.0235824 0.0157572i
\(355\) 0 0
\(356\) 106.471i 0.299075i
\(357\) 15.8509 + 6.56564i 0.0444002 + 0.0183912i
\(358\) 137.804 0.384928
\(359\) 60.5865 + 146.269i 0.168765 + 0.407434i 0.985522 0.169547i \(-0.0542305\pi\)
−0.816757 + 0.576981i \(0.804231\pi\)
\(360\) 0 0
\(361\) −186.183 + 186.183i −0.515743 + 0.515743i
\(362\) −44.8717 + 225.585i −0.123955 + 0.623163i
\(363\) 8.28732 12.4029i 0.0228301 0.0341676i
\(364\) −6.90532 34.7154i −0.0189707 0.0953719i
\(365\) 0 0
\(366\) −11.2393 + 27.1340i −0.0307084 + 0.0741367i
\(367\) 479.595 95.3974i 1.30680 0.259938i 0.507906 0.861413i \(-0.330420\pi\)
0.798892 + 0.601474i \(0.205420\pi\)
\(368\) −203.023 135.656i −0.551694 0.368630i
\(369\) 276.814 + 55.0617i 0.750173 + 0.149219i
\(370\) 0 0
\(371\) 26.8421 17.9353i 0.0723506 0.0483431i
\(372\) −0.151428 + 0.0627237i −0.000407065 + 0.000168612i
\(373\) 573.453i 1.53741i 0.639605 + 0.768704i \(0.279098\pi\)
−0.639605 + 0.768704i \(0.720902\pi\)
\(374\) −535.455 + 106.509i −1.43170 + 0.284782i
\(375\) 0 0
\(376\) 39.5008 + 95.3635i 0.105055 + 0.253626i
\(377\) −124.547 186.398i −0.330364 0.494425i
\(378\) −28.2048 + 28.2048i −0.0746159 + 0.0746159i
\(379\) 136.954 688.516i 0.361357 1.81666i −0.189284 0.981922i \(-0.560617\pi\)
0.550641 0.834742i \(-0.314383\pi\)
\(380\) 0 0
\(381\) 3.01206 + 15.1427i 0.00790568 + 0.0397445i
\(382\) −396.274 164.142i −1.03737 0.429692i
\(383\) 118.024 284.935i 0.308157 0.743956i −0.691608 0.722273i \(-0.743098\pi\)
0.999765 0.0216830i \(-0.00690247\pi\)
\(384\) 24.2508 4.82378i 0.0631530 0.0125619i
\(385\) 0 0
\(386\) −190.656 37.9238i −0.493927 0.0982481i
\(387\) −462.540 462.540i −1.19519 1.19519i
\(388\) −46.9704 + 31.3846i −0.121058 + 0.0808882i
\(389\) 263.382 109.097i 0.677076 0.280454i −0.0175282 0.999846i \(-0.505580\pi\)
0.694604 + 0.719392i \(0.255580\pi\)
\(390\) 0 0
\(391\) 218.374 + 43.4372i 0.558500 + 0.111093i
\(392\) 69.6329 0.177635
\(393\) −2.65317 6.40533i −0.00675108 0.0162986i
\(394\) −314.423 470.567i −0.798027 1.19433i
\(395\) 0 0
\(396\) 21.3553 107.361i 0.0539276 0.271112i
\(397\) −69.0841 + 103.392i −0.174015 + 0.260432i −0.908217 0.418499i \(-0.862556\pi\)
0.734202 + 0.678931i \(0.237556\pi\)
\(398\) 97.5727 + 490.531i 0.245158 + 1.23249i
\(399\) 23.2971 + 9.64997i 0.0583887 + 0.0241854i
\(400\) 0 0
\(401\) −418.770 + 83.2986i −1.04432 + 0.207727i −0.687302 0.726372i \(-0.741205\pi\)
−0.357014 + 0.934099i \(0.616205\pi\)
\(402\) 13.1589 + 8.79252i 0.0327337 + 0.0218719i
\(403\) 8.08217 + 1.60764i 0.0200550 + 0.00398919i
\(404\) 20.4582 + 20.4582i 0.0506391 + 0.0506391i
\(405\) 0 0
\(406\) 419.050 173.576i 1.03214 0.427528i
\(407\) 678.850i 1.66794i
\(408\) −15.8978 + 10.6226i −0.0389652 + 0.0260357i
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) 0 0
\(411\) −5.73070 8.57659i −0.0139433 0.0208676i
\(412\) 89.2768 89.2768i 0.216691 0.216691i
\(413\) 34.4176 173.029i 0.0833356 0.418956i
\(414\) −143.583 + 214.888i −0.346820 + 0.519053i
\(415\) 0 0
\(416\) 82.5042 + 34.1743i 0.198327 + 0.0821499i
\(417\) −16.1627 + 39.0202i −0.0387595 + 0.0935737i
\(418\) −786.994 + 156.543i −1.88276 + 0.374504i
\(419\) −517.326 345.666i −1.23467 0.824979i −0.245164 0.969482i \(-0.578842\pi\)
−0.989504 + 0.144503i \(0.953842\pi\)
\(420\) 0 0
\(421\) −36.3708 36.3708i −0.0863916 0.0863916i 0.662590 0.748982i \(-0.269457\pi\)
−0.748982 + 0.662590i \(0.769457\pi\)
\(422\) −14.7871 + 9.88042i −0.0350405 + 0.0234133i
\(423\) 122.973 50.9371i 0.290717 0.120419i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) 197.488 + 476.777i 0.462500 + 1.11657i
\(428\) 4.42578 + 6.62365i 0.0103406 + 0.0154758i
\(429\) 11.3271 11.3271i 0.0264034 0.0264034i
\(430\) 0 0
\(431\) 261.460 391.302i 0.606635 0.907893i −0.393299 0.919411i \(-0.628666\pi\)
0.999934 + 0.0115175i \(0.00366621\pi\)
\(432\) −10.5655 53.1163i −0.0244572 0.122954i
\(433\) 594.595 + 246.289i 1.37320 + 0.568798i 0.942654 0.333772i \(-0.108321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(434\) −6.38042 + 15.4037i −0.0147014 + 0.0354924i
\(435\) 0 0
\(436\) −80.7871 53.9802i −0.185291 0.123808i
\(437\) 320.958 + 63.8426i 0.734459 + 0.146093i
\(438\) −0.338594 0.338594i −0.000773047 0.000773047i
\(439\) −688.000 + 459.707i −1.56720 + 1.04717i −0.597809 + 0.801638i \(0.703962\pi\)
−0.969389 + 0.245530i \(0.921038\pi\)
\(440\) 0 0
\(441\) 89.7930i 0.203612i
\(442\) −253.693 −0.573965
\(443\) −354.430 −0.800068 −0.400034 0.916500i \(-0.631002\pi\)
−0.400034 + 0.916500i \(0.631002\pi\)
\(444\) 2.40110 + 5.79677i 0.00540788 + 0.0130558i
\(445\) 0 0
\(446\) 76.2917 76.2917i 0.171058 0.171058i
\(447\) −3.72780 + 18.7409i −0.00833959 + 0.0419259i
\(448\) 158.332 236.961i 0.353420 0.528930i
\(449\) 153.330 + 770.842i 0.341492 + 1.71680i 0.645185 + 0.764027i \(0.276780\pi\)
−0.303692 + 0.952770i \(0.598220\pi\)
\(450\) 0 0
\(451\) 175.778 424.366i 0.389752 0.940945i
\(452\) −54.0247 + 10.7462i −0.119524 + 0.0237747i
\(453\) −3.72141 2.48657i −0.00821503 0.00548911i
\(454\) 362.450 + 72.0957i 0.798347 + 0.158801i
\(455\) 0 0
\(456\) −23.3661 + 15.6127i −0.0512414 + 0.0342384i
\(457\) −300.390 + 124.426i −0.657309 + 0.272266i −0.686306 0.727313i \(-0.740769\pi\)
0.0289968 + 0.999580i \(0.490769\pi\)
\(458\) 273.050i 0.596178i
\(459\) 27.4359 + 41.0608i 0.0597733 + 0.0894570i
\(460\) 0 0
\(461\) −94.2242 227.477i −0.204391 0.493444i 0.788131 0.615507i \(-0.211049\pi\)
−0.992522 + 0.122064i \(0.961049\pi\)
\(462\) 18.0064 + 26.9485i 0.0389749 + 0.0583301i
\(463\) 248.069 248.069i 0.535786 0.535786i −0.386503 0.922288i \(-0.626317\pi\)
0.922288 + 0.386503i \(0.126317\pi\)
\(464\) −120.144 + 604.005i −0.258931 + 1.30174i
\(465\) 0 0
\(466\) 151.464 + 761.463i 0.325031 + 1.63404i
\(467\) 202.212 + 83.7591i 0.433003 + 0.179356i 0.588529 0.808476i \(-0.299707\pi\)
−0.155526 + 0.987832i \(0.549707\pi\)
\(468\) 19.4657 46.9943i 0.0415933 0.100415i
\(469\) 272.740 54.2514i 0.581536 0.115675i
\(470\) 0 0
\(471\) −12.5302 2.49241i −0.0266034 0.00529174i
\(472\) 139.022 + 139.022i 0.294538 + 0.294538i
\(473\) −885.161 + 591.446i −1.87138 + 1.25041i
\(474\) −9.75862 + 4.04215i −0.0205878 + 0.00852775i
\(475\) 0 0
\(476\) 17.2974 86.9601i 0.0363392 0.182689i
\(477\) 46.3929 0.0972597
\(478\) 173.790 + 419.566i 0.363578 + 0.877754i
\(479\) −279.157 417.789i −0.582792 0.872210i 0.416526 0.909124i \(-0.363247\pi\)
−0.999318 + 0.0369135i \(0.988247\pi\)
\(480\) 0 0
\(481\) 61.5415 309.390i 0.127945 0.643223i
\(482\) −351.872 + 526.614i −0.730025 + 1.09256i
\(483\) −2.57871 12.9640i −0.00533893 0.0268406i
\(484\) −71.2196 29.5001i −0.147148 0.0609506i
\(485\) 0 0
\(486\) −84.3715 + 16.7825i −0.173604 + 0.0345319i
\(487\) 209.352 + 139.885i 0.429882 + 0.287238i 0.751627 0.659589i \(-0.229269\pi\)
−0.321745 + 0.946826i \(0.604269\pi\)
\(488\) −564.063 112.199i −1.15587 0.229916i
\(489\) −6.34439 6.34439i −0.0129742 0.0129742i
\(490\) 0 0
\(491\) −209.123 + 86.6215i −0.425912 + 0.176418i −0.585334 0.810792i \(-0.699037\pi\)
0.159423 + 0.987210i \(0.449037\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) −109.554 550.766i −0.222219 1.11717i
\(494\) −372.869 −0.754796
\(495\) 0 0
\(496\) −12.5766 18.8223i −0.0253561 0.0379481i
\(497\) 255.901 255.901i 0.514891 0.514891i
\(498\) 4.67337 23.4946i 0.00938428 0.0471780i
\(499\) −119.919 + 179.471i −0.240318 + 0.359662i −0.931949 0.362590i \(-0.881893\pi\)
0.691631 + 0.722251i \(0.256893\pi\)
\(500\) 0 0
\(501\) −7.71365 3.19510i −0.0153965 0.00637744i
\(502\) −227.412 + 549.021i −0.453012 + 1.09367i
\(503\) −865.523 + 172.163i −1.72072 + 0.342273i −0.954023 0.299735i \(-0.903102\pi\)
−0.766698 + 0.642008i \(0.778102\pi\)
\(504\) −324.248 216.656i −0.643349 0.429872i
\(505\) 0 0
\(506\) 297.414 + 297.414i 0.587776 + 0.587776i
\(507\) −16.5211 + 11.0390i −0.0325859 + 0.0217732i
\(508\) 73.7144 30.5335i 0.145107 0.0601053i
\(509\) 459.446i 0.902645i 0.892361 + 0.451323i \(0.149048\pi\)
−0.892361 + 0.451323i \(0.850952\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) 104.718 + 252.811i 0.204527 + 0.493772i
\(513\) 40.3244 + 60.3498i 0.0786052 + 0.117641i
\(514\) −82.0986 + 82.0986i −0.159725 + 0.159725i
\(515\) 0 0
\(516\) 5.46653 8.18124i 0.0105940 0.0158551i
\(517\) −42.2612 212.462i −0.0817432 0.410951i
\(518\) 589.663 + 244.246i 1.13835 + 0.471518i
\(519\) 1.14241 2.75802i 0.00220117 0.00531411i
\(520\) 0 0
\(521\) 84.0959 + 56.1911i 0.161412 + 0.107852i 0.633653 0.773617i \(-0.281555\pi\)
−0.472241 + 0.881470i \(0.656555\pi\)
\(522\) 639.303 + 127.165i 1.22472 + 0.243611i
\(523\) −395.099 395.099i −0.755448 0.755448i 0.220042 0.975490i \(-0.429380\pi\)
−0.975490 + 0.220042i \(0.929380\pi\)
\(524\) −29.7907 + 19.9055i −0.0568525 + 0.0379876i
\(525\) 0 0
\(526\) 1116.04i 2.12175i
\(527\) 17.1632 + 11.4681i 0.0325678 + 0.0217611i
\(528\) −44.0052 −0.0833432
\(529\) 136.796 + 330.254i 0.258593 + 0.624299i
\(530\) 0 0
\(531\) 179.272 179.272i 0.337611 0.337611i
\(532\) 25.4232 127.811i 0.0477880 0.240247i
\(533\) 118.583 177.472i 0.222483 0.332969i
\(534\) −8.83822 44.4327i −0.0165510 0.0832074i
\(535\) 0 0
\(536\) −118.596 + 286.315i −0.221260 + 0.534170i
\(537\) −9.93388 + 1.97597i −0.0184988 + 0.00367965i
\(538\) 322.254 + 215.323i 0.598985 + 0.400229i
\(539\) −143.327 28.5095i −0.265913 0.0528934i
\(540\) 0 0
\(541\) −33.9436 + 22.6804i −0.0627423 + 0.0419230i −0.586546 0.809916i \(-0.699513\pi\)
0.523804 + 0.851839i \(0.324513\pi\)
\(542\) −943.148 + 390.665i −1.74012 + 0.720783i
\(543\) 16.9051i 0.0311328i
\(544\) 158.177 + 158.177i 0.290767 + 0.290767i
\(545\) 0 0
\(546\) 5.76351 + 13.9143i 0.0105559 + 0.0254841i
\(547\) 37.8284 + 56.6142i 0.0691562 + 0.103500i 0.864436 0.502743i \(-0.167676\pi\)
−0.795280 + 0.606243i \(0.792676\pi\)
\(548\) −37.6931 + 37.6931i −0.0687830 + 0.0687830i
\(549\) −144.683 + 727.370i −0.263539 + 1.32490i
\(550\) 0 0
\(551\) −161.019 809.498i −0.292231 1.46914i
\(552\) 13.6093 + 5.63714i 0.0246545 + 0.0102122i
\(553\) −71.0254 + 171.470i −0.128436 + 0.310073i
\(554\) −380.832 + 75.7521i −0.687422 + 0.136737i
\(555\) 0 0
\(556\) 214.071 + 42.5813i 0.385019 + 0.0765850i
\(557\) 208.814 + 208.814i 0.374890 + 0.374890i 0.869255 0.494365i \(-0.164599\pi\)
−0.494365 + 0.869255i \(0.664599\pi\)
\(558\) −19.9222 + 13.3116i −0.0357029 + 0.0238559i
\(559\) −457.036 + 189.310i −0.817595 + 0.338659i
\(560\) 0 0
\(561\) 37.0720 15.3557i 0.0660820 0.0273721i
\(562\) 878.426 1.56304
\(563\) −169.121 408.295i −0.300393 0.725212i −0.999944 0.0106294i \(-0.996616\pi\)
0.699551 0.714583i \(-0.253384\pi\)
\(564\) 1.11235 + 1.66475i 0.00197226 + 0.00295169i
\(565\) 0 0
\(566\) 153.413 771.260i 0.271048 1.36265i
\(567\) −278.566 + 416.904i −0.491298 + 0.735280i
\(568\) 78.6820 + 395.561i 0.138525 + 0.696411i
\(569\) 595.479 + 246.656i 1.04654 + 0.433490i 0.838654 0.544664i \(-0.183343\pi\)
0.207882 + 0.978154i \(0.433343\pi\)
\(570\) 0 0
\(571\) −117.482 + 23.3687i −0.205748 + 0.0409259i −0.296888 0.954912i \(-0.595949\pi\)
0.0911400 + 0.995838i \(0.470949\pi\)
\(572\) −68.8316 45.9918i −0.120335 0.0804052i
\(573\) 30.9198 + 6.15033i 0.0539613 + 0.0107336i
\(574\) 305.369 + 305.369i 0.532002 + 0.532002i
\(575\) 0 0
\(576\) 378.379 156.730i 0.656908 0.272100i
\(577\) 177.008i 0.306773i 0.988166 + 0.153387i \(0.0490180\pi\)
−0.988166 + 0.153387i \(0.950982\pi\)
\(578\) −587.112 243.190i −1.01577 0.420744i
\(579\) 14.2876 0.0246763
\(580\) 0 0
\(581\) −233.848 349.979i −0.402493 0.602373i
\(582\) 16.9966 16.9966i 0.0292038 0.0292038i
\(583\) 14.7299 74.0520i 0.0252656 0.127019i
\(584\) 5.20940 7.79642i 0.00892021 0.0133500i
\(585\) 0 0
\(586\) 485.547 + 201.120i 0.828578 + 0.343208i
\(587\) 239.200 577.480i 0.407496 0.983781i −0.578299 0.815825i \(-0.696283\pi\)
0.985794 0.167956i \(-0.0537168\pi\)
\(588\) 1.32472 0.263504i 0.00225293 0.000448135i
\(589\) 25.2259 + 16.8554i 0.0428284 + 0.0286170i
\(590\) 0 0
\(591\) 29.4132 + 29.4132i 0.0497685 + 0.0497685i
\(592\) −720.527 + 481.441i −1.21711 + 0.813245i
\(593\) 138.551 57.3899i 0.233645 0.0967789i −0.262789 0.964853i \(-0.584642\pi\)
0.496434 + 0.868074i \(0.334642\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) −14.0674 33.9618i −0.0235635 0.0568874i
\(598\) 108.586 + 162.511i 0.181582 + 0.271757i
\(599\) −217.159 + 217.159i −0.362536 + 0.362536i −0.864746 0.502210i \(-0.832520\pi\)
0.502210 + 0.864746i \(0.332520\pi\)
\(600\) 0 0
\(601\) 225.714 337.804i 0.375564 0.562071i −0.594753 0.803908i \(-0.702750\pi\)
0.970317 + 0.241838i \(0.0777502\pi\)
\(602\) −195.266 981.668i −0.324362 1.63068i
\(603\) 369.209 + 152.931i 0.612287 + 0.253617i
\(604\) −8.85135 + 21.3690i −0.0146545 + 0.0353792i
\(605\) 0 0
\(606\) −10.2360 6.83945i −0.0168910 0.0112862i
\(607\) −1017.17 202.327i −1.67573 0.333323i −0.736452 0.676490i \(-0.763500\pi\)
−0.939274 + 0.343167i \(0.888500\pi\)
\(608\) 232.484 + 232.484i 0.382374 + 0.382374i
\(609\) −27.7191 + 18.5213i −0.0455158 + 0.0304127i
\(610\) 0 0
\(611\) 100.662i 0.164750i
\(612\) 90.0975 90.0975i 0.147218 0.147218i
\(613\) −132.402 −0.215991 −0.107995 0.994151i \(-0.534443\pi\)
−0.107995 + 0.994151i \(0.534443\pi\)
\(614\) −344.972 832.835i −0.561843 1.35641i
\(615\) 0 0
\(616\) −448.774 + 448.774i −0.728529 + 0.728529i
\(617\) −49.9956 + 251.345i −0.0810302 + 0.407366i 0.918887 + 0.394520i \(0.129089\pi\)
−0.999917 + 0.0128460i \(0.995911\pi\)
\(618\) −29.8464 + 44.6683i −0.0482951 + 0.0722788i
\(619\) −17.9310 90.1450i −0.0289676 0.145630i 0.963595 0.267367i \(-0.0861536\pi\)
−0.992562 + 0.121737i \(0.961154\pi\)
\(620\) 0 0
\(621\) 14.5596 35.1499i 0.0234454 0.0566021i
\(622\) 467.145 92.9208i 0.751036 0.149390i
\(623\) −661.875 442.251i −1.06240 0.709873i
\(624\) −20.0557 3.98932i −0.0321405 0.00639314i
\(625\) 0 0
\(626\) −865.556 + 578.346i −1.38268 + 0.923875i
\(627\) 54.4872 22.5694i 0.0869015 0.0359958i
\(628\) 66.0226i 0.105131i
\(629\) 439.005 657.018i 0.697941 1.04454i
\(630\) 0 0
\(631\) 219.866 + 530.804i 0.348441 + 0.841210i 0.996805 + 0.0798795i \(0.0254536\pi\)
−0.648364 + 0.761331i \(0.724546\pi\)
\(632\) −114.912 171.978i −0.181823 0.272117i
\(633\) 0.924280 0.924280i 0.00146016 0.00146016i
\(634\) 109.970 552.855i 0.173454 0.872012i
\(635\) 0 0
\(636\) 0.136143 + 0.684437i 0.000214061 + 0.00107616i
\(637\) −62.7377 25.9868i −0.0984893 0.0407956i
\(638\) 405.961 980.076i 0.636302 1.53617i
\(639\) 510.084 101.462i 0.798254 0.158783i
\(640\) 0 0
\(641\) −966.275 192.204i −1.50745 0.299850i −0.628894 0.777491i \(-0.716492\pi\)
−0.878555 + 0.477641i \(0.841492\pi\)
\(642\) −2.39682 2.39682i −0.00373337 0.00373337i
\(643\) 29.4169 19.6558i 0.0457495 0.0305688i −0.532485 0.846439i \(-0.678742\pi\)
0.578235 + 0.815870i \(0.303742\pi\)
\(644\) −63.1088 + 26.1405i −0.0979950 + 0.0405909i
\(645\) 0 0
\(646\) −862.919 357.433i −1.33579 0.553301i
\(647\) 472.176 0.729793 0.364897 0.931048i \(-0.381104\pi\)
0.364897 + 0.931048i \(0.381104\pi\)
\(648\) −213.837 516.248i −0.329995 0.796679i
\(649\) −229.233 343.071i −0.353210 0.528615i
\(650\) 0 0
\(651\) 0.239071 1.20189i 0.000367237 0.00184623i
\(652\) −25.7604 + 38.5532i −0.0395098 + 0.0591306i
\(653\) 124.126 + 624.023i 0.190086 + 0.955625i 0.951568 + 0.307439i \(0.0994720\pi\)
−0.761482 + 0.648186i \(0.775528\pi\)
\(654\) 38.1953 + 15.8210i 0.0584026 + 0.0241912i
\(655\) 0 0
\(656\) −575.082 + 114.391i −0.876649 + 0.174376i
\(657\) −10.0536 6.71763i −0.0153023 0.0102247i
\(658\) 199.754 + 39.7335i 0.303577 + 0.0603853i
\(659\) 128.530 + 128.530i 0.195037 + 0.195037i 0.797869 0.602831i \(-0.205961\pi\)
−0.602831 + 0.797869i \(0.705961\pi\)
\(660\) 0 0
\(661\) 1075.49 445.481i 1.62706 0.673950i 0.632161 0.774837i \(-0.282168\pi\)
0.994898 + 0.100887i \(0.0321681\pi\)
\(662\) 496.438i 0.749906i
\(663\) 18.2879 3.63769i 0.0275836 0.00548671i
\(664\) 469.082 0.706449
\(665\) 0 0
\(666\) 509.576 + 762.634i 0.765129 + 1.14510i
\(667\) −305.919 + 305.919i −0.458649 + 0.458649i
\(668\) −8.41761 + 42.3182i −0.0126012 + 0.0633506i
\(669\) −4.40568 + 6.59357i −0.00658548 + 0.00985586i
\(670\) 0 0
\(671\) 1115.09 + 461.884i 1.66183 + 0.688352i
\(672\) 5.08204 12.2691i 0.00756256 0.0182576i
\(673\) −105.260 + 20.9375i −0.156404 + 0.0311106i −0.272671 0.962107i \(-0.587907\pi\)
0.116267 + 0.993218i \(0.462907\pi\)
\(674\) 660.281 + 441.186i 0.979645 + 0.654578i
\(675\) 0 0
\(676\) 72.6081 + 72.6081i 0.107408 + 0.107408i
\(677\) 876.782 585.847i 1.29510 0.865358i 0.299057 0.954235i \(-0.403328\pi\)
0.996043 + 0.0888773i \(0.0283279\pi\)
\(678\) 21.6537 8.96927i 0.0319377 0.0132290i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) 14.9225 + 36.0262i 0.0218805 + 0.0528243i
\(683\) 339.367 + 507.899i 0.496877 + 0.743629i 0.992143 0.125113i \(-0.0399292\pi\)
−0.495265 + 0.868742i \(0.664929\pi\)
\(684\) 132.422 132.422i 0.193600 0.193600i
\(685\) 0 0
\(686\) 450.134 673.673i 0.656172 0.982031i
\(687\) −3.91525 19.6833i −0.00569906 0.0286511i
\(688\) 1255.51 + 520.051i 1.82488 + 0.755888i
\(689\) 13.4265 32.4143i 0.0194869 0.0470455i
\(690\) 0 0
\(691\) −815.612 544.975i −1.18034 0.788675i −0.198816 0.980037i \(-0.563710\pi\)
−0.981520 + 0.191362i \(0.938710\pi\)
\(692\) −15.1309 3.00972i −0.0218655 0.00434931i
\(693\) 578.703 + 578.703i 0.835069 + 0.835069i
\(694\) 28.9939 19.3731i 0.0417779 0.0279151i
\(695\) 0 0
\(696\) 37.1524i 0.0533798i
\(697\) 444.558 297.044i 0.637817 0.426176i
\(698\) −695.626 −0.996600
\(699\) −21.8372 52.7196i −0.0312406 0.0754215i
\(700\) 0 0
\(701\) 52.7814 52.7814i 0.0752944 0.0752944i −0.668457 0.743751i \(-0.733045\pi\)
0.743751 + 0.668457i \(0.233045\pi\)
\(702\) −8.45719 + 42.5172i −0.0120473 + 0.0605658i
\(703\) 645.236 965.663i 0.917832 1.37363i
\(704\) −130.035 653.728i −0.184708 0.928591i
\(705\) 0 0
\(706\) 228.027 550.507i 0.322985 0.779755i
\(707\) −212.157 + 42.2006i −0.300080 + 0.0596896i
\(708\) 3.17089 + 2.11872i 0.00447866 + 0.00299254i
\(709\) −752.626 149.707i −1.06153 0.211152i −0.366711 0.930335i \(-0.619516\pi\)
−0.694821 + 0.719183i \(0.744516\pi\)
\(710\) 0 0
\(711\) −221.769 + 148.182i −0.311912 + 0.208413i
\(712\) 819.594 339.487i 1.15111 0.476807i
\(713\) 15.9030i 0.0223044i
\(714\) 37.7264i 0.0528381i
\(715\) 0 0
\(716\) 20.0306 + 48.3580i 0.0279756 + 0.0675392i
\(717\) −18.5441 27.7533i −0.0258635 0.0387075i
\(718\) −246.167 + 246.167i −0.342851 + 0.342851i
\(719\) 224.919 1130.74i 0.312822 1.57266i −0.429785 0.902931i \(-0.641410\pi\)
0.742606 0.669729i \(-0.233590\pi\)
\(720\) 0 0
\(721\) 184.157 + 925.822i 0.255419 + 1.28408i
\(722\) −534.907 221.566i −0.740869 0.306878i
\(723\) 17.8143 43.0074i 0.0246394 0.0594847i
\(724\) −85.6842 + 17.0437i −0.118348 + 0.0235410i
\(725\) 0 0
\(726\) 32.1705 + 6.39910i 0.0443119 + 0.00881419i
\(727\) −195.955 195.955i −0.269539 0.269539i 0.559376 0.828914i \(-0.311041\pi\)
−0.828914 + 0.559376i \(0.811041\pi\)
\(728\) −245.216 + 163.848i −0.336834 + 0.225066i
\(729\) −661.808 + 274.130i −0.907830 + 0.376036i
\(730\) 0 0
\(731\) −1239.18 −1.69518
\(732\) −11.1555 −0.0152398
\(733\) −169.675 409.632i −0.231480 0.558843i 0.764871 0.644183i \(-0.222802\pi\)
−0.996352 + 0.0853397i \(0.972802\pi\)
\(734\) 597.376 + 894.036i 0.813863 + 1.21803i
\(735\) 0 0
\(736\) 33.6219 169.029i 0.0456820 0.229659i
\(737\) 361.333 540.773i 0.490275 0.733749i
\(738\) 121.076 + 608.689i 0.164059 + 0.824782i
\(739\) 98.1432 + 40.6523i 0.132805 + 0.0550098i 0.448096 0.893985i \(-0.352102\pi\)
−0.315291 + 0.948995i \(0.602102\pi\)
\(740\) 0 0
\(741\) 26.8790 5.34656i 0.0362739 0.00721533i
\(742\) 59.0234 + 39.4382i 0.0795463 + 0.0531512i
\(743\) −905.734 180.162i −1.21902 0.242479i −0.456668 0.889637i \(-0.650957\pi\)
−0.762355 + 0.647159i \(0.775957\pi\)
\(744\) 0.965673 + 0.965673i 0.00129795 + 0.00129795i
\(745\) 0 0
\(746\) −1164.99 + 482.554i −1.56165 + 0.646855i
\(747\) 604.891i 0.809760i
\(748\) −115.207 172.419i −0.154020 0.230507i
\(749\) −59.5595 −0.0795187
\(750\) 0 0
\(751\) 636.671 + 952.846i 0.847765 + 1.26877i 0.961374 + 0.275244i \(0.0887587\pi\)
−0.113610 + 0.993525i \(0.536241\pi\)
\(752\) −195.534 + 195.534i −0.260018 + 0.260018i
\(753\) 8.52102 42.8381i 0.0113161 0.0568899i
\(754\) 273.869 409.873i 0.363221 0.543598i
\(755\) 0 0
\(756\) −13.9973 5.79787i −0.0185150 0.00766915i
\(757\) −24.5973 + 59.3832i −0.0324932 + 0.0784455i −0.939293 0.343116i \(-0.888518\pi\)
0.906800 + 0.421561i \(0.138518\pi\)
\(758\) 1513.99 301.151i 1.99734 0.397296i
\(759\) −25.7043 17.1751i −0.0338660 0.0226285i
\(760\) 0 0
\(761\) −173.164 173.164i −0.227548 0.227548i 0.584120 0.811668i \(-0.301440\pi\)
−0.811668 + 0.584120i \(0.801440\pi\)
\(762\) −28.2282 + 18.8615i −0.0370449 + 0.0247526i
\(763\) 671.137 277.994i 0.879602 0.364343i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) −73.3731 177.138i −0.0956624 0.230950i
\(768\) 13.8148 + 20.6753i 0.0179880 + 0.0269210i
\(769\) 550.339 550.339i 0.715655 0.715655i −0.252057 0.967712i \(-0.581107\pi\)
0.967712 + 0.252057i \(0.0811072\pi\)
\(770\) 0 0
\(771\) 4.74102 7.09544i 0.00614919 0.00920291i
\(772\) −14.4046 72.4170i −0.0186588 0.0938044i
\(773\) −399.534 165.492i −0.516861 0.214091i 0.108976 0.994044i \(-0.465243\pi\)
−0.625837 + 0.779953i \(0.715243\pi\)
\(774\) 550.442 1328.89i 0.711166 1.71691i
\(775\) 0 0
\(776\) 391.361 + 261.499i 0.504331 + 0.336983i
\(777\) −46.0092 9.15179i −0.0592139 0.0117784i
\(778\) 443.266 + 443.266i 0.569751 + 0.569751i
\(779\) 653.397 436.586i 0.838764 0.560444i
\(780\) 0 0
\(781\) 846.408i 1.08375i
\(782\) 95.5146 + 480.184i 0.122141 + 0.614047i
\(783\) −95.9569 −0.122550
\(784\) 71.3878 + 172.345i 0.0910559 + 0.219828i
\(785\) 0 0
\(786\) 10.7800 10.7800i 0.0137150 0.0137150i
\(787\) 222.286 1117.51i 0.282447 1.41996i −0.535437 0.844575i \(-0.679853\pi\)
0.817884 0.575383i \(-0.195147\pi\)
\(788\) 119.428 178.736i 0.151558 0.226822i
\(789\) −16.0029 80.4518i −0.0202824 0.101967i
\(790\) 0 0
\(791\) 157.601 380.481i 0.199242 0.481013i
\(792\) −894.537 + 177.934i −1.12947 + 0.224665i
\(793\) 466.336 + 311.595i 0.588065 + 0.392932i
\(794\) −268.177 53.3436i −0.337754 0.0671834i
\(795\) 0 0
\(796\) −157.954 + 105.541i −0.198434 + 0.132590i
\(797\) −104.084 + 43.1132i −0.130595 + 0.0540943i −0.447024 0.894522i \(-0.647516\pi\)
0.316429 + 0.948616i \(0.397516\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 96.4946 232.959i 0.120769 0.291563i
\(800\) 0 0
\(801\) −437.775 1056.88i −0.546536 1.31945i
\(802\) −521.614 780.650i −0.650391 0.973379i
\(803\) −13.9147 + 13.9147i −0.0173284 + 0.0173284i
\(804\) −1.17274 + 5.89575i −0.00145863 + 0.00733302i
\(805\) 0 0
\(806\) 3.53507 + 17.7720i 0.00438594 + 0.0220496i
\(807\) −26.3178 10.9012i −0.0326119 0.0135083i
\(808\) 92.2520 222.716i 0.114173 0.275639i
\(809\) 638.126 126.931i 0.788783 0.156899i 0.215769 0.976444i \(-0.430774\pi\)
0.573014 + 0.819546i \(0.305774\pi\)
\(810\) 0 0
\(811\) −631.322 125.578i −0.778449 0.154843i −0.210154 0.977668i \(-0.567397\pi\)
−0.568294 + 0.822825i \(0.692397\pi\)
\(812\) 121.822 + 121.822i 0.150027 + 0.150027i
\(813\) 62.3868 41.6855i 0.0767366 0.0512737i
\(814\) 1379.10 571.243i 1.69423 0.701773i
\(815\) 0 0
\(816\) −42.5900 28.4577i −0.0521936 0.0348747i
\(817\) −1821.30 −2.22925
\(818\) −181.383 437.897i −0.221739 0.535326i
\(819\) 211.285 + 316.210i 0.257979 + 0.386093i
\(820\) 0 0
\(821\) −174.401 + 876.775i −0.212426 + 1.06794i 0.716477 + 0.697611i \(0.245754\pi\)
−0.928902 + 0.370325i \(0.879246\pi\)
\(822\) 12.6013 18.8592i 0.0153300 0.0229430i
\(823\) −180.424 907.053i −0.219227 1.10213i −0.920950 0.389680i \(-0.872586\pi\)
0.701723 0.712450i \(-0.252414\pi\)
\(824\) −971.901 402.575i −1.17949 0.488562i
\(825\) 0 0
\(826\) 380.476 75.6813i 0.460624 0.0916239i
\(827\) 704.948 + 471.032i 0.852417 + 0.569567i 0.903237 0.429141i \(-0.141184\pi\)
−0.0508208 + 0.998708i \(0.516184\pi\)
\(828\) −96.2787 19.1510i −0.116279 0.0231292i
\(829\) 862.801 + 862.801i 1.04077 + 1.04077i 0.999133 + 0.0416400i \(0.0132583\pi\)
0.0416400 + 0.999133i \(0.486742\pi\)
\(830\) 0 0
\(831\) 26.3667 10.9215i 0.0317289 0.0131426i
\(832\) 309.729i 0.372271i
\(833\) −120.281 120.281i −0.144395 0.144395i
\(834\) −92.8715 −0.111357
\(835\) 0 0
\(836\) −169.327 253.416i −0.202545 0.303129i
\(837\) 2.49414 2.49414i 0.00297985 0.00297985i
\(838\) 266.908 1341.84i 0.318506 1.60124i
\(839\) −213.563 + 319.620i −0.254545 + 0.380954i −0.936631 0.350319i \(-0.886073\pi\)
0.682085 + 0.731273i \(0.261073\pi\)
\(840\) 0 0
\(841\) 231.119 + 95.7324i 0.274814 + 0.113832i
\(842\) 43.2829 104.494i 0.0514048 0.124102i
\(843\) −63.3230 + 12.5957i −0.0751162 + 0.0149415i
\(844\) −5.61660 3.75289i −0.00665474 0.00444655i
\(845\) 0 0
\(846\) 206.961 + 206.961i 0.244634 + 0.244634i
\(847\) 479.215 320.201i 0.565779 0.378042i
\(848\) −89.0448 + 36.8836i −0.105006 + 0.0434948i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) 2.99375 + 7.22756i 0.00351380 + 0.00848305i
\(853\) 485.458 + 726.539i 0.569118 + 0.851745i 0.998684 0.0512903i \(-0.0163334\pi\)
−0.429566 + 0.903036i \(0.641333\pi\)
\(854\) −802.404 + 802.404i −0.939583 + 0.939583i
\(855\) 0 0
\(856\) 36.8760 55.1888i 0.0430794 0.0644729i
\(857\) 262.053 + 1317.43i 0.305779 + 1.53726i 0.762111 + 0.647446i \(0.224163\pi\)
−0.456332 + 0.889810i \(0.650837\pi\)
\(858\) 32.5429 + 13.4797i 0.0379288 + 0.0157106i
\(859\) −97.9655 + 236.510i −0.114046 + 0.275331i −0.970588 0.240745i \(-0.922608\pi\)
0.856542 + 0.516077i \(0.172608\pi\)
\(860\) 0 0
\(861\) −26.3918 17.6344i −0.0306525 0.0204813i
\(862\) 1014.96 + 201.887i 1.17744 + 0.234208i
\(863\) 1137.90 + 1137.90i 1.31854 + 1.31854i 0.914930 + 0.403612i \(0.132245\pi\)
0.403612 + 0.914930i \(0.367755\pi\)
\(864\) 31.7825 21.2364i 0.0367853 0.0245791i
\(865\) 0 0
\(866\) 1415.19i 1.63417i
\(867\) 45.8102 + 9.11221i 0.0528376 + 0.0105100i
\(868\) −6.33287 −0.00729593
\(869\) 166.114 + 401.035i 0.191156 + 0.461490i
\(870\) 0 0
\(871\) 213.704 213.704i 0.245355 0.245355i
\(872\) −157.937 + 794.004i −0.181121 + 0.910555i
\(873\) 337.208 504.668i 0.386264 0.578085i
\(874\) 140.384 + 705.760i 0.160623 + 0.807505i
\(875\) 0 0
\(876\) 0.0696025 0.168035i 7.94550e−5 0.000191821i
\(877\) 483.538 96.1816i 0.551354 0.109671i 0.0884519 0.996080i \(-0.471808\pi\)
0.462902 + 0.886409i \(0.346808\pi\)
\(878\) −1512.85 1010.86i −1.72307 1.15132i
\(879\) −37.8854 7.53588i −0.0431006 0.00857324i
\(880\) 0 0
\(881\) −334.347 + 223.404i −0.379508 + 0.253579i −0.730663 0.682738i \(-0.760789\pi\)
0.351155 + 0.936317i \(0.385789\pi\)
\(882\) 182.417 75.5597i 0.206822 0.0856686i
\(883\) 907.327i 1.02755i 0.857925 + 0.513775i \(0.171754\pi\)
−0.857925 + 0.513775i \(0.828246\pi\)
\(884\) −36.8755 89.0253i −0.0417144 0.100707i
\(885\) 0 0
\(886\) −298.248 720.035i −0.336624 0.812681i
\(887\) 705.933 + 1056.50i 0.795866 + 1.19110i 0.978160 + 0.207854i \(0.0666478\pi\)
−0.182294 + 0.983244i \(0.558352\pi\)
\(888\) 36.9665 36.9665i 0.0416290 0.0416290i
\(889\) −116.379 + 585.074i −0.130910 + 0.658127i
\(890\) 0 0
\(891\) 228.780 + 1150.16i 0.256768 + 1.29086i
\(892\) 37.8615 + 15.6828i 0.0424457 + 0.0175816i
\(893\) 141.825 342.395i 0.158818 0.383421i
\(894\) −41.2096 + 8.19710i −0.0460957 + 0.00916901i
\(895\) 0 0
\(896\) 936.988 + 186.379i 1.04575 + 0.208012i
\(897\) −10.1579 10.1579i −0.0113243 0.0113243i
\(898\) −1436.96 + 960.148i −1.60018 + 1.06921i
\(899\) −37.0564 + 15.3493i −0.0412195 + 0.0170737i
\(900\) 0 0
\(901\) 62.1448 62.1448i 0.0689732 0.0689732i
\(902\) 1010.03 1.11976
\(903\) 28.1522 + 67.9654i 0.0311763 + 0.0752663i
\(904\) 254.983 + 381.608i 0.282060 + 0.422133i
\(905\) 0 0
\(906\) 1.92002 9.65257i 0.00211922 0.0106541i
\(907\) −852.359 + 1275.64i −0.939756 + 1.40644i −0.0262336 + 0.999656i \(0.508351\pi\)
−0.913522 + 0.406788i \(0.866649\pi\)
\(908\) 27.3842 + 137.670i 0.0301588 + 0.151619i
\(909\) −287.197 118.961i −0.315948 0.130870i
\(910\) 0 0
\(911\) 359.228 71.4549i 0.394323 0.0784357i 0.00605352 0.999982i \(-0.498073\pi\)
0.388269 + 0.921546i \(0.373073\pi\)
\(912\) −62.5974 41.8262i −0.0686375 0.0458621i
\(913\) −965.523 192.054i −1.05753 0.210355i
\(914\) −505.549 505.549i −0.553117 0.553117i
\(915\) 0 0
\(916\) −95.8181 + 39.6892i −0.104605 + 0.0433288i
\(917\) 267.877i 0.292123i
\(918\) −60.3292 + 90.2891i −0.0657181 + 0.0983541i
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) 0 0
\(921\) 36.8099 + 55.0899i 0.0399673 + 0.0598153i
\(922\) 382.839 382.839i 0.415226 0.415226i
\(923\) 76.7316 385.756i 0.0831328 0.417937i
\(924\) −6.83940 + 10.2359i −0.00740195 + 0.0110778i
\(925\) 0 0
\(926\) 712.706 + 295.212i 0.769661 + 0.318804i
\(927\) −519.128 + 1253.29i −0.560009 + 1.35198i
\(928\) −426.312 + 84.7988i −0.459388 + 0.0913780i
\(929\) 807.914 + 539.831i 0.869660 + 0.581088i 0.908372 0.418162i \(-0.137326\pi\)
−0.0387126 + 0.999250i \(0.512326\pi\)
\(930\) 0 0
\(931\) −176.785 176.785i −0.189887 0.189887i
\(932\) −245.195 + 163.834i −0.263085 + 0.175788i
\(933\) −32.3426 + 13.3967i −0.0346652 + 0.0143588i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) 229.656 + 554.438i 0.245097 + 0.591716i 0.997775 0.0666728i \(-0.0212384\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(938\) 339.721 + 508.428i 0.362176 + 0.542034i
\(939\) 54.1023 54.1023i 0.0576170 0.0576170i
\(940\) 0 0
\(941\) 602.514 901.726i 0.640291 0.958263i −0.359394 0.933186i \(-0.617017\pi\)
0.999686 0.0250777i \(-0.00798332\pi\)
\(942\) −5.48059 27.5528i −0.00581804 0.0292493i
\(943\) −380.563 157.634i −0.403566 0.167162i
\(944\) −201.562 + 486.613i −0.213519 + 0.515480i
\(945\) 0 0
\(946\) −1946.39 1300.54i −2.05750 1.37478i
\(947\) −683.372 135.931i −0.721618 0.143539i −0.179400 0.983776i \(-0.557416\pi\)
−0.542219 + 0.840237i \(0.682416\pi\)
\(948\) −2.83693 2.83693i −0.00299254 0.00299254i
\(949\) −7.60316 + 5.08027i −0.00801176 + 0.00535329i
\(950\) 0 0
\(951\) 41.4305i 0.0435651i
\(952\) −724.559 + 144.124i −0.761091 + 0.151390i
\(953\) 1779.95 1.86774 0.933868 0.357618i \(-0.116411\pi\)
0.933868 + 0.357618i \(0.116411\pi\)
\(954\) 39.0390 + 94.2485i 0.0409214 + 0.0987930i
\(955\) 0 0
\(956\) −121.972 + 121.972i −0.127586 + 0.127586i
\(957\) −15.2111 + 76.4716i −0.0158946 + 0.0799076i
\(958\) 613.843 918.681i 0.640754 0.958957i
\(959\) −77.7522 390.887i −0.0810763 0.407598i
\(960\) 0 0
\(961\) −367.195 + 886.486i −0.382096 + 0.922462i
\(962\) 680.322 135.324i 0.707195 0.140670i
\(963\) −71.1671 47.5523i −0.0739015 0.0493794i
\(964\) −235.945 46.9324i −0.244756 0.0486850i
\(965\) 0 0
\(966\) 24.1669 16.1478i 0.0250175 0.0167161i
\(967\) 558.012 231.136i 0.577055 0.239024i −0.0750154 0.997182i \(-0.523901\pi\)
0.652071 + 0.758158i \(0.273901\pi\)
\(968\) 642.299i 0.663532i
\(969\) 67.3303 + 13.3928i 0.0694843 + 0.0138213i
\(970\) 0 0
\(971\) 421.281 + 1017.06i 0.433863 + 1.04744i 0.978031 + 0.208461i \(0.0668454\pi\)
−0.544168 + 0.838976i \(0.683155\pi\)
\(972\) −18.1531 27.1681i −0.0186760 0.0279507i
\(973\) −1153.90 + 1153.90i −1.18592 + 1.18592i
\(974\) −108.013 + 543.017i −0.110896 + 0.557512i
\(975\) 0 0
\(976\) −300.579 1511.11i −0.307971 1.54827i
\(977\) −1012.20 419.266i −1.03603 0.429136i −0.201142 0.979562i \(-0.564465\pi\)
−0.834884 + 0.550426i \(0.814465\pi\)
\(978\) 7.55010 18.2276i 0.00771994 0.0186376i
\(979\) −1825.98 + 363.211i −1.86515 + 0.371002i
\(980\) 0 0
\(981\) 1023.88 + 203.663i 1.04372 + 0.207608i
\(982\) −351.948 351.948i −0.358399 0.358399i
\(983\) 1021.98 682.863i 1.03965 0.694673i 0.0862178 0.996276i \(-0.472522\pi\)
0.953433 + 0.301604i \(0.0975219\pi\)
\(984\) 32.6807 13.5368i 0.0332121 0.0137569i
\(985\) 0 0
\(986\) 1026.71 686.025i 1.04129 0.695766i
\(987\) −14.9694 −0.0151665
\(988\) −54.1984 130.847i −0.0548567 0.132436i
\(989\) 530.396 + 793.794i 0.536295 + 0.802623i
\(990\) 0 0
\(991\) −143.735 + 722.604i −0.145040 + 0.729167i 0.837985 + 0.545694i \(0.183734\pi\)
−0.983025 + 0.183473i \(0.941266\pi\)
\(992\) 8.87670 13.2849i 0.00894829 0.0133921i
\(993\) −7.11841 35.7867i −0.00716859 0.0360389i
\(994\) 735.207 + 304.533i 0.739645 + 0.306371i
\(995\) 0 0
\(996\) 8.92400 1.77509i 0.00895984 0.00178222i
\(997\) −145.149 96.9855i −0.145586 0.0972774i 0.480644 0.876916i \(-0.340403\pi\)
−0.626230 + 0.779638i \(0.715403\pi\)
\(998\) −465.511 92.5960i −0.466444 0.0927815i
\(999\) −95.4770 95.4770i −0.0955725 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.b.226.1 8
5.2 odd 4 425.3.t.a.124.1 8
5.3 odd 4 425.3.t.c.124.1 8
5.4 even 2 17.3.e.a.5.1 8
15.14 odd 2 153.3.p.b.73.1 8
17.7 odd 16 inner 425.3.u.b.126.1 8
20.19 odd 2 272.3.bh.c.209.1 8
85.4 even 4 289.3.e.m.131.1 8
85.7 even 16 425.3.t.c.24.1 8
85.9 even 8 289.3.e.d.65.1 8
85.14 odd 16 289.3.e.d.249.1 8
85.19 even 8 289.3.e.k.224.1 8
85.24 odd 16 17.3.e.a.7.1 yes 8
85.29 odd 16 289.3.e.k.40.1 8
85.39 odd 16 289.3.e.l.40.1 8
85.44 odd 16 289.3.e.c.75.1 8
85.49 even 8 289.3.e.l.224.1 8
85.54 odd 16 289.3.e.b.249.1 8
85.58 even 16 425.3.t.a.24.1 8
85.59 even 8 289.3.e.b.65.1 8
85.64 even 4 289.3.e.i.131.1 8
85.74 odd 16 289.3.e.m.214.1 8
85.79 odd 16 289.3.e.i.214.1 8
85.84 even 2 289.3.e.c.158.1 8
255.194 even 16 153.3.p.b.109.1 8
340.279 even 16 272.3.bh.c.177.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 5.4 even 2
17.3.e.a.7.1 yes 8 85.24 odd 16
153.3.p.b.73.1 8 15.14 odd 2
153.3.p.b.109.1 8 255.194 even 16
272.3.bh.c.177.1 8 340.279 even 16
272.3.bh.c.209.1 8 20.19 odd 2
289.3.e.b.65.1 8 85.59 even 8
289.3.e.b.249.1 8 85.54 odd 16
289.3.e.c.75.1 8 85.44 odd 16
289.3.e.c.158.1 8 85.84 even 2
289.3.e.d.65.1 8 85.9 even 8
289.3.e.d.249.1 8 85.14 odd 16
289.3.e.i.131.1 8 85.64 even 4
289.3.e.i.214.1 8 85.79 odd 16
289.3.e.k.40.1 8 85.29 odd 16
289.3.e.k.224.1 8 85.19 even 8
289.3.e.l.40.1 8 85.39 odd 16
289.3.e.l.224.1 8 85.49 even 8
289.3.e.m.131.1 8 85.4 even 4
289.3.e.m.214.1 8 85.74 odd 16
425.3.t.a.24.1 8 85.58 even 16
425.3.t.a.124.1 8 5.2 odd 4
425.3.t.c.24.1 8 85.7 even 16
425.3.t.c.124.1 8 5.3 odd 4
425.3.u.b.126.1 8 17.7 odd 16 inner
425.3.u.b.226.1 8 1.1 even 1 trivial