Properties

Label 153.3.p.b.73.1
Level $153$
Weight $3$
Character 153.73
Analytic conductor $4.169$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(10,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.10"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.p (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,0,-16,0,8,24,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 73.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 153.73
Dual form 153.3.p.b.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.841487 + 2.03153i) q^{2} +(-0.590587 + 0.590587i) q^{4} +(1.04667 - 5.26197i) q^{5} +(1.21824 + 6.12453i) q^{7} +(6.42935 + 2.66313i) q^{8} +(11.5706 - 2.30154i) q^{10} +(12.1433 + 8.11392i) q^{11} +(4.79884 + 4.79884i) q^{13} +(-11.4170 + 7.62861i) q^{14} +18.6433i q^{16} +(-6.50562 - 15.7060i) q^{17} +(-9.56175 - 23.0841i) q^{19} +(2.48950 + 3.72580i) q^{20} +(-6.26521 + 31.4973i) q^{22} +(-7.27639 + 10.8899i) q^{23} +(-3.49585 - 1.44803i) q^{25} +(-5.71082 + 13.7871i) q^{26} +(-4.33654 - 2.89759i) q^{28} +(-32.3980 - 6.44436i) q^{29} +(-1.00960 + 0.674593i) q^{31} +(-12.1570 + 5.03558i) q^{32} +(26.4327 - 26.4327i) q^{34} +33.5022 q^{35} +(-25.8238 - 38.6481i) q^{37} +(38.8500 - 38.8500i) q^{38} +(20.7427 - 31.0437i) q^{40} +(-6.13577 - 30.8466i) q^{41} +(-27.8948 + 67.3441i) q^{43} +(-11.9637 + 2.37972i) q^{44} +(-28.2461 - 5.61851i) q^{46} +(10.4882 + 10.4882i) q^{47} +(9.24438 - 3.82915i) q^{49} -8.32041i q^{50} -5.66826 q^{52} +(1.97838 + 4.77624i) q^{53} +(55.4053 - 55.4053i) q^{55} +(-8.47786 + 42.6211i) q^{56} +(-14.1706 - 71.2404i) q^{58} +(-26.1013 - 10.8115i) q^{59} +(-81.0541 + 16.1227i) q^{61} +(-2.22002 - 1.48337i) q^{62} +(32.2713 + 32.2713i) q^{64} +(30.2741 - 20.2285i) q^{65} -44.5324i q^{67} +(13.1179 + 5.43359i) q^{68} +(28.1917 + 68.0607i) q^{70} +(-32.1978 - 48.1875i) q^{71} +(-0.262865 + 1.32151i) q^{73} +(56.7843 - 84.9838i) q^{74} +(19.2802 + 7.98612i) q^{76} +(-34.9004 + 84.2570i) q^{77} +(-24.7128 - 16.5125i) q^{79} +(98.1004 + 19.5134i) q^{80} +(57.5026 - 38.4220i) q^{82} +(62.2748 - 25.7951i) q^{83} +(-89.4535 + 17.7934i) q^{85} -160.285 q^{86} +(56.4655 + 84.5065i) q^{88} +(-90.1397 + 90.1397i) q^{89} +(-23.5444 + 35.2368i) q^{91} +(-2.13408 - 10.7288i) q^{92} +(-12.4814 + 30.1327i) q^{94} +(-131.476 + 26.1522i) q^{95} +(-66.3366 - 13.1952i) q^{97} +(15.5581 + 15.5581i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 16 q^{5} + 8 q^{7} + 24 q^{8} + 16 q^{10} + 8 q^{11} + 16 q^{13} - 8 q^{14} + 80 q^{20} - 104 q^{22} + 56 q^{23} + 64 q^{25} - 176 q^{26} + 152 q^{28} - 48 q^{29} + 24 q^{31} - 88 q^{32}+ \cdots + 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{5}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.841487 + 2.03153i 0.420744 + 1.01577i 0.982129 + 0.188210i \(0.0602687\pi\)
−0.561385 + 0.827555i \(0.689731\pi\)
\(3\) 0 0
\(4\) −0.590587 + 0.590587i −0.147647 + 0.147647i
\(5\) 1.04667 5.26197i 0.209334 1.05239i −0.723014 0.690833i \(-0.757244\pi\)
0.932348 0.361561i \(-0.117756\pi\)
\(6\) 0 0
\(7\) 1.21824 + 6.12453i 0.174035 + 0.874933i 0.964835 + 0.262858i \(0.0846649\pi\)
−0.790800 + 0.612075i \(0.790335\pi\)
\(8\) 6.42935 + 2.66313i 0.803669 + 0.332891i
\(9\) 0 0
\(10\) 11.5706 2.30154i 1.15706 0.230154i
\(11\) 12.1433 + 8.11392i 1.10394 + 0.737629i 0.967463 0.253014i \(-0.0814218\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(12\) 0 0
\(13\) 4.79884 + 4.79884i 0.369141 + 0.369141i 0.867164 0.498023i \(-0.165940\pi\)
−0.498023 + 0.867164i \(0.665940\pi\)
\(14\) −11.4170 + 7.62861i −0.815502 + 0.544901i
\(15\) 0 0
\(16\) 18.6433i 1.16520i
\(17\) −6.50562 15.7060i −0.382683 0.923880i
\(18\) 0 0
\(19\) −9.56175 23.0841i −0.503250 1.21495i −0.947704 0.319151i \(-0.896602\pi\)
0.444454 0.895802i \(-0.353398\pi\)
\(20\) 2.48950 + 3.72580i 0.124475 + 0.186290i
\(21\) 0 0
\(22\) −6.26521 + 31.4973i −0.284782 + 1.43170i
\(23\) −7.27639 + 10.8899i −0.316365 + 0.473474i −0.955238 0.295839i \(-0.904401\pi\)
0.638873 + 0.769312i \(0.279401\pi\)
\(24\) 0 0
\(25\) −3.49585 1.44803i −0.139834 0.0579211i
\(26\) −5.71082 + 13.7871i −0.219647 + 0.530274i
\(27\) 0 0
\(28\) −4.33654 2.89759i −0.154877 0.103485i
\(29\) −32.3980 6.44436i −1.11717 0.222219i −0.398228 0.917287i \(-0.630375\pi\)
−0.718945 + 0.695067i \(0.755375\pi\)
\(30\) 0 0
\(31\) −1.00960 + 0.674593i −0.0325678 + 0.0217611i −0.571748 0.820430i \(-0.693734\pi\)
0.539180 + 0.842191i \(0.318734\pi\)
\(32\) −12.1570 + 5.03558i −0.379905 + 0.157362i
\(33\) 0 0
\(34\) 26.4327 26.4327i 0.777433 0.777433i
\(35\) 33.5022 0.957206
\(36\) 0 0
\(37\) −25.8238 38.6481i −0.697941 1.04454i −0.995944 0.0899781i \(-0.971320\pi\)
0.298002 0.954565i \(-0.403680\pi\)
\(38\) 38.8500 38.8500i 1.02237 1.02237i
\(39\) 0 0
\(40\) 20.7427 31.0437i 0.518568 0.776092i
\(41\) −6.13577 30.8466i −0.149653 0.752356i −0.980602 0.196008i \(-0.937202\pi\)
0.830949 0.556348i \(-0.187798\pi\)
\(42\) 0 0
\(43\) −27.8948 + 67.3441i −0.648717 + 1.56614i 0.165901 + 0.986142i \(0.446947\pi\)
−0.814617 + 0.579999i \(0.803053\pi\)
\(44\) −11.9637 + 2.37972i −0.271902 + 0.0540846i
\(45\) 0 0
\(46\) −28.2461 5.61851i −0.614047 0.122141i
\(47\) 10.4882 + 10.4882i 0.223153 + 0.223153i 0.809825 0.586672i \(-0.199562\pi\)
−0.586672 + 0.809825i \(0.699562\pi\)
\(48\) 0 0
\(49\) 9.24438 3.82915i 0.188661 0.0781458i
\(50\) 8.32041i 0.166408i
\(51\) 0 0
\(52\) −5.66826 −0.109005
\(53\) 1.97838 + 4.77624i 0.0373280 + 0.0901178i 0.941444 0.337169i \(-0.109469\pi\)
−0.904116 + 0.427287i \(0.859469\pi\)
\(54\) 0 0
\(55\) 55.4053 55.4053i 1.00737 1.00737i
\(56\) −8.47786 + 42.6211i −0.151390 + 0.761091i
\(57\) 0 0
\(58\) −14.1706 71.2404i −0.244321 1.22828i
\(59\) −26.1013 10.8115i −0.442394 0.183246i 0.150356 0.988632i \(-0.451958\pi\)
−0.592751 + 0.805386i \(0.701958\pi\)
\(60\) 0 0
\(61\) −81.0541 + 16.1227i −1.32876 + 0.264306i −0.807891 0.589332i \(-0.799391\pi\)
−0.520866 + 0.853639i \(0.674391\pi\)
\(62\) −2.22002 1.48337i −0.0358068 0.0239254i
\(63\) 0 0
\(64\) 32.2713 + 32.2713i 0.504239 + 0.504239i
\(65\) 30.2741 20.2285i 0.465756 0.311208i
\(66\) 0 0
\(67\) 44.5324i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(68\) 13.1179 + 5.43359i 0.192910 + 0.0799058i
\(69\) 0 0
\(70\) 28.1917 + 68.0607i 0.402738 + 0.972296i
\(71\) −32.1978 48.1875i −0.453491 0.678697i 0.532323 0.846541i \(-0.321319\pi\)
−0.985813 + 0.167845i \(0.946319\pi\)
\(72\) 0 0
\(73\) −0.262865 + 1.32151i −0.00360089 + 0.0181029i −0.982544 0.186031i \(-0.940438\pi\)
0.978943 + 0.204133i \(0.0654377\pi\)
\(74\) 56.7843 84.9838i 0.767356 1.14843i
\(75\) 0 0
\(76\) 19.2802 + 7.98612i 0.253687 + 0.105081i
\(77\) −34.9004 + 84.2570i −0.453252 + 1.09425i
\(78\) 0 0
\(79\) −24.7128 16.5125i −0.312820 0.209020i 0.389242 0.921136i \(-0.372737\pi\)
−0.702062 + 0.712116i \(0.747737\pi\)
\(80\) 98.1004 + 19.5134i 1.22626 + 0.243917i
\(81\) 0 0
\(82\) 57.5026 38.4220i 0.701252 0.468561i
\(83\) 62.2748 25.7951i 0.750298 0.310784i 0.0254351 0.999676i \(-0.491903\pi\)
0.724863 + 0.688893i \(0.241903\pi\)
\(84\) 0 0
\(85\) −89.4535 + 17.7934i −1.05239 + 0.209334i
\(86\) −160.285 −1.86377
\(87\) 0 0
\(88\) 56.4655 + 84.5065i 0.641653 + 0.960302i
\(89\) −90.1397 + 90.1397i −1.01281 + 1.01281i −0.0128890 + 0.999917i \(0.504103\pi\)
−0.999917 + 0.0128890i \(0.995897\pi\)
\(90\) 0 0
\(91\) −23.5444 + 35.2368i −0.258730 + 0.387217i
\(92\) −2.13408 10.7288i −0.0231966 0.116617i
\(93\) 0 0
\(94\) −12.4814 + 30.1327i −0.132781 + 0.320561i
\(95\) −131.476 + 26.1522i −1.38396 + 0.275286i
\(96\) 0 0
\(97\) −66.3366 13.1952i −0.683882 0.136033i −0.159091 0.987264i \(-0.550856\pi\)
−0.524791 + 0.851231i \(0.675856\pi\)
\(98\) 15.5581 + 15.5581i 0.158756 + 0.158756i
\(99\) 0 0
\(100\) 2.91979 1.20941i 0.0291979 0.0120941i
\(101\) 34.6405i 0.342975i 0.985186 + 0.171488i \(0.0548573\pi\)
−0.985186 + 0.171488i \(0.945143\pi\)
\(102\) 0 0
\(103\) 151.166 1.46763 0.733817 0.679347i \(-0.237737\pi\)
0.733817 + 0.679347i \(0.237737\pi\)
\(104\) 18.0735 + 43.6333i 0.173784 + 0.419551i
\(105\) 0 0
\(106\) −8.03830 + 8.03830i −0.0758330 + 0.0758330i
\(107\) 1.86075 9.35463i 0.0173902 0.0874264i −0.971116 0.238610i \(-0.923308\pi\)
0.988506 + 0.151183i \(0.0483083\pi\)
\(108\) 0 0
\(109\) 22.6951 + 114.096i 0.208212 + 1.04675i 0.933574 + 0.358385i \(0.116673\pi\)
−0.725362 + 0.688368i \(0.758327\pi\)
\(110\) 159.180 + 65.9347i 1.44710 + 0.599406i
\(111\) 0 0
\(112\) −114.181 + 22.7121i −1.01948 + 0.202786i
\(113\) 54.8360 + 36.6403i 0.485274 + 0.324250i 0.774026 0.633154i \(-0.218240\pi\)
−0.288751 + 0.957404i \(0.593240\pi\)
\(114\) 0 0
\(115\) 49.6863 + 49.6863i 0.432055 + 0.432055i
\(116\) 22.9398 15.3279i 0.197757 0.132137i
\(117\) 0 0
\(118\) 62.1233i 0.526468i
\(119\) 88.2661 58.9775i 0.741732 0.495609i
\(120\) 0 0
\(121\) 35.3203 + 85.2709i 0.291904 + 0.704718i
\(122\) −100.960 151.097i −0.827539 1.23850i
\(123\) 0 0
\(124\) 0.197851 0.994662i 0.00159557 0.00802147i
\(125\) 63.2382 94.6427i 0.505906 0.757141i
\(126\) 0 0
\(127\) 88.2580 + 36.5576i 0.694945 + 0.287855i 0.702059 0.712119i \(-0.252264\pi\)
−0.00711395 + 0.999975i \(0.502264\pi\)
\(128\) −58.5465 + 141.344i −0.457395 + 1.10425i
\(129\) 0 0
\(130\) 66.5702 + 44.4808i 0.512078 + 0.342160i
\(131\) −42.0736 8.36897i −0.321173 0.0638852i 0.0318711 0.999492i \(-0.489853\pi\)
−0.353044 + 0.935607i \(0.614853\pi\)
\(132\) 0 0
\(133\) 129.731 86.6833i 0.975419 0.651754i
\(134\) 90.4690 37.4735i 0.675142 0.279653i
\(135\) 0 0
\(136\) 118.304i 0.869885i
\(137\) 63.8232 0.465863 0.232931 0.972493i \(-0.425168\pi\)
0.232931 + 0.972493i \(0.425168\pi\)
\(138\) 0 0
\(139\) −145.186 217.286i −1.04450 1.56321i −0.805868 0.592095i \(-0.798301\pi\)
−0.238632 0.971110i \(-0.576699\pi\)
\(140\) −19.7860 + 19.7860i −0.141328 + 0.141328i
\(141\) 0 0
\(142\) 70.8002 105.960i 0.498593 0.746197i
\(143\) 19.3365 + 97.2113i 0.135220 + 0.679799i
\(144\) 0 0
\(145\) −67.8201 + 163.732i −0.467725 + 1.12919i
\(146\) −2.90589 + 0.578017i −0.0199033 + 0.00395902i
\(147\) 0 0
\(148\) 38.0763 + 7.57384i 0.257272 + 0.0511746i
\(149\) 83.6010 + 83.6010i 0.561080 + 0.561080i 0.929614 0.368534i \(-0.120140\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(150\) 0 0
\(151\) 25.5851 10.5977i 0.169437 0.0701833i −0.296352 0.955079i \(-0.595770\pi\)
0.465790 + 0.884895i \(0.345770\pi\)
\(152\) 173.880i 1.14395i
\(153\) 0 0
\(154\) −200.539 −1.30220
\(155\) 2.49297 + 6.01857i 0.0160837 + 0.0388295i
\(156\) 0 0
\(157\) −55.8958 + 55.8958i −0.356024 + 0.356024i −0.862345 0.506321i \(-0.831005\pi\)
0.506321 + 0.862345i \(0.331005\pi\)
\(158\) 12.7503 64.0998i 0.0806978 0.405695i
\(159\) 0 0
\(160\) 13.7727 + 69.2402i 0.0860796 + 0.432751i
\(161\) −75.5599 31.2979i −0.469316 0.194397i
\(162\) 0 0
\(163\) −54.4489 + 10.8306i −0.334042 + 0.0664451i −0.359262 0.933237i \(-0.616971\pi\)
0.0252196 + 0.999682i \(0.491971\pi\)
\(164\) 21.8413 + 14.5939i 0.133179 + 0.0889871i
\(165\) 0 0
\(166\) 104.807 + 104.807i 0.631367 + 0.631367i
\(167\) 42.9537 28.7008i 0.257208 0.171861i −0.420281 0.907394i \(-0.638068\pi\)
0.677489 + 0.735533i \(0.263068\pi\)
\(168\) 0 0
\(169\) 122.942i 0.727470i
\(170\) −111.422 166.755i −0.655423 0.980910i
\(171\) 0 0
\(172\) −23.2982 56.2468i −0.135455 0.327016i
\(173\) 10.2620 + 15.3581i 0.0593178 + 0.0887754i 0.859943 0.510390i \(-0.170499\pi\)
−0.800625 + 0.599166i \(0.795499\pi\)
\(174\) 0 0
\(175\) 4.60969 23.1745i 0.0263411 0.132425i
\(176\) −151.270 + 226.392i −0.859489 + 1.28632i
\(177\) 0 0
\(178\) −258.973 107.270i −1.45490 0.602641i
\(179\) −23.9825 + 57.8989i −0.133980 + 0.323457i −0.976604 0.215046i \(-0.931010\pi\)
0.842624 + 0.538503i \(0.181010\pi\)
\(180\) 0 0
\(181\) 86.9711 + 58.1122i 0.480503 + 0.321062i 0.772124 0.635472i \(-0.219194\pi\)
−0.291621 + 0.956534i \(0.594194\pi\)
\(182\) −91.3969 18.1800i −0.502181 0.0998899i
\(183\) 0 0
\(184\) −75.7837 + 50.6370i −0.411868 + 0.275201i
\(185\) −230.394 + 95.4324i −1.24537 + 0.515851i
\(186\) 0 0
\(187\) 48.4369 243.509i 0.259021 1.30219i
\(188\) −12.3883 −0.0658954
\(189\) 0 0
\(190\) −163.764 245.091i −0.861917 1.28995i
\(191\) 137.930 137.930i 0.722145 0.722145i −0.246897 0.969042i \(-0.579411\pi\)
0.969042 + 0.246897i \(0.0794109\pi\)
\(192\) 0 0
\(193\) 49.1142 73.5045i 0.254478 0.380853i −0.682131 0.731230i \(-0.738947\pi\)
0.936609 + 0.350377i \(0.113947\pi\)
\(194\) −29.0150 145.868i −0.149562 0.751899i
\(195\) 0 0
\(196\) −3.19816 + 7.72105i −0.0163172 + 0.0393931i
\(197\) −252.430 + 50.2114i −1.28137 + 0.254880i −0.788398 0.615165i \(-0.789089\pi\)
−0.492972 + 0.870045i \(0.664089\pi\)
\(198\) 0 0
\(199\) 223.079 + 44.3732i 1.12100 + 0.222981i 0.720594 0.693357i \(-0.243869\pi\)
0.400406 + 0.916338i \(0.368869\pi\)
\(200\) −18.6198 18.6198i −0.0930988 0.0930988i
\(201\) 0 0
\(202\) −70.3732 + 29.1495i −0.348382 + 0.144305i
\(203\) 206.273i 1.01612i
\(204\) 0 0
\(205\) −168.736 −0.823103
\(206\) 127.204 + 307.099i 0.617498 + 1.49077i
\(207\) 0 0
\(208\) −89.4660 + 89.4660i −0.430125 + 0.430125i
\(209\) 71.1910 357.901i 0.340627 1.71245i
\(210\) 0 0
\(211\) 1.57784 + 7.93236i 0.00747794 + 0.0375941i 0.984344 0.176257i \(-0.0563991\pi\)
−0.976866 + 0.213852i \(0.931399\pi\)
\(212\) −3.98919 1.65238i −0.0188169 0.00779423i
\(213\) 0 0
\(214\) 20.5700 4.09163i 0.0961215 0.0191198i
\(215\) 325.166 + 217.269i 1.51240 + 1.01055i
\(216\) 0 0
\(217\) −5.36151 5.36151i −0.0247074 0.0247074i
\(218\) −212.692 + 142.116i −0.975651 + 0.651909i
\(219\) 0 0
\(220\) 65.4433i 0.297469i
\(221\) 44.1509 106.590i 0.199778 0.482306i
\(222\) 0 0
\(223\) 18.7769 + 45.3315i 0.0842014 + 0.203280i 0.960372 0.278720i \(-0.0899103\pi\)
−0.876171 + 0.482001i \(0.839910\pi\)
\(224\) −45.6507 68.3211i −0.203798 0.305005i
\(225\) 0 0
\(226\) −28.2920 + 142.233i −0.125186 + 0.629351i
\(227\) 93.3694 139.737i 0.411319 0.615582i −0.566743 0.823894i \(-0.691797\pi\)
0.978062 + 0.208312i \(0.0667969\pi\)
\(228\) 0 0
\(229\) 114.723 + 47.5197i 0.500972 + 0.207510i 0.618836 0.785520i \(-0.287605\pi\)
−0.117864 + 0.993030i \(0.537605\pi\)
\(230\) −59.1289 + 142.750i −0.257082 + 0.620651i
\(231\) 0 0
\(232\) −191.136 127.713i −0.823863 0.550487i
\(233\) 346.291 + 68.8815i 1.48623 + 0.295629i 0.870436 0.492281i \(-0.163837\pi\)
0.615791 + 0.787910i \(0.288837\pi\)
\(234\) 0 0
\(235\) 66.1661 44.2108i 0.281558 0.188131i
\(236\) 21.8002 9.02993i 0.0923737 0.0382624i
\(237\) 0 0
\(238\) 194.089 + 129.686i 0.815502 + 0.544901i
\(239\) −206.527 −0.864131 −0.432066 0.901842i \(-0.642215\pi\)
−0.432066 + 0.901842i \(0.642215\pi\)
\(240\) 0 0
\(241\) 160.021 + 239.488i 0.663988 + 0.993728i 0.998678 + 0.0513996i \(0.0163682\pi\)
−0.334691 + 0.942328i \(0.608632\pi\)
\(242\) −143.509 + 143.509i −0.593011 + 0.593011i
\(243\) 0 0
\(244\) 38.3477 57.3913i 0.157163 0.235210i
\(245\) −10.4730 52.6515i −0.0427471 0.214904i
\(246\) 0 0
\(247\) 64.8915 156.662i 0.262719 0.634259i
\(248\) −8.28761 + 1.64851i −0.0334178 + 0.00664721i
\(249\) 0 0
\(250\) 245.484 + 48.8297i 0.981935 + 0.195319i
\(251\) −191.096 191.096i −0.761337 0.761337i 0.215227 0.976564i \(-0.430951\pi\)
−0.976564 + 0.215227i \(0.930951\pi\)
\(252\) 0 0
\(253\) −176.720 + 73.1996i −0.698496 + 0.289327i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) 20.2061 + 48.7819i 0.0786230 + 0.189813i 0.958303 0.285753i \(-0.0922436\pi\)
−0.879680 + 0.475565i \(0.842244\pi\)
\(258\) 0 0
\(259\) 205.242 205.242i 0.792439 0.792439i
\(260\) −5.93280 + 29.8262i −0.0228185 + 0.114716i
\(261\) 0 0
\(262\) −18.4026 92.5162i −0.0702390 0.353115i
\(263\) 468.907 + 194.228i 1.78292 + 0.738509i 0.991947 + 0.126654i \(0.0404239\pi\)
0.790970 + 0.611854i \(0.209576\pi\)
\(264\) 0 0
\(265\) 27.2032 5.41105i 0.102654 0.0204191i
\(266\) 285.266 + 190.609i 1.07243 + 0.716575i
\(267\) 0 0
\(268\) 26.3003 + 26.3003i 0.0981353 + 0.0981353i
\(269\) −146.551 + 97.9225i −0.544801 + 0.364024i −0.797310 0.603570i \(-0.793744\pi\)
0.252509 + 0.967595i \(0.418744\pi\)
\(270\) 0 0
\(271\) 464.255i 1.71312i 0.516050 + 0.856559i \(0.327402\pi\)
−0.516050 + 0.856559i \(0.672598\pi\)
\(272\) 292.810 121.286i 1.07651 0.445905i
\(273\) 0 0
\(274\) 53.7064 + 129.659i 0.196009 + 0.473207i
\(275\) −30.7021 45.9489i −0.111644 0.167087i
\(276\) 0 0
\(277\) 34.4498 173.191i 0.124368 0.625238i −0.867445 0.497534i \(-0.834239\pi\)
0.991812 0.127704i \(-0.0407609\pi\)
\(278\) 319.250 477.792i 1.14838 1.71868i
\(279\) 0 0
\(280\) 215.398 + 89.2206i 0.769277 + 0.318645i
\(281\) −152.875 + 369.073i −0.544040 + 1.31343i 0.377811 + 0.925883i \(0.376677\pi\)
−0.921851 + 0.387545i \(0.873323\pi\)
\(282\) 0 0
\(283\) 297.348 + 198.682i 1.05070 + 0.702055i 0.955975 0.293448i \(-0.0948029\pi\)
0.0947249 + 0.995503i \(0.469803\pi\)
\(284\) 47.4745 + 9.44326i 0.167164 + 0.0332509i
\(285\) 0 0
\(286\) −181.216 + 121.085i −0.633623 + 0.423373i
\(287\) 181.446 75.1574i 0.632216 0.261872i
\(288\) 0 0
\(289\) −204.354 + 204.354i −0.707107 + 0.707107i
\(290\) −389.697 −1.34378
\(291\) 0 0
\(292\) −0.625222 0.935711i −0.00214117 0.00320449i
\(293\) 169.002 169.002i 0.576800 0.576800i −0.357220 0.934020i \(-0.616275\pi\)
0.934020 + 0.357220i \(0.116275\pi\)
\(294\) 0 0
\(295\) −84.2093 + 126.028i −0.285455 + 0.427214i
\(296\) −63.1058 317.254i −0.213195 1.07181i
\(297\) 0 0
\(298\) −99.4888 + 240.187i −0.333855 + 0.805997i
\(299\) −87.1770 + 17.3406i −0.291562 + 0.0579953i
\(300\) 0 0
\(301\) −446.433 88.8011i −1.48317 0.295020i
\(302\) 43.0590 + 43.0590i 0.142579 + 0.142579i
\(303\) 0 0
\(304\) 430.363 178.262i 1.41567 0.586389i
\(305\) 443.380i 1.45370i
\(306\) 0 0
\(307\) 409.955 1.33536 0.667679 0.744450i \(-0.267288\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(308\) −29.1493 70.3727i −0.0946407 0.228483i
\(309\) 0 0
\(310\) −10.1291 + 10.1291i −0.0326745 + 0.0326745i
\(311\) −42.2576 + 212.443i −0.135877 + 0.683098i 0.851455 + 0.524428i \(0.175721\pi\)
−0.987332 + 0.158670i \(0.949279\pi\)
\(312\) 0 0
\(313\) −92.3584 464.317i −0.295075 1.48344i −0.789246 0.614077i \(-0.789528\pi\)
0.494171 0.869365i \(-0.335472\pi\)
\(314\) −160.590 66.5184i −0.511432 0.211842i
\(315\) 0 0
\(316\) 24.3471 4.84294i 0.0770479 0.0153258i
\(317\) −213.145 142.419i −0.672383 0.449272i 0.171939 0.985108i \(-0.444997\pi\)
−0.844322 + 0.535836i \(0.819997\pi\)
\(318\) 0 0
\(319\) −341.131 341.131i −1.06938 1.06938i
\(320\) 203.588 136.033i 0.636213 0.425104i
\(321\) 0 0
\(322\) 179.839i 0.558506i
\(323\) −300.353 + 300.353i −0.929884 + 0.929884i
\(324\) 0 0
\(325\) −9.82715 23.7248i −0.0302374 0.0729995i
\(326\) −67.8206 101.501i −0.208039 0.311352i
\(327\) 0 0
\(328\) 42.6993 214.664i 0.130181 0.654464i
\(329\) −51.4579 + 77.0122i −0.156407 + 0.234080i
\(330\) 0 0
\(331\) 208.580 + 86.3966i 0.630151 + 0.261017i 0.674817 0.737985i \(-0.264222\pi\)
−0.0446663 + 0.999002i \(0.514222\pi\)
\(332\) −21.5444 + 52.0129i −0.0648929 + 0.156665i
\(333\) 0 0
\(334\) 94.4515 + 63.1105i 0.282789 + 0.188954i
\(335\) −234.328 46.6108i −0.699488 0.139137i
\(336\) 0 0
\(337\) −300.276 + 200.638i −0.891027 + 0.595365i −0.914601 0.404357i \(-0.867495\pi\)
0.0235742 + 0.999722i \(0.492495\pi\)
\(338\) 249.761 103.454i 0.738938 0.306078i
\(339\) 0 0
\(340\) 42.3215 63.3386i 0.124475 0.186290i
\(341\) −17.7335 −0.0520045
\(342\) 0 0
\(343\) 204.708 + 306.367i 0.596815 + 0.893197i
\(344\) −358.691 + 358.691i −1.04271 + 1.04271i
\(345\) 0 0
\(346\) −22.5652 + 33.7712i −0.0652173 + 0.0976046i
\(347\) −3.09377 15.5534i −0.00891575 0.0448225i 0.976071 0.217451i \(-0.0697741\pi\)
−0.984987 + 0.172628i \(0.944774\pi\)
\(348\) 0 0
\(349\) −121.062 + 292.270i −0.346883 + 0.837448i 0.650102 + 0.759847i \(0.274726\pi\)
−0.996984 + 0.0776015i \(0.975274\pi\)
\(350\) 50.9586 10.1363i 0.145596 0.0289608i
\(351\) 0 0
\(352\) −188.484 37.4919i −0.535467 0.106511i
\(353\) −191.613 191.613i −0.542812 0.542812i 0.381540 0.924352i \(-0.375394\pi\)
−0.924352 + 0.381540i \(0.875394\pi\)
\(354\) 0 0
\(355\) −287.262 + 118.988i −0.809188 + 0.335177i
\(356\) 106.471i 0.299075i
\(357\) 0 0
\(358\) −137.804 −0.384928
\(359\) −60.5865 146.269i −0.168765 0.407434i 0.816757 0.576981i \(-0.195769\pi\)
−0.985522 + 0.169547i \(0.945769\pi\)
\(360\) 0 0
\(361\) −186.183 + 186.183i −0.515743 + 0.515743i
\(362\) −44.8717 + 225.585i −0.123955 + 0.623163i
\(363\) 0 0
\(364\) −6.90532 34.7154i −0.0189707 0.0953719i
\(365\) 6.67862 + 2.76638i 0.0182976 + 0.00757911i
\(366\) 0 0
\(367\) −479.595 + 95.3974i −1.30680 + 0.259938i −0.798892 0.601474i \(-0.794580\pi\)
−0.507906 + 0.861413i \(0.669580\pi\)
\(368\) −203.023 135.656i −0.551694 0.368630i
\(369\) 0 0
\(370\) −387.748 387.748i −1.04797 1.04797i
\(371\) −26.8421 + 17.9353i −0.0723506 + 0.0483431i
\(372\) 0 0
\(373\) 573.453i 1.53741i −0.639605 0.768704i \(-0.720902\pi\)
0.639605 0.768704i \(-0.279098\pi\)
\(374\) 535.455 106.509i 1.43170 0.284782i
\(375\) 0 0
\(376\) 39.5008 + 95.3635i 0.105055 + 0.253626i
\(377\) −124.547 186.398i −0.330364 0.494425i
\(378\) 0 0
\(379\) 136.954 688.516i 0.361357 1.81666i −0.189284 0.981922i \(-0.560617\pi\)
0.550641 0.834742i \(-0.314383\pi\)
\(380\) 62.2028 93.0930i 0.163692 0.244982i
\(381\) 0 0
\(382\) 396.274 + 164.142i 1.03737 + 0.429692i
\(383\) 118.024 284.935i 0.308157 0.743956i −0.691608 0.722273i \(-0.743098\pi\)
0.999765 0.0216830i \(-0.00690247\pi\)
\(384\) 0 0
\(385\) 406.829 + 271.834i 1.05670 + 0.706063i
\(386\) 190.656 + 37.9238i 0.493927 + 0.0982481i
\(387\) 0 0
\(388\) 46.9704 31.3846i 0.121058 0.0808882i
\(389\) −263.382 + 109.097i −0.677076 + 0.280454i −0.694604 0.719392i \(-0.744420\pi\)
0.0175282 + 0.999846i \(0.494420\pi\)
\(390\) 0 0
\(391\) 218.374 + 43.4372i 0.558500 + 0.111093i
\(392\) 69.6329 0.177635
\(393\) 0 0
\(394\) −314.423 470.567i −0.798027 1.19433i
\(395\) −112.755 + 112.755i −0.285455 + 0.285455i
\(396\) 0 0
\(397\) 69.0841 103.392i 0.174015 0.260432i −0.734202 0.678931i \(-0.762444\pi\)
0.908217 + 0.418499i \(0.137444\pi\)
\(398\) 97.5727 + 490.531i 0.245158 + 1.23249i
\(399\) 0 0
\(400\) 26.9960 65.1740i 0.0674899 0.162935i
\(401\) 418.770 83.2986i 1.04432 0.207727i 0.357014 0.934099i \(-0.383795\pi\)
0.687302 + 0.726372i \(0.258795\pi\)
\(402\) 0 0
\(403\) −8.08217 1.60764i −0.0200550 0.00398919i
\(404\) −20.4582 20.4582i −0.0506391 0.0506391i
\(405\) 0 0
\(406\) 419.050 173.576i 1.03214 0.427528i
\(407\) 678.850i 1.66794i
\(408\) 0 0
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) −141.989 342.793i −0.346315 0.836079i
\(411\) 0 0
\(412\) −89.2768 + 89.2768i −0.216691 + 0.216691i
\(413\) 34.4176 173.029i 0.0833356 0.418956i
\(414\) 0 0
\(415\) −70.5517 354.687i −0.170004 0.854668i
\(416\) −82.5042 34.1743i −0.198327 0.0821499i
\(417\) 0 0
\(418\) 786.994 156.543i 1.88276 0.374504i
\(419\) 517.326 + 345.666i 1.23467 + 0.824979i 0.989504 0.144503i \(-0.0461584\pi\)
0.245164 + 0.969482i \(0.421158\pi\)
\(420\) 0 0
\(421\) −36.3708 36.3708i −0.0863916 0.0863916i 0.662590 0.748982i \(-0.269457\pi\)
−0.748982 + 0.662590i \(0.769457\pi\)
\(422\) −14.7871 + 9.88042i −0.0350405 + 0.0234133i
\(423\) 0 0
\(424\) 35.9769i 0.0848511i
\(425\) 64.3259i 0.151355i
\(426\) 0 0
\(427\) −197.488 476.777i −0.462500 1.11657i
\(428\) 4.42578 + 6.62365i 0.0103406 + 0.0154758i
\(429\) 0 0
\(430\) −167.765 + 843.413i −0.390152 + 1.96143i
\(431\) −261.460 + 391.302i −0.606635 + 0.907893i −0.999934 0.0115175i \(-0.996334\pi\)
0.393299 + 0.919411i \(0.371334\pi\)
\(432\) 0 0
\(433\) −594.595 246.289i −1.37320 0.568798i −0.430545 0.902569i \(-0.641679\pi\)
−0.942654 + 0.333772i \(0.891679\pi\)
\(434\) 6.38042 15.4037i 0.0147014 0.0354924i
\(435\) 0 0
\(436\) −80.7871 53.9802i −0.185291 0.123808i
\(437\) 320.958 + 63.8426i 0.734459 + 0.146093i
\(438\) 0 0
\(439\) −688.000 + 459.707i −1.56720 + 1.04717i −0.597809 + 0.801638i \(0.703962\pi\)
−0.969389 + 0.245530i \(0.921038\pi\)
\(440\) 503.772 208.669i 1.14494 0.474248i
\(441\) 0 0
\(442\) 253.693 0.573965
\(443\) −354.430 −0.800068 −0.400034 0.916500i \(-0.631002\pi\)
−0.400034 + 0.916500i \(0.631002\pi\)
\(444\) 0 0
\(445\) 379.966 + 568.659i 0.853856 + 1.27789i
\(446\) −76.2917 + 76.2917i −0.171058 + 0.171058i
\(447\) 0 0
\(448\) −158.332 + 236.961i −0.353420 + 0.528930i
\(449\) −153.330 770.842i −0.341492 1.71680i −0.645185 0.764027i \(-0.723220\pi\)
0.303692 0.952770i \(-0.401780\pi\)
\(450\) 0 0
\(451\) 175.778 424.366i 0.389752 0.940945i
\(452\) −54.0247 + 10.7462i −0.119524 + 0.0237747i
\(453\) 0 0
\(454\) 362.450 + 72.0957i 0.798347 + 0.158801i
\(455\) 160.772 + 160.772i 0.353344 + 0.353344i
\(456\) 0 0
\(457\) 300.390 124.426i 0.657309 0.272266i −0.0289968 0.999580i \(-0.509231\pi\)
0.686306 + 0.727313i \(0.259231\pi\)
\(458\) 273.050i 0.596178i
\(459\) 0 0
\(460\) −58.6882 −0.127583
\(461\) 94.2242 + 227.477i 0.204391 + 0.493444i 0.992522 0.122064i \(-0.0389512\pi\)
−0.788131 + 0.615507i \(0.788951\pi\)
\(462\) 0 0
\(463\) −248.069 + 248.069i −0.535786 + 0.535786i −0.922288 0.386503i \(-0.873683\pi\)
0.386503 + 0.922288i \(0.373683\pi\)
\(464\) 120.144 604.005i 0.258931 1.30174i
\(465\) 0 0
\(466\) 151.464 + 761.463i 0.325031 + 1.63404i
\(467\) 202.212 + 83.7591i 0.433003 + 0.179356i 0.588529 0.808476i \(-0.299707\pi\)
−0.155526 + 0.987832i \(0.549707\pi\)
\(468\) 0 0
\(469\) 272.740 54.2514i 0.581536 0.115675i
\(470\) 145.493 + 97.2156i 0.309561 + 0.206842i
\(471\) 0 0
\(472\) −139.022 139.022i −0.294538 0.294538i
\(473\) −885.161 + 591.446i −1.87138 + 1.25041i
\(474\) 0 0
\(475\) 94.5441i 0.199040i
\(476\) −17.2974 + 86.9601i −0.0363392 + 0.182689i
\(477\) 0 0
\(478\) −173.790 419.566i −0.363578 0.877754i
\(479\) 279.157 + 417.789i 0.582792 + 0.872210i 0.999318 0.0369135i \(-0.0117526\pi\)
−0.416526 + 0.909124i \(0.636753\pi\)
\(480\) 0 0
\(481\) 61.5415 309.390i 0.127945 0.643223i
\(482\) −351.872 + 526.614i −0.730025 + 1.09256i
\(483\) 0 0
\(484\) −71.2196 29.5001i −0.147148 0.0609506i
\(485\) −138.865 + 335.250i −0.286320 + 0.691238i
\(486\) 0 0
\(487\) −209.352 139.885i −0.429882 0.287238i 0.321745 0.946826i \(-0.395731\pi\)
−0.751627 + 0.659589i \(0.770731\pi\)
\(488\) −564.063 112.199i −1.15587 0.229916i
\(489\) 0 0
\(490\) 98.1502 65.5819i 0.200307 0.133841i
\(491\) 209.123 86.6215i 0.425912 0.176418i −0.159423 0.987210i \(-0.550963\pi\)
0.585334 + 0.810792i \(0.300963\pi\)
\(492\) 0 0
\(493\) 109.554 + 550.766i 0.222219 + 1.11717i
\(494\) 372.869 0.754796
\(495\) 0 0
\(496\) −12.5766 18.8223i −0.0253561 0.0379481i
\(497\) 255.901 255.901i 0.514891 0.514891i
\(498\) 0 0
\(499\) −119.919 + 179.471i −0.240318 + 0.359662i −0.931949 0.362590i \(-0.881893\pi\)
0.691631 + 0.722251i \(0.256893\pi\)
\(500\) 18.5471 + 93.2423i 0.0370941 + 0.186485i
\(501\) 0 0
\(502\) 227.412 549.021i 0.453012 1.09367i
\(503\) −865.523 + 172.163i −1.72072 + 0.342273i −0.954023 0.299735i \(-0.903102\pi\)
−0.766698 + 0.642008i \(0.778102\pi\)
\(504\) 0 0
\(505\) 182.277 + 36.2572i 0.360945 + 0.0717964i
\(506\) −297.414 297.414i −0.587776 0.587776i
\(507\) 0 0
\(508\) −73.7144 + 30.5335i −0.145107 + 0.0601053i
\(509\) 459.446i 0.902645i −0.892361 0.451323i \(-0.850952\pi\)
0.892361 0.451323i \(-0.149048\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) 104.718 + 252.811i 0.204527 + 0.493772i
\(513\) 0 0
\(514\) −82.0986 + 82.0986i −0.159725 + 0.159725i
\(515\) 158.221 795.433i 0.307226 1.54453i
\(516\) 0 0
\(517\) 42.2612 + 212.462i 0.0817432 + 0.410951i
\(518\) 589.663 + 244.246i 1.13835 + 0.471518i
\(519\) 0 0
\(520\) 248.514 49.4326i 0.477912 0.0950626i
\(521\) −84.0959 56.1911i −0.161412 0.107852i 0.472241 0.881470i \(-0.343445\pi\)
−0.633653 + 0.773617i \(0.718445\pi\)
\(522\) 0 0
\(523\) 395.099 + 395.099i 0.755448 + 0.755448i 0.975490 0.220042i \(-0.0706196\pi\)
−0.220042 + 0.975490i \(0.570620\pi\)
\(524\) 29.7907 19.9055i 0.0568525 0.0379876i
\(525\) 0 0
\(526\) 1116.04i 2.12175i
\(527\) 17.1632 + 11.4681i 0.0325678 + 0.0217611i
\(528\) 0 0
\(529\) 136.796 + 330.254i 0.258593 + 0.624299i
\(530\) 33.8838 + 50.7108i 0.0639318 + 0.0956807i
\(531\) 0 0
\(532\) −25.4232 + 127.811i −0.0477880 + 0.240247i
\(533\) 118.583 177.472i 0.222483 0.332969i
\(534\) 0 0
\(535\) −47.2762 19.5824i −0.0883667 0.0366027i
\(536\) 118.596 286.315i 0.221260 0.534170i
\(537\) 0 0
\(538\) −322.254 215.323i −0.598985 0.400229i
\(539\) 143.327 + 28.5095i 0.265913 + 0.0528934i
\(540\) 0 0
\(541\) −33.9436 + 22.6804i −0.0627423 + 0.0419230i −0.586546 0.809916i \(-0.699513\pi\)
0.523804 + 0.851839i \(0.324513\pi\)
\(542\) −943.148 + 390.665i −1.74012 + 0.720783i
\(543\) 0 0
\(544\) 158.177 + 158.177i 0.290767 + 0.290767i
\(545\) 624.125 1.14518
\(546\) 0 0
\(547\) −37.8284 56.6142i −0.0691562 0.103500i 0.795280 0.606243i \(-0.207324\pi\)
−0.864436 + 0.502743i \(0.832324\pi\)
\(548\) −37.6931 + 37.6931i −0.0687830 + 0.0687830i
\(549\) 0 0
\(550\) 67.5112 101.038i 0.122748 0.183705i
\(551\) 161.019 + 809.498i 0.292231 + 1.46914i
\(552\) 0 0
\(553\) 71.0254 171.470i 0.128436 0.310073i
\(554\) 380.832 75.7521i 0.687422 0.136737i
\(555\) 0 0
\(556\) 214.071 + 42.5813i 0.385019 + 0.0765850i
\(557\) 208.814 + 208.814i 0.374890 + 0.374890i 0.869255 0.494365i \(-0.164599\pi\)
−0.494365 + 0.869255i \(0.664599\pi\)
\(558\) 0 0
\(559\) −457.036 + 189.310i −0.817595 + 0.338659i
\(560\) 624.591i 1.11534i
\(561\) 0 0
\(562\) −878.426 −1.56304
\(563\) −169.121 408.295i −0.300393 0.725212i −0.999944 0.0106294i \(-0.996616\pi\)
0.699551 0.714583i \(-0.253384\pi\)
\(564\) 0 0
\(565\) 250.195 250.195i 0.442824 0.442824i
\(566\) −153.413 + 771.260i −0.271048 + 1.36265i
\(567\) 0 0
\(568\) −78.6820 395.561i −0.138525 0.696411i
\(569\) −595.479 246.656i −1.04654 0.433490i −0.207882 0.978154i \(-0.566657\pi\)
−0.838654 + 0.544664i \(0.816657\pi\)
\(570\) 0 0
\(571\) −117.482 + 23.3687i −0.205748 + 0.0409259i −0.296888 0.954912i \(-0.595949\pi\)
0.0911400 + 0.995838i \(0.470949\pi\)
\(572\) −68.8316 45.9918i −0.120335 0.0804052i
\(573\) 0 0
\(574\) 305.369 + 305.369i 0.532002 + 0.532002i
\(575\) 41.2060 27.5330i 0.0716626 0.0478834i
\(576\) 0 0
\(577\) 177.008i 0.306773i −0.988166 0.153387i \(-0.950982\pi\)
0.988166 0.153387i \(-0.0490180\pi\)
\(578\) −587.112 243.190i −1.01577 0.420744i
\(579\) 0 0
\(580\) −56.6444 136.752i −0.0976628 0.235779i
\(581\) 233.848 + 349.979i 0.402493 + 0.602373i
\(582\) 0 0
\(583\) −14.7299 + 74.0520i −0.0252656 + 0.127019i
\(584\) −5.20940 + 7.79642i −0.00892021 + 0.0133500i
\(585\) 0 0
\(586\) 485.547 + 201.120i 0.828578 + 0.343208i
\(587\) 239.200 577.480i 0.407496 0.983781i −0.578299 0.815825i \(-0.696283\pi\)
0.985794 0.167956i \(-0.0537168\pi\)
\(588\) 0 0
\(589\) 25.2259 + 16.8554i 0.0428284 + 0.0286170i
\(590\) −326.891 65.0226i −0.554052 0.110208i
\(591\) 0 0
\(592\) 720.527 481.441i 1.21711 0.813245i
\(593\) 138.551 57.3899i 0.233645 0.0967789i −0.262789 0.964853i \(-0.584642\pi\)
0.496434 + 0.868074i \(0.334642\pi\)
\(594\) 0 0
\(595\) −217.953 526.184i −0.366307 0.884343i
\(596\) −98.7472 −0.165683
\(597\) 0 0
\(598\) −108.586 162.511i −0.181582 0.271757i
\(599\) 217.159 217.159i 0.362536 0.362536i −0.502210 0.864746i \(-0.667480\pi\)
0.864746 + 0.502210i \(0.167480\pi\)
\(600\) 0 0
\(601\) 225.714 337.804i 0.375564 0.562071i −0.594753 0.803908i \(-0.702750\pi\)
0.970317 + 0.241838i \(0.0777502\pi\)
\(602\) −195.266 981.668i −0.324362 1.63068i
\(603\) 0 0
\(604\) −8.85135 + 21.3690i −0.0146545 + 0.0353792i
\(605\) 485.662 96.6041i 0.802747 0.159676i
\(606\) 0 0
\(607\) 1017.17 + 202.327i 1.67573 + 0.333323i 0.939274 0.343167i \(-0.111500\pi\)
0.736452 + 0.676490i \(0.236500\pi\)
\(608\) 232.484 + 232.484i 0.382374 + 0.382374i
\(609\) 0 0
\(610\) −900.740 + 373.099i −1.47662 + 0.611637i
\(611\) 100.662i 0.164750i
\(612\) 0 0
\(613\) 132.402 0.215991 0.107995 0.994151i \(-0.465557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(614\) 344.972 + 832.835i 0.561843 + 1.35641i
\(615\) 0 0
\(616\) −448.774 + 448.774i −0.728529 + 0.728529i
\(617\) −49.9956 + 251.345i −0.0810302 + 0.407366i 0.918887 + 0.394520i \(0.129089\pi\)
−0.999917 + 0.0128460i \(0.995911\pi\)
\(618\) 0 0
\(619\) −17.9310 90.1450i −0.0289676 0.145630i 0.963595 0.267367i \(-0.0861536\pi\)
−0.992562 + 0.121737i \(0.961154\pi\)
\(620\) −5.02680 2.08217i −0.00810774 0.00335834i
\(621\) 0 0
\(622\) −467.145 + 92.9208i −0.751036 + 0.149390i
\(623\) −661.875 442.251i −1.06240 0.709873i
\(624\) 0 0
\(625\) −498.708 498.708i −0.797932 0.797932i
\(626\) 865.556 578.346i 1.38268 0.923875i
\(627\) 0 0
\(628\) 66.0226i 0.105131i
\(629\) −439.005 + 657.018i −0.697941 + 1.04454i
\(630\) 0 0
\(631\) 219.866 + 530.804i 0.348441 + 0.841210i 0.996805 + 0.0798795i \(0.0254536\pi\)
−0.648364 + 0.761331i \(0.724546\pi\)
\(632\) −114.912 171.978i −0.181823 0.272117i
\(633\) 0 0
\(634\) 109.970 552.855i 0.173454 0.872012i
\(635\) 284.742 426.147i 0.448413 0.671098i
\(636\) 0 0
\(637\) 62.7377 + 25.9868i 0.0984893 + 0.0407956i
\(638\) 405.961 980.076i 0.636302 1.53617i
\(639\) 0 0
\(640\) 682.468 + 456.011i 1.06636 + 0.712517i
\(641\) 966.275 + 192.204i 1.50745 + 0.299850i 0.878555 0.477641i \(-0.158508\pi\)
0.628894 + 0.777491i \(0.283508\pi\)
\(642\) 0 0
\(643\) −29.4169 + 19.6558i −0.0457495 + 0.0305688i −0.578235 0.815870i \(-0.696258\pi\)
0.532485 + 0.846439i \(0.321258\pi\)
\(644\) 63.1088 26.1405i 0.0979950 0.0405909i
\(645\) 0 0
\(646\) −862.919 357.433i −1.33579 0.553301i
\(647\) 472.176 0.729793 0.364897 0.931048i \(-0.381104\pi\)
0.364897 + 0.931048i \(0.381104\pi\)
\(648\) 0 0
\(649\) −229.233 343.071i −0.353210 0.528615i
\(650\) 39.9283 39.9283i 0.0614281 0.0614281i
\(651\) 0 0
\(652\) 25.7604 38.5532i 0.0395098 0.0591306i
\(653\) 124.126 + 624.023i 0.190086 + 0.955625i 0.951568 + 0.307439i \(0.0994720\pi\)
−0.761482 + 0.648186i \(0.775528\pi\)
\(654\) 0 0
\(655\) −88.0746 + 212.631i −0.134465 + 0.324627i
\(656\) 575.082 114.391i 0.876649 0.174376i
\(657\) 0 0
\(658\) −199.754 39.7335i −0.303577 0.0603853i
\(659\) −128.530 128.530i −0.195037 0.195037i 0.602831 0.797869i \(-0.294039\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(660\) 0 0
\(661\) 1075.49 445.481i 1.62706 0.673950i 0.632161 0.774837i \(-0.282168\pi\)
0.994898 + 0.100887i \(0.0321681\pi\)
\(662\) 496.438i 0.749906i
\(663\) 0 0
\(664\) 469.082 0.706449
\(665\) −320.340 773.368i −0.481714 1.16296i
\(666\) 0 0
\(667\) 305.919 305.919i 0.458649 0.458649i
\(668\) −8.41761 + 42.3182i −0.0126012 + 0.0633506i
\(669\) 0 0
\(670\) −102.493 515.268i −0.152975 0.769056i
\(671\) −1115.09 461.884i −1.66183 0.688352i
\(672\) 0 0
\(673\) 105.260 20.9375i 0.156404 0.0311106i −0.116267 0.993218i \(-0.537093\pi\)
0.272671 + 0.962107i \(0.412093\pi\)
\(674\) −660.281 441.186i −0.979645 0.654578i
\(675\) 0 0
\(676\) 72.6081 + 72.6081i 0.107408 + 0.107408i
\(677\) 876.782 585.847i 1.29510 0.865358i 0.299057 0.954235i \(-0.403328\pi\)
0.996043 + 0.0888773i \(0.0283279\pi\)
\(678\) 0 0
\(679\) 422.355i 0.622025i
\(680\) −622.515 123.826i −0.915463 0.182097i
\(681\) 0 0
\(682\) −14.9225 36.0262i −0.0218805 0.0528243i
\(683\) 339.367 + 507.899i 0.496877 + 0.743629i 0.992143 0.125113i \(-0.0399292\pi\)
−0.495265 + 0.868742i \(0.664929\pi\)
\(684\) 0 0
\(685\) 66.8019 335.836i 0.0975210 0.490271i
\(686\) −450.134 + 673.673i −0.656172 + 0.982031i
\(687\) 0 0
\(688\) −1255.51 520.051i −1.82488 0.755888i
\(689\) −13.4265 + 32.4143i −0.0194869 + 0.0470455i
\(690\) 0 0
\(691\) −815.612 544.975i −1.18034 0.788675i −0.198816 0.980037i \(-0.563710\pi\)
−0.981520 + 0.191362i \(0.938710\pi\)
\(692\) −15.1309 3.00972i −0.0218655 0.00434931i
\(693\) 0 0
\(694\) 28.9939 19.3731i 0.0417779 0.0279151i
\(695\) −1295.31 + 536.536i −1.86376 + 0.771994i
\(696\) 0 0
\(697\) −444.558 + 297.044i −0.637817 + 0.426176i
\(698\) −695.626 −0.996600
\(699\) 0 0
\(700\) 10.9641 + 16.4089i 0.0156630 + 0.0234413i
\(701\) −52.7814 + 52.7814i −0.0752944 + 0.0752944i −0.743751 0.668457i \(-0.766955\pi\)
0.668457 + 0.743751i \(0.266955\pi\)
\(702\) 0 0
\(703\) −645.236 + 965.663i −0.917832 + 1.37363i
\(704\) 130.035 + 653.728i 0.184708 + 0.928591i
\(705\) 0 0
\(706\) 228.027 550.507i 0.322985 0.779755i
\(707\) −212.157 + 42.2006i −0.300080 + 0.0596896i
\(708\) 0 0
\(709\) −752.626 149.707i −1.06153 0.211152i −0.366711 0.930335i \(-0.619516\pi\)
−0.694821 + 0.719183i \(0.744516\pi\)
\(710\) −483.454 483.454i −0.680921 0.680921i
\(711\) 0 0
\(712\) −819.594 + 339.487i −1.15111 + 0.476807i
\(713\) 15.9030i 0.0223044i
\(714\) 0 0
\(715\) 531.762 0.743723
\(716\) −20.0306 48.3580i −0.0279756 0.0675392i
\(717\) 0 0
\(718\) 246.167 246.167i 0.342851 0.342851i
\(719\) −224.919 + 1130.74i −0.312822 + 1.57266i 0.429785 + 0.902931i \(0.358590\pi\)
−0.742606 + 0.669729i \(0.766410\pi\)
\(720\) 0 0
\(721\) 184.157 + 925.822i 0.255419 + 1.28408i
\(722\) −534.907 221.566i −0.740869 0.306878i
\(723\) 0 0
\(724\) −85.6842 + 17.0437i −0.118348 + 0.0235410i
\(725\) 103.927 + 69.4417i 0.143347 + 0.0957817i
\(726\) 0 0
\(727\) 195.955 + 195.955i 0.269539 + 0.269539i 0.828914 0.559376i \(-0.188959\pi\)
−0.559376 + 0.828914i \(0.688959\pi\)
\(728\) −245.216 + 163.848i −0.336834 + 0.225066i
\(729\) 0 0
\(730\) 15.8957i 0.0217749i
\(731\) 1239.18 1.69518
\(732\) 0 0
\(733\) 169.675 + 409.632i 0.231480 + 0.558843i 0.996352 0.0853397i \(-0.0271976\pi\)
−0.764871 + 0.644183i \(0.777198\pi\)
\(734\) −597.376 894.036i −0.813863 1.21803i
\(735\) 0 0
\(736\) 33.6219 169.029i 0.0456820 0.229659i
\(737\) 361.333 540.773i 0.490275 0.733749i
\(738\) 0 0
\(739\) 98.1432 + 40.6523i 0.132805 + 0.0550098i 0.448096 0.893985i \(-0.352102\pi\)
−0.315291 + 0.948995i \(0.602102\pi\)
\(740\) 79.7067 192.429i 0.107712 0.260039i
\(741\) 0 0
\(742\) −59.0234 39.4382i −0.0795463 0.0531512i
\(743\) −905.734 180.162i −1.21902 0.242479i −0.456668 0.889637i \(-0.650957\pi\)
−0.762355 + 0.647159i \(0.775957\pi\)
\(744\) 0 0
\(745\) 527.409 352.403i 0.707931 0.473025i
\(746\) 1164.99 482.554i 1.56165 0.646855i
\(747\) 0 0
\(748\) 115.207 + 172.419i 0.154020 + 0.230507i
\(749\) 59.5595 0.0795187
\(750\) 0 0
\(751\) 636.671 + 952.846i 0.847765 + 1.26877i 0.961374 + 0.275244i \(0.0887587\pi\)
−0.113610 + 0.993525i \(0.536241\pi\)
\(752\) −195.534 + 195.534i −0.260018 + 0.260018i
\(753\) 0 0
\(754\) 273.869 409.873i 0.363221 0.543598i
\(755\) −28.9855 145.720i −0.0383914 0.193007i
\(756\) 0 0
\(757\) 24.5973 59.3832i 0.0324932 0.0784455i −0.906800 0.421561i \(-0.861482\pi\)
0.939293 + 0.343116i \(0.111482\pi\)
\(758\) 1513.99 301.151i 1.99734 0.397296i
\(759\) 0 0
\(760\) −914.952 181.995i −1.20388 0.239467i
\(761\) 173.164 + 173.164i 0.227548 + 0.227548i 0.811668 0.584120i \(-0.198560\pi\)
−0.584120 + 0.811668i \(0.698560\pi\)
\(762\) 0 0
\(763\) −671.137 + 277.994i −0.879602 + 0.364343i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) −73.3731 177.138i −0.0956624 0.230950i
\(768\) 0 0
\(769\) 550.339 550.339i 0.715655 0.715655i −0.252057 0.967712i \(-0.581107\pi\)
0.967712 + 0.252057i \(0.0811072\pi\)
\(770\) −209.898 + 1055.23i −0.272595 + 1.37043i
\(771\) 0 0
\(772\) 14.4046 + 72.4170i 0.0186588 + 0.0938044i
\(773\) −399.534 165.492i −0.516861 0.214091i 0.108976 0.994044i \(-0.465243\pi\)
−0.625837 + 0.779953i \(0.715243\pi\)
\(774\) 0 0
\(775\) 4.50624 0.896346i 0.00581450 0.00115658i
\(776\) −391.361 261.499i −0.504331 0.336983i
\(777\) 0 0
\(778\) −443.266 443.266i −0.569751 0.569751i
\(779\) −653.397 + 436.586i −0.838764 + 0.560444i
\(780\) 0 0
\(781\) 846.408i 1.08375i
\(782\) 95.5146 + 480.184i 0.122141 + 0.614047i
\(783\) 0 0
\(784\) 71.3878 + 172.345i 0.0910559 + 0.219828i
\(785\) 235.617 + 352.626i 0.300150 + 0.449206i
\(786\) 0 0
\(787\) −222.286 + 1117.51i −0.282447 + 1.41996i 0.535437 + 0.844575i \(0.320147\pi\)
−0.817884 + 0.575383i \(0.804853\pi\)
\(788\) 119.428 178.736i 0.151558 0.226822i
\(789\) 0 0
\(790\) −323.946 134.183i −0.410059 0.169852i
\(791\) −157.601 + 380.481i −0.199242 + 0.481013i
\(792\) 0 0
\(793\) −466.336 311.595i −0.588065 0.392932i
\(794\) 268.177 + 53.3436i 0.337754 + 0.0671834i
\(795\) 0 0
\(796\) −157.954 + 105.541i −0.198434 + 0.132590i
\(797\) −104.084 + 43.1132i −0.130595 + 0.0540943i −0.447024 0.894522i \(-0.647516\pi\)
0.316429 + 0.948616i \(0.397516\pi\)
\(798\) 0 0
\(799\) 96.4946 232.959i 0.120769 0.291563i
\(800\) 49.7905 0.0622381
\(801\) 0 0
\(802\) 521.614 + 780.650i 0.650391 + 0.973379i
\(803\) −13.9147 + 13.9147i −0.0173284 + 0.0173284i
\(804\) 0 0
\(805\) −243.775 + 364.835i −0.302826 + 0.453212i
\(806\) −3.53507 17.7720i −0.00438594 0.0220496i
\(807\) 0 0
\(808\) −92.2520 + 222.716i −0.114173 + 0.275639i
\(809\) −638.126 + 126.931i −0.788783 + 0.156899i −0.573014 0.819546i \(-0.694226\pi\)
−0.215769 + 0.976444i \(0.569226\pi\)
\(810\) 0 0
\(811\) −631.322 125.578i −0.778449 0.154843i −0.210154 0.977668i \(-0.567397\pi\)
−0.568294 + 0.822825i \(0.692397\pi\)
\(812\) 121.822 + 121.822i 0.150027 + 0.150027i
\(813\) 0 0
\(814\) 1379.10 571.243i 1.69423 0.701773i
\(815\) 297.845i 0.365453i
\(816\) 0 0
\(817\) 1821.30 2.22925
\(818\) −181.383 437.897i −0.221739 0.535326i
\(819\) 0 0
\(820\) 99.6533 99.6533i 0.121528 0.121528i
\(821\) 174.401 876.775i 0.212426 1.06794i −0.716477 0.697611i \(-0.754246\pi\)
0.928902 0.370325i \(-0.120754\pi\)
\(822\) 0 0
\(823\) 180.424 + 907.053i 0.219227 + 1.10213i 0.920950 + 0.389680i \(0.127414\pi\)
−0.701723 + 0.712450i \(0.747586\pi\)
\(824\) 971.901 + 402.575i 1.17949 + 0.488562i
\(825\) 0 0
\(826\) 380.476 75.6813i 0.460624 0.0916239i
\(827\) 704.948 + 471.032i 0.852417 + 0.569567i 0.903237 0.429141i \(-0.141184\pi\)
−0.0508208 + 0.998708i \(0.516184\pi\)
\(828\) 0 0
\(829\) 862.801 + 862.801i 1.04077 + 1.04077i 0.999133 + 0.0416400i \(0.0132583\pi\)
0.0416400 + 0.999133i \(0.486742\pi\)
\(830\) 661.189 441.793i 0.796614 0.532280i
\(831\) 0 0
\(832\) 309.729i 0.372271i
\(833\) −120.281 120.281i −0.144395 0.144395i
\(834\) 0 0
\(835\) −106.064 256.062i −0.127023 0.306661i
\(836\) 169.327 + 253.416i 0.202545 + 0.303129i
\(837\) 0 0
\(838\) −266.908 + 1341.84i −0.318506 + 1.60124i
\(839\) 213.563 319.620i 0.254545 0.380954i −0.682085 0.731273i \(-0.738927\pi\)
0.936631 + 0.350319i \(0.113927\pi\)
\(840\) 0 0
\(841\) 231.119 + 95.7324i 0.274814 + 0.113832i
\(842\) 43.2829 104.494i 0.0514048 0.124102i
\(843\) 0 0
\(844\) −5.61660 3.75289i −0.00665474 0.00444655i
\(845\) −646.919 128.680i −0.765585 0.152284i
\(846\) 0 0
\(847\) −479.215 + 320.201i −0.565779 + 0.378042i
\(848\) −89.0448 + 36.8836i −0.105006 + 0.0434948i
\(849\) 0 0
\(850\) −130.680 + 54.1294i −0.153741 + 0.0636817i
\(851\) 608.778 0.715368
\(852\) 0 0
\(853\) −485.458 726.539i −0.569118 0.851745i 0.429566 0.903036i \(-0.358667\pi\)
−0.998684 + 0.0512903i \(0.983667\pi\)
\(854\) 802.404 802.404i 0.939583 0.939583i
\(855\) 0 0
\(856\) 36.8760 55.1888i 0.0430794 0.0644729i
\(857\) 262.053 + 1317.43i 0.305779 + 1.53726i 0.762111 + 0.647446i \(0.224163\pi\)
−0.456332 + 0.889810i \(0.650837\pi\)
\(858\) 0 0
\(859\) −97.9655 + 236.510i −0.114046 + 0.275331i −0.970588 0.240745i \(-0.922608\pi\)
0.856542 + 0.516077i \(0.172608\pi\)
\(860\) −320.355 + 63.7225i −0.372506 + 0.0740960i
\(861\) 0 0
\(862\) −1014.96 201.887i −1.17744 0.234208i
\(863\) 1137.90 + 1137.90i 1.31854 + 1.31854i 0.914930 + 0.403612i \(0.132245\pi\)
0.403612 + 0.914930i \(0.367755\pi\)
\(864\) 0 0
\(865\) 91.5550 37.9233i 0.105844 0.0438420i
\(866\) 1415.19i 1.63417i
\(867\) 0 0
\(868\) 6.33287 0.00729593
\(869\) −166.114 401.035i −0.191156 0.461490i
\(870\) 0 0
\(871\) 213.704 213.704i 0.245355 0.245355i
\(872\) −157.937 + 794.004i −0.181121 + 0.910555i
\(873\) 0 0
\(874\) 140.384 + 705.760i 0.160623 + 0.807505i
\(875\) 656.681 + 272.006i 0.750493 + 0.310864i
\(876\) 0 0
\(877\) −483.538 + 96.1816i −0.551354 + 0.109671i −0.462902 0.886409i \(-0.653192\pi\)
−0.0884519 + 0.996080i \(0.528192\pi\)
\(878\) −1512.85 1010.86i −1.72307 1.15132i
\(879\) 0 0
\(880\) 1032.94 + 1032.94i 1.17379 + 1.17379i
\(881\) 334.347 223.404i 0.379508 0.253579i −0.351155 0.936317i \(-0.614211\pi\)
0.730663 + 0.682738i \(0.239211\pi\)
\(882\) 0 0
\(883\) 907.327i 1.02755i −0.857925 0.513775i \(-0.828246\pi\)
0.857925 0.513775i \(-0.171754\pi\)
\(884\) 36.8755 + 89.0253i 0.0417144 + 0.100707i
\(885\) 0 0
\(886\) −298.248 720.035i −0.336624 0.812681i
\(887\) 705.933 + 1056.50i 0.795866 + 1.19110i 0.978160 + 0.207854i \(0.0666478\pi\)
−0.182294 + 0.983244i \(0.558352\pi\)
\(888\) 0 0
\(889\) −116.379 + 585.074i −0.130910 + 0.658127i
\(890\) −835.512 + 1250.43i −0.938778 + 1.40498i
\(891\) 0 0
\(892\) −37.8615 15.6828i −0.0424457 0.0175816i
\(893\) 141.825 342.395i 0.158818 0.383421i
\(894\) 0 0
\(895\) 279.561 + 186.796i 0.312358 + 0.208711i
\(896\) −936.988 186.379i −1.04575 0.208012i
\(897\) 0 0
\(898\) 1436.96 960.148i 1.60018 1.06921i
\(899\) 37.0564 15.3493i 0.0412195 0.0170737i
\(900\) 0 0
\(901\) 62.1448 62.1448i 0.0689732 0.0689732i
\(902\) 1010.03 1.11976
\(903\) 0 0
\(904\) 254.983 + 381.608i 0.282060 + 0.422133i
\(905\) 396.815 396.815i 0.438470 0.438470i
\(906\) 0 0
\(907\) 852.359 1275.64i 0.939756 1.40644i 0.0262336 0.999656i \(-0.491649\pi\)
0.913522 0.406788i \(-0.133351\pi\)
\(908\) 27.3842 + 137.670i 0.0301588 + 0.151619i
\(909\) 0 0
\(910\) −191.325 + 461.899i −0.210247 + 0.507582i
\(911\) −359.228 + 71.4549i −0.394323 + 0.0784357i −0.388269 0.921546i \(-0.626927\pi\)
−0.00605352 + 0.999982i \(0.501927\pi\)
\(912\) 0 0
\(913\) 965.523 + 192.054i 1.05753 + 0.210355i
\(914\) 505.549 + 505.549i 0.553117 + 0.553117i
\(915\) 0 0
\(916\) −95.8181 + 39.6892i −0.104605 + 0.0433288i
\(917\) 267.877i 0.292123i
\(918\) 0 0
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) 187.130 + 451.772i 0.203402 + 0.491057i
\(921\) 0 0
\(922\) −382.839 + 382.839i −0.415226 + 0.415226i
\(923\) 76.7316 385.756i 0.0831328 0.417937i
\(924\) 0 0
\(925\) 34.3127 + 172.501i 0.0370948 + 0.186488i
\(926\) −712.706 295.212i −0.769661 0.318804i
\(927\) 0 0
\(928\) 426.312 84.7988i 0.459388 0.0913780i
\(929\) −807.914 539.831i −0.869660 0.581088i 0.0387126 0.999250i \(-0.487674\pi\)
−0.908372 + 0.418162i \(0.862674\pi\)
\(930\) 0 0
\(931\) −176.785 176.785i −0.189887 0.189887i
\(932\) −245.195 + 163.834i −0.263085 + 0.175788i
\(933\) 0 0
\(934\) 481.282i 0.515292i
\(935\) −1230.64 509.748i −1.31619 0.545184i
\(936\) 0 0
\(937\) −229.656 554.438i −0.245097 0.591716i 0.752678 0.658389i \(-0.228762\pi\)
−0.997775 + 0.0666728i \(0.978762\pi\)
\(938\) 339.721 + 508.428i 0.362176 + 0.542034i
\(939\) 0 0
\(940\) −12.9665 + 65.1871i −0.0137942 + 0.0693480i
\(941\) −602.514 + 901.726i −0.640291 + 0.958263i 0.359394 + 0.933186i \(0.382983\pi\)
−0.999686 + 0.0250777i \(0.992017\pi\)
\(942\) 0 0
\(943\) 380.563 + 157.634i 0.403566 + 0.167162i
\(944\) 201.562 486.613i 0.213519 0.515480i
\(945\) 0 0
\(946\) −1946.39 1300.54i −2.05750 1.37478i
\(947\) −683.372 135.931i −0.721618 0.143539i −0.179400 0.983776i \(-0.557416\pi\)
−0.542219 + 0.840237i \(0.682416\pi\)
\(948\) 0 0
\(949\) −7.60316 + 5.08027i −0.00801176 + 0.00535329i
\(950\) −192.069 + 79.5577i −0.202178 + 0.0837449i
\(951\) 0 0
\(952\) 724.559 144.124i 0.761091 0.151390i
\(953\) 1779.95 1.86774 0.933868 0.357618i \(-0.116411\pi\)
0.933868 + 0.357618i \(0.116411\pi\)
\(954\) 0 0
\(955\) −581.415 870.149i −0.608812 0.911151i
\(956\) 121.972 121.972i 0.127586 0.127586i
\(957\) 0 0
\(958\) −613.843 + 918.681i −0.640754 + 0.958957i
\(959\) 77.7522 + 390.887i 0.0810763 + 0.407598i
\(960\) 0 0
\(961\) −367.195 + 886.486i −0.382096 + 0.922462i
\(962\) 680.322 135.324i 0.707195 0.140670i
\(963\) 0 0
\(964\) −235.945 46.9324i −0.244756 0.0486850i
\(965\) −335.373 335.373i −0.347536 0.347536i
\(966\) 0 0
\(967\) −558.012 + 231.136i −0.577055 + 0.239024i −0.652071 0.758158i \(-0.726099\pi\)
0.0750154 + 0.997182i \(0.476099\pi\)
\(968\) 642.299i 0.663532i
\(969\) 0 0
\(970\) −797.924 −0.822602
\(971\) −421.281 1017.06i −0.433863 1.04744i −0.978031 0.208461i \(-0.933155\pi\)
0.544168 0.838976i \(-0.316845\pi\)
\(972\) 0 0
\(973\) 1153.90 1153.90i 1.18592 1.18592i
\(974\) 108.013 543.017i 0.110896 0.557512i
\(975\) 0 0
\(976\) −300.579 1511.11i −0.307971 1.54827i
\(977\) −1012.20 419.266i −1.03603 0.429136i −0.201142 0.979562i \(-0.564465\pi\)
−0.834884 + 0.550426i \(0.814465\pi\)
\(978\) 0 0
\(979\) −1825.98 + 363.211i −1.86515 + 0.371002i
\(980\) 37.2805 + 24.9100i 0.0380413 + 0.0254184i
\(981\) 0 0
\(982\) 351.948 + 351.948i 0.358399 + 0.358399i
\(983\) 1021.98 682.863i 1.03965 0.694673i 0.0862178 0.996276i \(-0.472522\pi\)
0.953433 + 0.301604i \(0.0975219\pi\)
\(984\) 0 0
\(985\) 1380.83i 1.40186i
\(986\) −1026.71 + 686.025i −1.04129 + 0.695766i
\(987\) 0 0
\(988\) 54.1984 + 130.847i 0.0548567 + 0.132436i
\(989\) −530.396 793.794i −0.536295 0.802623i
\(990\) 0 0
\(991\) −143.735 + 722.604i −0.145040 + 0.729167i 0.837985 + 0.545694i \(0.183734\pi\)
−0.983025 + 0.183473i \(0.941266\pi\)
\(992\) 8.87670 13.2849i 0.00894829 0.0133921i
\(993\) 0 0
\(994\) 735.207 + 304.533i 0.739645 + 0.306371i
\(995\) 466.981 1127.39i 0.469328 1.13306i
\(996\) 0 0
\(997\) 145.149 + 96.9855i 0.145586 + 0.0972774i 0.626230 0.779638i \(-0.284597\pi\)
−0.480644 + 0.876916i \(0.659597\pi\)
\(998\) −465.511 92.5960i −0.466444 0.0927815i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.p.b.73.1 8
3.2 odd 2 17.3.e.a.5.1 8
12.11 even 2 272.3.bh.c.209.1 8
15.2 even 4 425.3.t.c.124.1 8
15.8 even 4 425.3.t.a.124.1 8
15.14 odd 2 425.3.u.b.226.1 8
17.7 odd 16 inner 153.3.p.b.109.1 8
51.2 odd 8 289.3.e.k.224.1 8
51.5 even 16 289.3.e.l.40.1 8
51.8 odd 8 289.3.e.b.65.1 8
51.11 even 16 289.3.e.i.214.1 8
51.14 even 16 289.3.e.d.249.1 8
51.20 even 16 289.3.e.b.249.1 8
51.23 even 16 289.3.e.m.214.1 8
51.26 odd 8 289.3.e.d.65.1 8
51.29 even 16 289.3.e.k.40.1 8
51.32 odd 8 289.3.e.l.224.1 8
51.38 odd 4 289.3.e.m.131.1 8
51.41 even 16 17.3.e.a.7.1 yes 8
51.44 even 16 289.3.e.c.75.1 8
51.47 odd 4 289.3.e.i.131.1 8
51.50 odd 2 289.3.e.c.158.1 8
204.143 odd 16 272.3.bh.c.177.1 8
255.92 odd 16 425.3.t.a.24.1 8
255.143 odd 16 425.3.t.c.24.1 8
255.194 even 16 425.3.u.b.126.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 3.2 odd 2
17.3.e.a.7.1 yes 8 51.41 even 16
153.3.p.b.73.1 8 1.1 even 1 trivial
153.3.p.b.109.1 8 17.7 odd 16 inner
272.3.bh.c.177.1 8 204.143 odd 16
272.3.bh.c.209.1 8 12.11 even 2
289.3.e.b.65.1 8 51.8 odd 8
289.3.e.b.249.1 8 51.20 even 16
289.3.e.c.75.1 8 51.44 even 16
289.3.e.c.158.1 8 51.50 odd 2
289.3.e.d.65.1 8 51.26 odd 8
289.3.e.d.249.1 8 51.14 even 16
289.3.e.i.131.1 8 51.47 odd 4
289.3.e.i.214.1 8 51.11 even 16
289.3.e.k.40.1 8 51.29 even 16
289.3.e.k.224.1 8 51.2 odd 8
289.3.e.l.40.1 8 51.5 even 16
289.3.e.l.224.1 8 51.32 odd 8
289.3.e.m.131.1 8 51.38 odd 4
289.3.e.m.214.1 8 51.23 even 16
425.3.t.a.24.1 8 255.92 odd 16
425.3.t.a.124.1 8 15.8 even 4
425.3.t.c.24.1 8 255.143 odd 16
425.3.t.c.124.1 8 15.2 even 4
425.3.u.b.126.1 8 255.194 even 16
425.3.u.b.226.1 8 15.14 odd 2