Properties

Label 425.3.u.b.126.1
Level $425$
Weight $3$
Character 425.126
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,0,0,-8,-8,24,-16,0,-8,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 126.1
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 425.126
Dual form 425.3.u.b.226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.841487 - 2.03153i) q^{2} +(-0.0897902 + 0.134381i) q^{3} +(-0.590587 - 0.590587i) q^{4} +(0.197441 + 0.295491i) q^{6} +(-1.21824 + 6.12453i) q^{7} +(6.42935 - 2.66313i) q^{8} +(3.43416 + 8.29078i) q^{9} +(-12.1433 + 8.11392i) q^{11} +(0.132392 - 0.0263345i) q^{12} +(-4.79884 + 4.79884i) q^{13} +(11.4170 + 7.62861i) q^{14} -18.6433i q^{16} +(-6.50562 + 15.7060i) q^{17} +19.7328 q^{18} +(-9.56175 + 23.0841i) q^{19} +(-0.713631 - 0.713631i) q^{21} +(6.26521 + 31.4973i) q^{22} +(-7.27639 - 10.8899i) q^{23} +(-0.219421 + 1.10310i) q^{24} +(5.71082 + 13.7871i) q^{26} +(-2.84909 - 0.566719i) q^{27} +(4.33654 - 2.89759i) q^{28} +(32.3980 - 6.44436i) q^{29} +(-1.00960 - 0.674593i) q^{31} +(-12.1570 - 5.03558i) q^{32} -2.36038i q^{33} +(26.4327 + 26.4327i) q^{34} +(2.86826 - 6.92459i) q^{36} +(25.8238 - 38.6481i) q^{37} +(38.8500 + 38.8500i) q^{38} +(-0.213982 - 1.07576i) q^{39} +(6.13577 - 30.8466i) q^{41} +(-2.05027 + 0.849251i) q^{42} +(27.8948 + 67.3441i) q^{43} +(11.9637 + 2.37972i) q^{44} +(-28.2461 + 5.61851i) q^{46} +(10.4882 - 10.4882i) q^{47} +(2.50529 + 1.67398i) q^{48} +(9.24438 + 3.82915i) q^{49} +(-1.52643 - 2.28447i) q^{51} +5.66826 q^{52} +(1.97838 - 4.77624i) q^{53} +(-3.54878 + 5.31112i) q^{54} +(8.47786 + 42.6211i) q^{56} +(-2.24350 - 3.35764i) q^{57} +(14.1706 - 71.2404i) q^{58} +(26.1013 - 10.8115i) q^{59} +(-81.0541 - 16.1227i) q^{61} +(-2.22002 + 1.48337i) q^{62} +(-54.9608 + 10.9324i) q^{63} +(32.2713 - 32.2713i) q^{64} +(-4.79518 - 1.98623i) q^{66} -44.5324i q^{67} +(13.1179 - 5.43359i) q^{68} +2.11674 q^{69} +(32.1978 - 48.1875i) q^{71} +(44.1588 + 44.1588i) q^{72} +(0.262865 + 1.32151i) q^{73} +(-56.7843 - 84.9838i) q^{74} +(19.2802 - 7.98612i) q^{76} +(-34.9004 - 84.2570i) q^{77} +(-2.36550 - 0.470527i) q^{78} +(-24.7128 + 16.5125i) q^{79} +(-56.7774 + 56.7774i) q^{81} +(-57.5026 - 38.4220i) q^{82} +(62.2748 + 25.7951i) q^{83} +0.842922i q^{84} +160.285 q^{86} +(-2.04303 + 4.93230i) q^{87} +(-56.4655 + 84.5065i) q^{88} +(90.1397 + 90.1397i) q^{89} +(-23.5444 - 35.2368i) q^{91} +(-2.13408 + 10.7288i) q^{92} +(0.181304 - 0.0750988i) q^{93} +(-12.4814 - 30.1327i) q^{94} +(1.76826 - 1.18151i) q^{96} +(66.3366 - 13.1952i) q^{97} +(15.5581 - 15.5581i) q^{98} +(-108.973 - 72.8134i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} - 8 q^{6} - 8 q^{7} + 24 q^{8} - 16 q^{9} - 8 q^{11} - 48 q^{12} - 16 q^{13} + 8 q^{14} - 56 q^{18} - 64 q^{21} + 104 q^{22} + 56 q^{23} - 80 q^{24} + 176 q^{26} - 40 q^{27} - 152 q^{28}+ \cdots - 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.841487 2.03153i 0.420744 1.01577i −0.561385 0.827555i \(-0.689731\pi\)
0.982129 0.188210i \(-0.0602687\pi\)
\(3\) −0.0897902 + 0.134381i −0.0299301 + 0.0447935i −0.846133 0.532972i \(-0.821075\pi\)
0.816203 + 0.577765i \(0.196075\pi\)
\(4\) −0.590587 0.590587i −0.147647 0.147647i
\(5\) 0 0
\(6\) 0.197441 + 0.295491i 0.0329068 + 0.0492485i
\(7\) −1.21824 + 6.12453i −0.174035 + 0.874933i 0.790800 + 0.612075i \(0.209665\pi\)
−0.964835 + 0.262858i \(0.915335\pi\)
\(8\) 6.42935 2.66313i 0.803669 0.332891i
\(9\) 3.43416 + 8.29078i 0.381573 + 0.921198i
\(10\) 0 0
\(11\) −12.1433 + 8.11392i −1.10394 + 0.737629i −0.967463 0.253014i \(-0.918578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(12\) 0.132392 0.0263345i 0.0110327 0.00219454i
\(13\) −4.79884 + 4.79884i −0.369141 + 0.369141i −0.867164 0.498023i \(-0.834060\pi\)
0.498023 + 0.867164i \(0.334060\pi\)
\(14\) 11.4170 + 7.62861i 0.815502 + 0.544901i
\(15\) 0 0
\(16\) 18.6433i 1.16520i
\(17\) −6.50562 + 15.7060i −0.382683 + 0.923880i
\(18\) 19.7328 1.09627
\(19\) −9.56175 + 23.0841i −0.503250 + 1.21495i 0.444454 + 0.895802i \(0.353398\pi\)
−0.947704 + 0.319151i \(0.896602\pi\)
\(20\) 0 0
\(21\) −0.713631 0.713631i −0.0339824 0.0339824i
\(22\) 6.26521 + 31.4973i 0.284782 + 1.43170i
\(23\) −7.27639 10.8899i −0.316365 0.473474i 0.638873 0.769312i \(-0.279401\pi\)
−0.955238 + 0.295839i \(0.904401\pi\)
\(24\) −0.219421 + 1.10310i −0.00914253 + 0.0459626i
\(25\) 0 0
\(26\) 5.71082 + 13.7871i 0.219647 + 0.530274i
\(27\) −2.84909 0.566719i −0.105522 0.0209896i
\(28\) 4.33654 2.89759i 0.154877 0.103485i
\(29\) 32.3980 6.44436i 1.11717 0.222219i 0.398228 0.917287i \(-0.369625\pi\)
0.718945 + 0.695067i \(0.244625\pi\)
\(30\) 0 0
\(31\) −1.00960 0.674593i −0.0325678 0.0217611i 0.539180 0.842191i \(-0.318734\pi\)
−0.571748 + 0.820430i \(0.693734\pi\)
\(32\) −12.1570 5.03558i −0.379905 0.157362i
\(33\) 2.36038i 0.0715267i
\(34\) 26.4327 + 26.4327i 0.777433 + 0.777433i
\(35\) 0 0
\(36\) 2.86826 6.92459i 0.0796739 0.192350i
\(37\) 25.8238 38.6481i 0.697941 1.04454i −0.298002 0.954565i \(-0.596320\pi\)
0.995944 0.0899781i \(-0.0286797\pi\)
\(38\) 38.8500 + 38.8500i 1.02237 + 1.02237i
\(39\) −0.213982 1.07576i −0.00548671 0.0275836i
\(40\) 0 0
\(41\) 6.13577 30.8466i 0.149653 0.752356i −0.830949 0.556348i \(-0.812202\pi\)
0.980602 0.196008i \(-0.0627979\pi\)
\(42\) −2.05027 + 0.849251i −0.0488161 + 0.0202203i
\(43\) 27.8948 + 67.3441i 0.648717 + 1.56614i 0.814617 + 0.579999i \(0.196947\pi\)
−0.165901 + 0.986142i \(0.553053\pi\)
\(44\) 11.9637 + 2.37972i 0.271902 + 0.0540846i
\(45\) 0 0
\(46\) −28.2461 + 5.61851i −0.614047 + 0.122141i
\(47\) 10.4882 10.4882i 0.223153 0.223153i −0.586672 0.809825i \(-0.699562\pi\)
0.809825 + 0.586672i \(0.199562\pi\)
\(48\) 2.50529 + 1.67398i 0.0521936 + 0.0348747i
\(49\) 9.24438 + 3.82915i 0.188661 + 0.0781458i
\(50\) 0 0
\(51\) −1.52643 2.28447i −0.0299301 0.0447935i
\(52\) 5.66826 0.109005
\(53\) 1.97838 4.77624i 0.0373280 0.0901178i −0.904116 0.427287i \(-0.859469\pi\)
0.941444 + 0.337169i \(0.109469\pi\)
\(54\) −3.54878 + 5.31112i −0.0657181 + 0.0983541i
\(55\) 0 0
\(56\) 8.47786 + 42.6211i 0.151390 + 0.761091i
\(57\) −2.24350 3.35764i −0.0393597 0.0589059i
\(58\) 14.1706 71.2404i 0.244321 1.22828i
\(59\) 26.1013 10.8115i 0.442394 0.183246i −0.150356 0.988632i \(-0.548042\pi\)
0.592751 + 0.805386i \(0.298042\pi\)
\(60\) 0 0
\(61\) −81.0541 16.1227i −1.32876 0.264306i −0.520866 0.853639i \(-0.674391\pi\)
−0.807891 + 0.589332i \(0.799391\pi\)
\(62\) −2.22002 + 1.48337i −0.0358068 + 0.0239254i
\(63\) −54.9608 + 10.9324i −0.872393 + 0.173530i
\(64\) 32.2713 32.2713i 0.504239 0.504239i
\(65\) 0 0
\(66\) −4.79518 1.98623i −0.0726543 0.0300944i
\(67\) 44.5324i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(68\) 13.1179 5.43359i 0.192910 0.0799058i
\(69\) 2.11674 0.0306774
\(70\) 0 0
\(71\) 32.1978 48.1875i 0.453491 0.678697i −0.532323 0.846541i \(-0.678681\pi\)
0.985813 + 0.167845i \(0.0536807\pi\)
\(72\) 44.1588 + 44.1588i 0.613317 + 0.613317i
\(73\) 0.262865 + 1.32151i 0.00360089 + 0.0181029i 0.982544 0.186031i \(-0.0595623\pi\)
−0.978943 + 0.204133i \(0.934562\pi\)
\(74\) −56.7843 84.9838i −0.767356 1.14843i
\(75\) 0 0
\(76\) 19.2802 7.98612i 0.253687 0.105081i
\(77\) −34.9004 84.2570i −0.453252 1.09425i
\(78\) −2.36550 0.470527i −0.0303269 0.00603240i
\(79\) −24.7128 + 16.5125i −0.312820 + 0.209020i −0.702062 0.712116i \(-0.747737\pi\)
0.389242 + 0.921136i \(0.372737\pi\)
\(80\) 0 0
\(81\) −56.7774 + 56.7774i −0.700956 + 0.700956i
\(82\) −57.5026 38.4220i −0.701252 0.468561i
\(83\) 62.2748 + 25.7951i 0.750298 + 0.310784i 0.724863 0.688893i \(-0.241903\pi\)
0.0254351 + 0.999676i \(0.491903\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) −2.04303 + 4.93230i −0.0234831 + 0.0566931i
\(88\) −56.4655 + 84.5065i −0.641653 + 0.960302i
\(89\) 90.1397 + 90.1397i 1.01281 + 1.01281i 0.999917 + 0.0128890i \(0.00410281\pi\)
0.0128890 + 0.999917i \(0.495897\pi\)
\(90\) 0 0
\(91\) −23.5444 35.2368i −0.258730 0.387217i
\(92\) −2.13408 + 10.7288i −0.0231966 + 0.116617i
\(93\) 0.181304 0.0750988i 0.00194951 0.000807514i
\(94\) −12.4814 30.1327i −0.132781 0.320561i
\(95\) 0 0
\(96\) 1.76826 1.18151i 0.0184194 0.0123074i
\(97\) 66.3366 13.1952i 0.683882 0.136033i 0.159091 0.987264i \(-0.449144\pi\)
0.524791 + 0.851231i \(0.324144\pi\)
\(98\) 15.5581 15.5581i 0.158756 0.158756i
\(99\) −108.973 72.8134i −1.10074 0.735489i
\(100\) 0 0
\(101\) 34.6405i 0.342975i 0.985186 + 0.171488i \(0.0548573\pi\)
−0.985186 + 0.171488i \(0.945143\pi\)
\(102\) −5.92544 + 1.17864i −0.0580926 + 0.0115553i
\(103\) −151.166 −1.46763 −0.733817 0.679347i \(-0.762263\pi\)
−0.733817 + 0.679347i \(0.762263\pi\)
\(104\) −18.0735 + 43.6333i −0.173784 + 0.419551i
\(105\) 0 0
\(106\) −8.03830 8.03830i −0.0758330 0.0758330i
\(107\) 1.86075 + 9.35463i 0.0173902 + 0.0874264i 0.988506 0.151183i \(-0.0483083\pi\)
−0.971116 + 0.238610i \(0.923308\pi\)
\(108\) 1.34794 + 2.01733i 0.0124809 + 0.0186790i
\(109\) 22.6951 114.096i 0.208212 1.04675i −0.725362 0.688368i \(-0.758327\pi\)
0.933574 0.358385i \(-0.116673\pi\)
\(110\) 0 0
\(111\) 2.87483 + 6.94044i 0.0258993 + 0.0625265i
\(112\) 114.181 + 22.7121i 1.01948 + 0.202786i
\(113\) 54.8360 36.6403i 0.485274 0.324250i −0.288751 0.957404i \(-0.593240\pi\)
0.774026 + 0.633154i \(0.218240\pi\)
\(114\) −8.70902 + 1.73233i −0.0763949 + 0.0151959i
\(115\) 0 0
\(116\) −22.9398 15.3279i −0.197757 0.132137i
\(117\) −56.2660 23.3062i −0.480906 0.199198i
\(118\) 62.1233i 0.526468i
\(119\) −88.2661 58.9775i −0.741732 0.495609i
\(120\) 0 0
\(121\) 35.3203 85.2709i 0.291904 0.704718i
\(122\) −100.960 + 151.097i −0.827539 + 1.23850i
\(123\) 3.59425 + 3.59425i 0.0292216 + 0.0292216i
\(124\) 0.197851 + 0.994662i 0.00159557 + 0.00802147i
\(125\) 0 0
\(126\) −24.0393 + 120.854i −0.190788 + 0.959158i
\(127\) −88.2580 + 36.5576i −0.694945 + 0.287855i −0.702059 0.712119i \(-0.747736\pi\)
0.00711395 + 0.999975i \(0.497736\pi\)
\(128\) −58.5465 141.344i −0.457395 1.10425i
\(129\) −11.5544 2.29832i −0.0895691 0.0178164i
\(130\) 0 0
\(131\) 42.0736 8.36897i 0.321173 0.0638852i −0.0318711 0.999492i \(-0.510147\pi\)
0.353044 + 0.935607i \(0.385147\pi\)
\(132\) −1.39401 + 1.39401i −0.0105607 + 0.0105607i
\(133\) −129.731 86.6833i −0.975419 0.651754i
\(134\) −90.4690 37.4735i −0.675142 0.279653i
\(135\) 0 0
\(136\) 118.304i 0.869885i
\(137\) 63.8232 0.465863 0.232931 0.972493i \(-0.425168\pi\)
0.232931 + 0.972493i \(0.425168\pi\)
\(138\) 1.78121 4.30022i 0.0129073 0.0311610i
\(139\) −145.186 + 217.286i −1.04450 + 1.56321i −0.238632 + 0.971110i \(0.576699\pi\)
−0.805868 + 0.592095i \(0.798301\pi\)
\(140\) 0 0
\(141\) 0.467671 + 2.35114i 0.00331682 + 0.0166748i
\(142\) −70.8002 105.960i −0.498593 0.746197i
\(143\) 19.3365 97.2113i 0.135220 0.679799i
\(144\) 154.567 64.0239i 1.07338 0.444610i
\(145\) 0 0
\(146\) 2.90589 + 0.578017i 0.0199033 + 0.00395902i
\(147\) −1.34462 + 0.898445i −0.00914706 + 0.00611187i
\(148\) −38.0763 + 7.57384i −0.257272 + 0.0511746i
\(149\) −83.6010 + 83.6010i −0.561080 + 0.561080i −0.929614 0.368534i \(-0.879860\pi\)
0.368534 + 0.929614i \(0.379860\pi\)
\(150\) 0 0
\(151\) 25.5851 + 10.5977i 0.169437 + 0.0701833i 0.465790 0.884895i \(-0.345770\pi\)
−0.296352 + 0.955079i \(0.595770\pi\)
\(152\) 173.880i 1.14395i
\(153\) −152.556 −0.997098
\(154\) −200.539 −1.30220
\(155\) 0 0
\(156\) −0.508954 + 0.761703i −0.00326252 + 0.00488271i
\(157\) 55.8958 + 55.8958i 0.356024 + 0.356024i 0.862345 0.506321i \(-0.168995\pi\)
−0.506321 + 0.862345i \(0.668995\pi\)
\(158\) 12.7503 + 64.0998i 0.0806978 + 0.405695i
\(159\) 0.464195 + 0.694716i 0.00291946 + 0.00436929i
\(160\) 0 0
\(161\) 75.5599 31.2979i 0.469316 0.194397i
\(162\) 67.5676 + 163.123i 0.417084 + 1.00693i
\(163\) 54.4489 + 10.8306i 0.334042 + 0.0664451i 0.359262 0.933237i \(-0.383029\pi\)
−0.0252196 + 0.999682i \(0.508029\pi\)
\(164\) −21.8413 + 14.5939i −0.133179 + 0.0889871i
\(165\) 0 0
\(166\) 104.807 104.807i 0.631367 0.631367i
\(167\) 42.9537 + 28.7008i 0.257208 + 0.171861i 0.677489 0.735533i \(-0.263068\pi\)
−0.420281 + 0.907394i \(0.638068\pi\)
\(168\) −6.48868 2.68770i −0.0386231 0.0159982i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) 23.2982 56.2468i 0.135455 0.327016i
\(173\) 10.2620 15.3581i 0.0593178 0.0887754i −0.800625 0.599166i \(-0.795499\pi\)
0.859943 + 0.510390i \(0.170499\pi\)
\(174\) 8.30094 + 8.30094i 0.0477066 + 0.0477066i
\(175\) 0 0
\(176\) 151.270 + 226.392i 0.859489 + 1.28632i
\(177\) −0.890783 + 4.47827i −0.00503267 + 0.0253010i
\(178\) 258.973 107.270i 1.45490 0.602641i
\(179\) 23.9825 + 57.8989i 0.133980 + 0.323457i 0.976604 0.215046i \(-0.0689900\pi\)
−0.842624 + 0.538503i \(0.818990\pi\)
\(180\) 0 0
\(181\) 86.9711 58.1122i 0.480503 0.321062i −0.291621 0.956534i \(-0.594194\pi\)
0.772124 + 0.635472i \(0.219194\pi\)
\(182\) −91.3969 + 18.1800i −0.502181 + 0.0998899i
\(183\) 9.44444 9.44444i 0.0516090 0.0516090i
\(184\) −75.7837 50.6370i −0.411868 0.275201i
\(185\) 0 0
\(186\) 0.431520i 0.00232000i
\(187\) −48.4369 243.509i −0.259021 1.30219i
\(188\) −12.3883 −0.0658954
\(189\) 6.94177 16.7589i 0.0367289 0.0886715i
\(190\) 0 0
\(191\) −137.930 137.930i −0.722145 0.722145i 0.246897 0.969042i \(-0.420589\pi\)
−0.969042 + 0.246897i \(0.920589\pi\)
\(192\) 1.43899 + 7.23428i 0.00749473 + 0.0376785i
\(193\) −49.1142 73.5045i −0.254478 0.380853i 0.682131 0.731230i \(-0.261053\pi\)
−0.936609 + 0.350377i \(0.886053\pi\)
\(194\) 29.0150 145.868i 0.149562 0.751899i
\(195\) 0 0
\(196\) −3.19816 7.72105i −0.0163172 0.0393931i
\(197\) −252.430 50.2114i −1.28137 0.254880i −0.492972 0.870045i \(-0.664089\pi\)
−0.788398 + 0.615165i \(0.789089\pi\)
\(198\) −239.622 + 160.110i −1.21021 + 0.808637i
\(199\) 223.079 44.3732i 1.12100 0.222981i 0.400406 0.916338i \(-0.368869\pi\)
0.720594 + 0.693357i \(0.243869\pi\)
\(200\) 0 0
\(201\) 5.98429 + 3.99858i 0.0297726 + 0.0198934i
\(202\) 70.3732 + 29.1495i 0.348382 + 0.144305i
\(203\) 206.273i 1.01612i
\(204\) −0.447686 + 2.25067i −0.00219454 + 0.0110327i
\(205\) 0 0
\(206\) −127.204 + 307.099i −0.617498 + 1.49077i
\(207\) 65.2975 97.7246i 0.315447 0.472100i
\(208\) 89.4660 + 89.4660i 0.430125 + 0.430125i
\(209\) −71.1910 357.901i −0.340627 1.71245i
\(210\) 0 0
\(211\) 1.57784 7.93236i 0.00747794 0.0375941i −0.976866 0.213852i \(-0.931399\pi\)
0.984344 + 0.176257i \(0.0563991\pi\)
\(212\) −3.98919 + 1.65238i −0.0188169 + 0.00779423i
\(213\) 3.58441 + 8.65353i 0.0168282 + 0.0406269i
\(214\) 20.5700 + 4.09163i 0.0961215 + 0.0191198i
\(215\) 0 0
\(216\) −19.8270 + 3.94384i −0.0917918 + 0.0182585i
\(217\) 5.36151 5.36151i 0.0247074 0.0247074i
\(218\) −212.692 142.116i −0.975651 0.651909i
\(219\) −0.201188 0.0833348i −0.000918667 0.000380524i
\(220\) 0 0
\(221\) −44.1509 106.590i −0.199778 0.482306i
\(222\) 16.5188 0.0744092
\(223\) −18.7769 + 45.3315i −0.0842014 + 0.203280i −0.960372 0.278720i \(-0.910090\pi\)
0.876171 + 0.482001i \(0.160090\pi\)
\(224\) 45.6507 68.3211i 0.203798 0.305005i
\(225\) 0 0
\(226\) −28.2920 142.233i −0.125186 0.629351i
\(227\) 93.3694 + 139.737i 0.411319 + 0.615582i 0.978062 0.208312i \(-0.0667969\pi\)
−0.566743 + 0.823894i \(0.691797\pi\)
\(228\) −0.657994 + 3.30796i −0.00288594 + 0.0145086i
\(229\) 114.723 47.5197i 0.500972 0.207510i −0.117864 0.993030i \(-0.537605\pi\)
0.618836 + 0.785520i \(0.287605\pi\)
\(230\) 0 0
\(231\) 14.4562 + 2.87552i 0.0625810 + 0.0124481i
\(232\) 191.136 127.713i 0.823863 0.550487i
\(233\) 346.291 68.8815i 1.48623 0.295629i 0.615791 0.787910i \(-0.288837\pi\)
0.870436 + 0.492281i \(0.163837\pi\)
\(234\) −94.6943 + 94.6943i −0.404677 + 0.404677i
\(235\) 0 0
\(236\) −21.8002 9.02993i −0.0923737 0.0382624i
\(237\) 4.80358i 0.0202683i
\(238\) −194.089 + 129.686i −0.815502 + 0.544901i
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) 0 0
\(241\) 160.021 239.488i 0.663988 0.993728i −0.334691 0.942328i \(-0.608632\pi\)
0.998678 0.0513996i \(-0.0163682\pi\)
\(242\) −143.509 143.509i −0.593011 0.593011i
\(243\) −7.63219 38.3696i −0.0314082 0.157900i
\(244\) 38.3477 + 57.3913i 0.157163 + 0.235210i
\(245\) 0 0
\(246\) 10.3263 4.27731i 0.0419770 0.0173875i
\(247\) −64.8915 156.662i −0.262719 0.634259i
\(248\) −8.28761 1.64851i −0.0334178 0.00664721i
\(249\) −9.05802 + 6.05237i −0.0363776 + 0.0243067i
\(250\) 0 0
\(251\) 191.096 191.096i 0.761337 0.761337i −0.215227 0.976564i \(-0.569049\pi\)
0.976564 + 0.215227i \(0.0690490\pi\)
\(252\) 38.9156 + 26.0026i 0.154427 + 0.103185i
\(253\) 176.720 + 73.1996i 0.698496 + 0.289327i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) 20.2061 48.7819i 0.0786230 0.189813i −0.879680 0.475565i \(-0.842244\pi\)
0.958303 + 0.285753i \(0.0922436\pi\)
\(258\) −14.3920 + 21.5391i −0.0557829 + 0.0834850i
\(259\) 205.242 + 205.242i 0.792439 + 0.792439i
\(260\) 0 0
\(261\) 164.689 + 246.474i 0.630991 + 0.944345i
\(262\) 18.4026 92.5162i 0.0702390 0.353115i
\(263\) 468.907 194.228i 1.78292 0.738509i 0.790970 0.611854i \(-0.209576\pi\)
0.991947 0.126654i \(-0.0404239\pi\)
\(264\) −6.28599 15.1757i −0.0238106 0.0574838i
\(265\) 0 0
\(266\) −285.266 + 190.609i −1.07243 + 0.716575i
\(267\) −20.2067 + 4.01936i −0.0756805 + 0.0150538i
\(268\) −26.3003 + 26.3003i −0.0981353 + 0.0981353i
\(269\) 146.551 + 97.9225i 0.544801 + 0.364024i 0.797310 0.603570i \(-0.206256\pi\)
−0.252509 + 0.967595i \(0.581256\pi\)
\(270\) 0 0
\(271\) 464.255i 1.71312i −0.516050 0.856559i \(-0.672598\pi\)
0.516050 0.856559i \(-0.327402\pi\)
\(272\) 292.810 + 121.286i 1.07651 + 0.445905i
\(273\) 6.84919 0.0250886
\(274\) 53.7064 129.659i 0.196009 0.473207i
\(275\) 0 0
\(276\) −1.25012 1.25012i −0.00452941 0.00452941i
\(277\) −34.4498 173.191i −0.124368 0.625238i −0.991812 0.127704i \(-0.959239\pi\)
0.867445 0.497534i \(-0.165761\pi\)
\(278\) 319.250 + 477.792i 1.14838 + 1.71868i
\(279\) 2.12578 10.6870i 0.00761930 0.0383048i
\(280\) 0 0
\(281\) 152.875 + 369.073i 0.544040 + 1.31343i 0.921851 + 0.387545i \(0.126677\pi\)
−0.377811 + 0.925883i \(0.623323\pi\)
\(282\) 5.16995 + 1.02837i 0.0183332 + 0.00364669i
\(283\) −297.348 + 198.682i −1.05070 + 0.702055i −0.955975 0.293448i \(-0.905197\pi\)
−0.0947249 + 0.995503i \(0.530197\pi\)
\(284\) −47.4745 + 9.44326i −0.167164 + 0.0332509i
\(285\) 0 0
\(286\) −181.216 121.085i −0.633623 0.423373i
\(287\) 181.446 + 75.1574i 0.632216 + 0.261872i
\(288\) 118.084i 0.410013i
\(289\) −204.354 204.354i −0.707107 0.707107i
\(290\) 0 0
\(291\) −4.18320 + 10.0991i −0.0143753 + 0.0347050i
\(292\) 0.625222 0.935711i 0.00214117 0.00320449i
\(293\) 169.002 + 169.002i 0.576800 + 0.576800i 0.934020 0.357220i \(-0.116275\pi\)
−0.357220 + 0.934020i \(0.616275\pi\)
\(294\) 0.693739 + 3.48766i 0.00235966 + 0.0118628i
\(295\) 0 0
\(296\) 63.1058 317.254i 0.213195 1.07181i
\(297\) 39.1958 16.2354i 0.131972 0.0546647i
\(298\) 99.4888 + 240.187i 0.333855 + 0.805997i
\(299\) 87.1770 + 17.3406i 0.291562 + 0.0579953i
\(300\) 0 0
\(301\) −446.433 + 88.8011i −1.48317 + 0.295020i
\(302\) 43.0590 43.0590i 0.142579 0.142579i
\(303\) −4.65501 3.11038i −0.0153631 0.0102653i
\(304\) 430.363 + 178.262i 1.41567 + 0.586389i
\(305\) 0 0
\(306\) −128.374 + 309.922i −0.419523 + 1.01282i
\(307\) −409.955 −1.33536 −0.667679 0.744450i \(-0.732712\pi\)
−0.667679 + 0.744450i \(0.732712\pi\)
\(308\) −29.1493 + 70.3727i −0.0946407 + 0.228483i
\(309\) 13.5733 20.3138i 0.0439264 0.0657405i
\(310\) 0 0
\(311\) 42.2576 + 212.443i 0.135877 + 0.683098i 0.987332 + 0.158670i \(0.0507207\pi\)
−0.851455 + 0.524428i \(0.824279\pi\)
\(312\) −4.24064 6.34657i −0.0135918 0.0203416i
\(313\) 92.3584 464.317i 0.295075 1.48344i −0.494171 0.869365i \(-0.664528\pi\)
0.789246 0.614077i \(-0.210472\pi\)
\(314\) 160.590 66.5184i 0.511432 0.211842i
\(315\) 0 0
\(316\) 24.3471 + 4.84294i 0.0770479 + 0.0153258i
\(317\) −213.145 + 142.419i −0.672383 + 0.449272i −0.844322 0.535836i \(-0.819997\pi\)
0.171939 + 0.985108i \(0.444997\pi\)
\(318\) 1.80195 0.358430i 0.00566651 0.00112714i
\(319\) −341.131 + 341.131i −1.06938 + 1.06938i
\(320\) 0 0
\(321\) −1.42416 0.589905i −0.00443663 0.00183771i
\(322\) 179.839i 0.558506i
\(323\) −300.353 300.353i −0.929884 0.929884i
\(324\) 67.0640 0.206988
\(325\) 0 0
\(326\) 67.8206 101.501i 0.208039 0.311352i
\(327\) 13.2945 + 13.2945i 0.0406560 + 0.0406560i
\(328\) −42.6993 214.664i −0.130181 0.654464i
\(329\) 51.4579 + 77.0122i 0.156407 + 0.234080i
\(330\) 0 0
\(331\) 208.580 86.3966i 0.630151 0.261017i −0.0446663 0.999002i \(-0.514222\pi\)
0.674817 + 0.737985i \(0.264222\pi\)
\(332\) −21.5444 52.0129i −0.0648929 0.156665i
\(333\) 409.106 + 81.3763i 1.22855 + 0.244373i
\(334\) 94.4515 63.1105i 0.282789 0.188954i
\(335\) 0 0
\(336\) −13.3044 + 13.3044i −0.0395965 + 0.0395965i
\(337\) 300.276 + 200.638i 0.891027 + 0.595365i 0.914601 0.404357i \(-0.132505\pi\)
−0.0235742 + 0.999722i \(0.507505\pi\)
\(338\) 249.761 + 103.454i 0.738938 + 0.306078i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) −188.680 + 455.513i −0.551695 + 1.33191i
\(343\) −204.708 + 306.367i −0.596815 + 0.893197i
\(344\) 358.691 + 358.691i 1.04271 + 1.04271i
\(345\) 0 0
\(346\) −22.5652 33.7712i −0.0652173 0.0976046i
\(347\) −3.09377 + 15.5534i −0.00891575 + 0.0448225i −0.984987 0.172628i \(-0.944774\pi\)
0.976071 + 0.217451i \(0.0697741\pi\)
\(348\) 4.11954 1.70637i 0.0118377 0.00490336i
\(349\) −121.062 292.270i −0.346883 0.837448i −0.996984 0.0776015i \(-0.975274\pi\)
0.650102 0.759847i \(-0.274726\pi\)
\(350\) 0 0
\(351\) 16.3919 10.9527i 0.0467005 0.0312043i
\(352\) 188.484 37.4919i 0.535467 0.106511i
\(353\) −191.613 + 191.613i −0.542812 + 0.542812i −0.924352 0.381540i \(-0.875394\pi\)
0.381540 + 0.924352i \(0.375394\pi\)
\(354\) 8.34816 + 5.57806i 0.0235824 + 0.0157572i
\(355\) 0 0
\(356\) 106.471i 0.299075i
\(357\) 15.8509 6.56564i 0.0444002 0.0183912i
\(358\) 137.804 0.384928
\(359\) 60.5865 146.269i 0.168765 0.407434i −0.816757 0.576981i \(-0.804231\pi\)
0.985522 + 0.169547i \(0.0542305\pi\)
\(360\) 0 0
\(361\) −186.183 186.183i −0.515743 0.515743i
\(362\) −44.8717 225.585i −0.123955 0.623163i
\(363\) 8.28732 + 12.4029i 0.0228301 + 0.0341676i
\(364\) −6.90532 + 34.7154i −0.0189707 + 0.0953719i
\(365\) 0 0
\(366\) −11.2393 27.1340i −0.0307084 0.0741367i
\(367\) 479.595 + 95.3974i 1.30680 + 0.259938i 0.798892 0.601474i \(-0.205420\pi\)
0.507906 + 0.861413i \(0.330420\pi\)
\(368\) −203.023 + 135.656i −0.551694 + 0.368630i
\(369\) 276.814 55.0617i 0.750173 0.149219i
\(370\) 0 0
\(371\) 26.8421 + 17.9353i 0.0723506 + 0.0483431i
\(372\) −0.151428 0.0627237i −0.000407065 0.000168612i
\(373\) 573.453i 1.53741i −0.639605 0.768704i \(-0.720902\pi\)
0.639605 0.768704i \(-0.279098\pi\)
\(374\) −535.455 106.509i −1.43170 0.284782i
\(375\) 0 0
\(376\) 39.5008 95.3635i 0.105055 0.253626i
\(377\) −124.547 + 186.398i −0.330364 + 0.494425i
\(378\) −28.2048 28.2048i −0.0746159 0.0746159i
\(379\) 136.954 + 688.516i 0.361357 + 1.81666i 0.550641 + 0.834742i \(0.314383\pi\)
−0.189284 + 0.981922i \(0.560617\pi\)
\(380\) 0 0
\(381\) 3.01206 15.1427i 0.00790568 0.0397445i
\(382\) −396.274 + 164.142i −1.03737 + 0.429692i
\(383\) 118.024 + 284.935i 0.308157 + 0.743956i 0.999765 + 0.0216830i \(0.00690247\pi\)
−0.691608 + 0.722273i \(0.743098\pi\)
\(384\) 24.2508 + 4.82378i 0.0631530 + 0.0125619i
\(385\) 0 0
\(386\) −190.656 + 37.9238i −0.493927 + 0.0982481i
\(387\) −462.540 + 462.540i −1.19519 + 1.19519i
\(388\) −46.9704 31.3846i −0.121058 0.0808882i
\(389\) 263.382 + 109.097i 0.677076 + 0.280454i 0.694604 0.719392i \(-0.255580\pi\)
−0.0175282 + 0.999846i \(0.505580\pi\)
\(390\) 0 0
\(391\) 218.374 43.4372i 0.558500 0.111093i
\(392\) 69.6329 0.177635
\(393\) −2.65317 + 6.40533i −0.00675108 + 0.0162986i
\(394\) −314.423 + 470.567i −0.798027 + 1.19433i
\(395\) 0 0
\(396\) 21.3553 + 107.361i 0.0539276 + 0.271112i
\(397\) −69.0841 103.392i −0.174015 0.260432i 0.734202 0.678931i \(-0.237556\pi\)
−0.908217 + 0.418499i \(0.862556\pi\)
\(398\) 97.5727 490.531i 0.245158 1.23249i
\(399\) 23.2971 9.64997i 0.0583887 0.0241854i
\(400\) 0 0
\(401\) −418.770 83.2986i −1.04432 0.207727i −0.357014 0.934099i \(-0.616205\pi\)
−0.687302 + 0.726372i \(0.741205\pi\)
\(402\) 13.1589 8.79252i 0.0327337 0.0218719i
\(403\) 8.08217 1.60764i 0.0200550 0.00398919i
\(404\) 20.4582 20.4582i 0.0506391 0.0506391i
\(405\) 0 0
\(406\) 419.050 + 173.576i 1.03214 + 0.427528i
\(407\) 678.850i 1.66794i
\(408\) −15.8978 10.6226i −0.0389652 0.0260357i
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) 0 0
\(411\) −5.73070 + 8.57659i −0.0139433 + 0.0208676i
\(412\) 89.2768 + 89.2768i 0.216691 + 0.216691i
\(413\) 34.4176 + 173.029i 0.0833356 + 0.418956i
\(414\) −143.583 214.888i −0.346820 0.519053i
\(415\) 0 0
\(416\) 82.5042 34.1743i 0.198327 0.0821499i
\(417\) −16.1627 39.0202i −0.0387595 0.0935737i
\(418\) −786.994 156.543i −1.88276 0.374504i
\(419\) −517.326 + 345.666i −1.23467 + 0.824979i −0.989504 0.144503i \(-0.953842\pi\)
−0.245164 + 0.969482i \(0.578842\pi\)
\(420\) 0 0
\(421\) −36.3708 + 36.3708i −0.0863916 + 0.0863916i −0.748982 0.662590i \(-0.769457\pi\)
0.662590 + 0.748982i \(0.269457\pi\)
\(422\) −14.7871 9.88042i −0.0350405 0.0234133i
\(423\) 122.973 + 50.9371i 0.290717 + 0.120419i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) 197.488 476.777i 0.462500 1.11657i
\(428\) 4.42578 6.62365i 0.0103406 0.0154758i
\(429\) 11.3271 + 11.3271i 0.0264034 + 0.0264034i
\(430\) 0 0
\(431\) 261.460 + 391.302i 0.606635 + 0.907893i 0.999934 0.0115175i \(-0.00366621\pi\)
−0.393299 + 0.919411i \(0.628666\pi\)
\(432\) −10.5655 + 53.1163i −0.0244572 + 0.122954i
\(433\) 594.595 246.289i 1.37320 0.568798i 0.430545 0.902569i \(-0.358321\pi\)
0.942654 + 0.333772i \(0.108321\pi\)
\(434\) −6.38042 15.4037i −0.0147014 0.0354924i
\(435\) 0 0
\(436\) −80.7871 + 53.9802i −0.185291 + 0.123808i
\(437\) 320.958 63.8426i 0.734459 0.146093i
\(438\) −0.338594 + 0.338594i −0.000773047 + 0.000773047i
\(439\) −688.000 459.707i −1.56720 1.04717i −0.969389 0.245530i \(-0.921038\pi\)
−0.597809 0.801638i \(-0.703962\pi\)
\(440\) 0 0
\(441\) 89.7930i 0.203612i
\(442\) −253.693 −0.573965
\(443\) −354.430 −0.800068 −0.400034 0.916500i \(-0.631002\pi\)
−0.400034 + 0.916500i \(0.631002\pi\)
\(444\) 2.40110 5.79677i 0.00540788 0.0130558i
\(445\) 0 0
\(446\) 76.2917 + 76.2917i 0.171058 + 0.171058i
\(447\) −3.72780 18.7409i −0.00833959 0.0419259i
\(448\) 158.332 + 236.961i 0.353420 + 0.528930i
\(449\) 153.330 770.842i 0.341492 1.71680i −0.303692 0.952770i \(-0.598220\pi\)
0.645185 0.764027i \(-0.276780\pi\)
\(450\) 0 0
\(451\) 175.778 + 424.366i 0.389752 + 0.940945i
\(452\) −54.0247 10.7462i −0.119524 0.0237747i
\(453\) −3.72141 + 2.48657i −0.00821503 + 0.00548911i
\(454\) 362.450 72.0957i 0.798347 0.158801i
\(455\) 0 0
\(456\) −23.3661 15.6127i −0.0512414 0.0342384i
\(457\) −300.390 124.426i −0.657309 0.272266i 0.0289968 0.999580i \(-0.490769\pi\)
−0.686306 + 0.727313i \(0.740769\pi\)
\(458\) 273.050i 0.596178i
\(459\) 27.4359 41.0608i 0.0597733 0.0894570i
\(460\) 0 0
\(461\) −94.2242 + 227.477i −0.204391 + 0.493444i −0.992522 0.122064i \(-0.961049\pi\)
0.788131 + 0.615507i \(0.211049\pi\)
\(462\) 18.0064 26.9485i 0.0389749 0.0583301i
\(463\) 248.069 + 248.069i 0.535786 + 0.535786i 0.922288 0.386503i \(-0.126317\pi\)
−0.386503 + 0.922288i \(0.626317\pi\)
\(464\) −120.144 604.005i −0.258931 1.30174i
\(465\) 0 0
\(466\) 151.464 761.463i 0.325031 1.63404i
\(467\) 202.212 83.7591i 0.433003 0.179356i −0.155526 0.987832i \(-0.549707\pi\)
0.588529 + 0.808476i \(0.299707\pi\)
\(468\) 19.4657 + 46.9943i 0.0415933 + 0.100415i
\(469\) 272.740 + 54.2514i 0.581536 + 0.115675i
\(470\) 0 0
\(471\) −12.5302 + 2.49241i −0.0266034 + 0.00529174i
\(472\) 139.022 139.022i 0.294538 0.294538i
\(473\) −885.161 591.446i −1.87138 1.25041i
\(474\) −9.75862 4.04215i −0.0205878 0.00852775i
\(475\) 0 0
\(476\) 17.2974 + 86.9601i 0.0363392 + 0.182689i
\(477\) 46.3929 0.0972597
\(478\) 173.790 419.566i 0.363578 0.877754i
\(479\) −279.157 + 417.789i −0.582792 + 0.872210i −0.999318 0.0369135i \(-0.988247\pi\)
0.416526 + 0.909124i \(0.363247\pi\)
\(480\) 0 0
\(481\) 61.5415 + 309.390i 0.127945 + 0.643223i
\(482\) −351.872 526.614i −0.730025 1.09256i
\(483\) −2.57871 + 12.9640i −0.00533893 + 0.0268406i
\(484\) −71.2196 + 29.5001i −0.147148 + 0.0609506i
\(485\) 0 0
\(486\) −84.3715 16.7825i −0.173604 0.0345319i
\(487\) 209.352 139.885i 0.429882 0.287238i −0.321745 0.946826i \(-0.604269\pi\)
0.751627 + 0.659589i \(0.229269\pi\)
\(488\) −564.063 + 112.199i −1.15587 + 0.229916i
\(489\) −6.34439 + 6.34439i −0.0129742 + 0.0129742i
\(490\) 0 0
\(491\) −209.123 86.6215i −0.425912 0.176418i 0.159423 0.987210i \(-0.449037\pi\)
−0.585334 + 0.810792i \(0.699037\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) −109.554 + 550.766i −0.222219 + 1.11717i
\(494\) −372.869 −0.754796
\(495\) 0 0
\(496\) −12.5766 + 18.8223i −0.0253561 + 0.0379481i
\(497\) 255.901 + 255.901i 0.514891 + 0.514891i
\(498\) 4.67337 + 23.4946i 0.00938428 + 0.0471780i
\(499\) −119.919 179.471i −0.240318 0.359662i 0.691631 0.722251i \(-0.256893\pi\)
−0.931949 + 0.362590i \(0.881893\pi\)
\(500\) 0 0
\(501\) −7.71365 + 3.19510i −0.0153965 + 0.00637744i
\(502\) −227.412 549.021i −0.453012 1.09367i
\(503\) −865.523 172.163i −1.72072 0.342273i −0.766698 0.642008i \(-0.778102\pi\)
−0.954023 + 0.299735i \(0.903102\pi\)
\(504\) −324.248 + 216.656i −0.643349 + 0.429872i
\(505\) 0 0
\(506\) 297.414 297.414i 0.587776 0.587776i
\(507\) −16.5211 11.0390i −0.0325859 0.0217732i
\(508\) 73.7144 + 30.5335i 0.145107 + 0.0601053i
\(509\) 459.446i 0.902645i −0.892361 0.451323i \(-0.850952\pi\)
0.892361 0.451323i \(-0.149048\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) 104.718 252.811i 0.204527 0.493772i
\(513\) 40.3244 60.3498i 0.0786052 0.117641i
\(514\) −82.0986 82.0986i −0.159725 0.159725i
\(515\) 0 0
\(516\) 5.46653 + 8.18124i 0.0105940 + 0.0158551i
\(517\) −42.2612 + 212.462i −0.0817432 + 0.410951i
\(518\) 589.663 244.246i 1.13835 0.471518i
\(519\) 1.14241 + 2.75802i 0.00220117 + 0.00531411i
\(520\) 0 0
\(521\) 84.0959 56.1911i 0.161412 0.107852i −0.472241 0.881470i \(-0.656555\pi\)
0.633653 + 0.773617i \(0.281555\pi\)
\(522\) 639.303 127.165i 1.22472 0.243611i
\(523\) −395.099 + 395.099i −0.755448 + 0.755448i −0.975490 0.220042i \(-0.929380\pi\)
0.220042 + 0.975490i \(0.429380\pi\)
\(524\) −29.7907 19.9055i −0.0568525 0.0379876i
\(525\) 0 0
\(526\) 1116.04i 2.12175i
\(527\) 17.1632 11.4681i 0.0325678 0.0217611i
\(528\) −44.0052 −0.0833432
\(529\) 136.796 330.254i 0.258593 0.624299i
\(530\) 0 0
\(531\) 179.272 + 179.272i 0.337611 + 0.337611i
\(532\) 25.4232 + 127.811i 0.0477880 + 0.240247i
\(533\) 118.583 + 177.472i 0.222483 + 0.332969i
\(534\) −8.83822 + 44.4327i −0.0165510 + 0.0832074i
\(535\) 0 0
\(536\) −118.596 286.315i −0.221260 0.534170i
\(537\) −9.93388 1.97597i −0.0184988 0.00367965i
\(538\) 322.254 215.323i 0.598985 0.400229i
\(539\) −143.327 + 28.5095i −0.265913 + 0.0528934i
\(540\) 0 0
\(541\) −33.9436 22.6804i −0.0627423 0.0419230i 0.523804 0.851839i \(-0.324513\pi\)
−0.586546 + 0.809916i \(0.699513\pi\)
\(542\) −943.148 390.665i −1.74012 0.720783i
\(543\) 16.9051i 0.0311328i
\(544\) 158.177 158.177i 0.290767 0.290767i
\(545\) 0 0
\(546\) 5.76351 13.9143i 0.0105559 0.0254841i
\(547\) 37.8284 56.6142i 0.0691562 0.103500i −0.795280 0.606243i \(-0.792676\pi\)
0.864436 + 0.502743i \(0.167676\pi\)
\(548\) −37.6931 37.6931i −0.0687830 0.0687830i
\(549\) −144.683 727.370i −0.263539 1.32490i
\(550\) 0 0
\(551\) −161.019 + 809.498i −0.292231 + 1.46914i
\(552\) 13.6093 5.63714i 0.0246545 0.0102122i
\(553\) −71.0254 171.470i −0.128436 0.310073i
\(554\) −380.832 75.7521i −0.687422 0.136737i
\(555\) 0 0
\(556\) 214.071 42.5813i 0.385019 0.0765850i
\(557\) 208.814 208.814i 0.374890 0.374890i −0.494365 0.869255i \(-0.664599\pi\)
0.869255 + 0.494365i \(0.164599\pi\)
\(558\) −19.9222 13.3116i −0.0357029 0.0238559i
\(559\) −457.036 189.310i −0.817595 0.338659i
\(560\) 0 0
\(561\) 37.0720 + 15.3557i 0.0660820 + 0.0273721i
\(562\) 878.426 1.56304
\(563\) −169.121 + 408.295i −0.300393 + 0.725212i 0.699551 + 0.714583i \(0.253384\pi\)
−0.999944 + 0.0106294i \(0.996616\pi\)
\(564\) 1.11235 1.66475i 0.00197226 0.00295169i
\(565\) 0 0
\(566\) 153.413 + 771.260i 0.271048 + 1.36265i
\(567\) −278.566 416.904i −0.491298 0.735280i
\(568\) 78.6820 395.561i 0.138525 0.696411i
\(569\) 595.479 246.656i 1.04654 0.433490i 0.207882 0.978154i \(-0.433343\pi\)
0.838654 + 0.544664i \(0.183343\pi\)
\(570\) 0 0
\(571\) −117.482 23.3687i −0.205748 0.0409259i 0.0911400 0.995838i \(-0.470949\pi\)
−0.296888 + 0.954912i \(0.595949\pi\)
\(572\) −68.8316 + 45.9918i −0.120335 + 0.0804052i
\(573\) 30.9198 6.15033i 0.0539613 0.0107336i
\(574\) 305.369 305.369i 0.532002 0.532002i
\(575\) 0 0
\(576\) 378.379 + 156.730i 0.656908 + 0.272100i
\(577\) 177.008i 0.306773i −0.988166 0.153387i \(-0.950982\pi\)
0.988166 0.153387i \(-0.0490180\pi\)
\(578\) −587.112 + 243.190i −1.01577 + 0.420744i
\(579\) 14.2876 0.0246763
\(580\) 0 0
\(581\) −233.848 + 349.979i −0.402493 + 0.602373i
\(582\) 16.9966 + 16.9966i 0.0292038 + 0.0292038i
\(583\) 14.7299 + 74.0520i 0.0252656 + 0.127019i
\(584\) 5.20940 + 7.79642i 0.00892021 + 0.0133500i
\(585\) 0 0
\(586\) 485.547 201.120i 0.828578 0.343208i
\(587\) 239.200 + 577.480i 0.407496 + 0.983781i 0.985794 + 0.167956i \(0.0537168\pi\)
−0.578299 + 0.815825i \(0.696283\pi\)
\(588\) 1.32472 + 0.263504i 0.00225293 + 0.000448135i
\(589\) 25.2259 16.8554i 0.0428284 0.0286170i
\(590\) 0 0
\(591\) 29.4132 29.4132i 0.0497685 0.0497685i
\(592\) −720.527 481.441i −1.21711 0.813245i
\(593\) 138.551 + 57.3899i 0.233645 + 0.0967789i 0.496434 0.868074i \(-0.334642\pi\)
−0.262789 + 0.964853i \(0.584642\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) −14.0674 + 33.9618i −0.0235635 + 0.0568874i
\(598\) 108.586 162.511i 0.181582 0.271757i
\(599\) −217.159 217.159i −0.362536 0.362536i 0.502210 0.864746i \(-0.332520\pi\)
−0.864746 + 0.502210i \(0.832520\pi\)
\(600\) 0 0
\(601\) 225.714 + 337.804i 0.375564 + 0.562071i 0.970317 0.241838i \(-0.0777502\pi\)
−0.594753 + 0.803908i \(0.702750\pi\)
\(602\) −195.266 + 981.668i −0.324362 + 1.63068i
\(603\) 369.209 152.931i 0.612287 0.253617i
\(604\) −8.85135 21.3690i −0.0146545 0.0353792i
\(605\) 0 0
\(606\) −10.2360 + 6.83945i −0.0168910 + 0.0112862i
\(607\) −1017.17 + 202.327i −1.67573 + 0.333323i −0.939274 0.343167i \(-0.888500\pi\)
−0.736452 + 0.676490i \(0.763500\pi\)
\(608\) 232.484 232.484i 0.382374 0.382374i
\(609\) −27.7191 18.5213i −0.0455158 0.0304127i
\(610\) 0 0
\(611\) 100.662i 0.164750i
\(612\) 90.0975 + 90.0975i 0.147218 + 0.147218i
\(613\) −132.402 −0.215991 −0.107995 0.994151i \(-0.534443\pi\)
−0.107995 + 0.994151i \(0.534443\pi\)
\(614\) −344.972 + 832.835i −0.561843 + 1.35641i
\(615\) 0 0
\(616\) −448.774 448.774i −0.728529 0.728529i
\(617\) −49.9956 251.345i −0.0810302 0.407366i −0.999917 0.0128460i \(-0.995911\pi\)
0.918887 0.394520i \(-0.129089\pi\)
\(618\) −29.8464 44.6683i −0.0482951 0.0722788i
\(619\) −17.9310 + 90.1450i −0.0289676 + 0.145630i −0.992562 0.121737i \(-0.961154\pi\)
0.963595 + 0.267367i \(0.0861536\pi\)
\(620\) 0 0
\(621\) 14.5596 + 35.1499i 0.0234454 + 0.0566021i
\(622\) 467.145 + 92.9208i 0.751036 + 0.149390i
\(623\) −661.875 + 442.251i −1.06240 + 0.709873i
\(624\) −20.0557 + 3.98932i −0.0321405 + 0.00639314i
\(625\) 0 0
\(626\) −865.556 578.346i −1.38268 0.923875i
\(627\) 54.4872 + 22.5694i 0.0869015 + 0.0359958i
\(628\) 66.0226i 0.105131i
\(629\) 439.005 + 657.018i 0.697941 + 1.04454i
\(630\) 0 0
\(631\) 219.866 530.804i 0.348441 0.841210i −0.648364 0.761331i \(-0.724546\pi\)
0.996805 0.0798795i \(-0.0254536\pi\)
\(632\) −114.912 + 171.978i −0.181823 + 0.272117i
\(633\) 0.924280 + 0.924280i 0.00146016 + 0.00146016i
\(634\) 109.970 + 552.855i 0.173454 + 0.872012i
\(635\) 0 0
\(636\) 0.136143 0.684437i 0.000214061 0.00107616i
\(637\) −62.7377 + 25.9868i −0.0984893 + 0.0407956i
\(638\) 405.961 + 980.076i 0.636302 + 1.53617i
\(639\) 510.084 + 101.462i 0.798254 + 0.158783i
\(640\) 0 0
\(641\) −966.275 + 192.204i −1.50745 + 0.299850i −0.878555 0.477641i \(-0.841492\pi\)
−0.628894 + 0.777491i \(0.716492\pi\)
\(642\) −2.39682 + 2.39682i −0.00373337 + 0.00373337i
\(643\) 29.4169 + 19.6558i 0.0457495 + 0.0305688i 0.578235 0.815870i \(-0.303742\pi\)
−0.532485 + 0.846439i \(0.678742\pi\)
\(644\) −63.1088 26.1405i −0.0979950 0.0405909i
\(645\) 0 0
\(646\) −862.919 + 357.433i −1.33579 + 0.553301i
\(647\) 472.176 0.729793 0.364897 0.931048i \(-0.381104\pi\)
0.364897 + 0.931048i \(0.381104\pi\)
\(648\) −213.837 + 516.248i −0.329995 + 0.796679i
\(649\) −229.233 + 343.071i −0.353210 + 0.528615i
\(650\) 0 0
\(651\) 0.239071 + 1.20189i 0.000367237 + 0.00184623i
\(652\) −25.7604 38.5532i −0.0395098 0.0591306i
\(653\) 124.126 624.023i 0.190086 0.955625i −0.761482 0.648186i \(-0.775528\pi\)
0.951568 0.307439i \(-0.0994720\pi\)
\(654\) 38.1953 15.8210i 0.0584026 0.0241912i
\(655\) 0 0
\(656\) −575.082 114.391i −0.876649 0.174376i
\(657\) −10.0536 + 6.71763i −0.0153023 + 0.0102247i
\(658\) 199.754 39.7335i 0.303577 0.0603853i
\(659\) 128.530 128.530i 0.195037 0.195037i −0.602831 0.797869i \(-0.705961\pi\)
0.797869 + 0.602831i \(0.205961\pi\)
\(660\) 0 0
\(661\) 1075.49 + 445.481i 1.62706 + 0.673950i 0.994898 0.100887i \(-0.0321681\pi\)
0.632161 + 0.774837i \(0.282168\pi\)
\(662\) 496.438i 0.749906i
\(663\) 18.2879 + 3.63769i 0.0275836 + 0.00548671i
\(664\) 469.082 0.706449
\(665\) 0 0
\(666\) 509.576 762.634i 0.765129 1.14510i
\(667\) −305.919 305.919i −0.458649 0.458649i
\(668\) −8.41761 42.3182i −0.0126012 0.0633506i
\(669\) −4.40568 6.59357i −0.00658548 0.00985586i
\(670\) 0 0
\(671\) 1115.09 461.884i 1.66183 0.688352i
\(672\) 5.08204 + 12.2691i 0.00756256 + 0.0182576i
\(673\) −105.260 20.9375i −0.156404 0.0311106i 0.116267 0.993218i \(-0.462907\pi\)
−0.272671 + 0.962107i \(0.587907\pi\)
\(674\) 660.281 441.186i 0.979645 0.654578i
\(675\) 0 0
\(676\) 72.6081 72.6081i 0.107408 0.107408i
\(677\) 876.782 + 585.847i 1.29510 + 0.865358i 0.996043 0.0888773i \(-0.0283279\pi\)
0.299057 + 0.954235i \(0.403328\pi\)
\(678\) 21.6537 + 8.96927i 0.0319377 + 0.0132290i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) 14.9225 36.0262i 0.0218805 0.0528243i
\(683\) 339.367 507.899i 0.496877 0.743629i −0.495265 0.868742i \(-0.664929\pi\)
0.992143 + 0.125113i \(0.0399292\pi\)
\(684\) 132.422 + 132.422i 0.193600 + 0.193600i
\(685\) 0 0
\(686\) 450.134 + 673.673i 0.656172 + 0.982031i
\(687\) −3.91525 + 19.6833i −0.00569906 + 0.0286511i
\(688\) 1255.51 520.051i 1.82488 0.755888i
\(689\) 13.4265 + 32.4143i 0.0194869 + 0.0470455i
\(690\) 0 0
\(691\) −815.612 + 544.975i −1.18034 + 0.788675i −0.981520 0.191362i \(-0.938710\pi\)
−0.198816 + 0.980037i \(0.563710\pi\)
\(692\) −15.1309 + 3.00972i −0.0218655 + 0.00434931i
\(693\) 578.703 578.703i 0.835069 0.835069i
\(694\) 28.9939 + 19.3731i 0.0417779 + 0.0279151i
\(695\) 0 0
\(696\) 37.1524i 0.0533798i
\(697\) 444.558 + 297.044i 0.637817 + 0.426176i
\(698\) −695.626 −0.996600
\(699\) −21.8372 + 52.7196i −0.0312406 + 0.0754215i
\(700\) 0 0
\(701\) 52.7814 + 52.7814i 0.0752944 + 0.0752944i 0.743751 0.668457i \(-0.233045\pi\)
−0.668457 + 0.743751i \(0.733045\pi\)
\(702\) −8.45719 42.5172i −0.0120473 0.0605658i
\(703\) 645.236 + 965.663i 0.917832 + 1.37363i
\(704\) −130.035 + 653.728i −0.184708 + 0.928591i
\(705\) 0 0
\(706\) 228.027 + 550.507i 0.322985 + 0.779755i
\(707\) −212.157 42.2006i −0.300080 0.0596896i
\(708\) 3.17089 2.11872i 0.00447866 0.00299254i
\(709\) −752.626 + 149.707i −1.06153 + 0.211152i −0.694821 0.719183i \(-0.744516\pi\)
−0.366711 + 0.930335i \(0.619516\pi\)
\(710\) 0 0
\(711\) −221.769 148.182i −0.311912 0.208413i
\(712\) 819.594 + 339.487i 1.15111 + 0.476807i
\(713\) 15.9030i 0.0223044i
\(714\) 37.7264i 0.0528381i
\(715\) 0 0
\(716\) 20.0306 48.3580i 0.0279756 0.0675392i
\(717\) −18.5441 + 27.7533i −0.0258635 + 0.0387075i
\(718\) −246.167 246.167i −0.342851 0.342851i
\(719\) 224.919 + 1130.74i 0.312822 + 1.57266i 0.742606 + 0.669729i \(0.233590\pi\)
−0.429785 + 0.902931i \(0.641410\pi\)
\(720\) 0 0
\(721\) 184.157 925.822i 0.255419 1.28408i
\(722\) −534.907 + 221.566i −0.740869 + 0.306878i
\(723\) 17.8143 + 43.0074i 0.0246394 + 0.0594847i
\(724\) −85.6842 17.0437i −0.118348 0.0235410i
\(725\) 0 0
\(726\) 32.1705 6.39910i 0.0443119 0.00881419i
\(727\) −195.955 + 195.955i −0.269539 + 0.269539i −0.828914 0.559376i \(-0.811041\pi\)
0.559376 + 0.828914i \(0.311041\pi\)
\(728\) −245.216 163.848i −0.336834 0.225066i
\(729\) −661.808 274.130i −0.907830 0.376036i
\(730\) 0 0
\(731\) −1239.18 −1.69518
\(732\) −11.1555 −0.0152398
\(733\) −169.675 + 409.632i −0.231480 + 0.558843i −0.996352 0.0853397i \(-0.972802\pi\)
0.764871 + 0.644183i \(0.222802\pi\)
\(734\) 597.376 894.036i 0.813863 1.21803i
\(735\) 0 0
\(736\) 33.6219 + 169.029i 0.0456820 + 0.229659i
\(737\) 361.333 + 540.773i 0.490275 + 0.733749i
\(738\) 121.076 608.689i 0.164059 0.824782i
\(739\) 98.1432 40.6523i 0.132805 0.0550098i −0.315291 0.948995i \(-0.602102\pi\)
0.448096 + 0.893985i \(0.352102\pi\)
\(740\) 0 0
\(741\) 26.8790 + 5.34656i 0.0362739 + 0.00721533i
\(742\) 59.0234 39.4382i 0.0795463 0.0531512i
\(743\) −905.734 + 180.162i −1.21902 + 0.242479i −0.762355 0.647159i \(-0.775957\pi\)
−0.456668 + 0.889637i \(0.650957\pi\)
\(744\) 0.965673 0.965673i 0.00129795 0.00129795i
\(745\) 0 0
\(746\) −1164.99 482.554i −1.56165 0.646855i
\(747\) 604.891i 0.809760i
\(748\) −115.207 + 172.419i −0.154020 + 0.230507i
\(749\) −59.5595 −0.0795187
\(750\) 0 0
\(751\) 636.671 952.846i 0.847765 1.26877i −0.113610 0.993525i \(-0.536241\pi\)
0.961374 0.275244i \(-0.0887587\pi\)
\(752\) −195.534 195.534i −0.260018 0.260018i
\(753\) 8.52102 + 42.8381i 0.0113161 + 0.0568899i
\(754\) 273.869 + 409.873i 0.363221 + 0.543598i
\(755\) 0 0
\(756\) −13.9973 + 5.79787i −0.0185150 + 0.00766915i
\(757\) −24.5973 59.3832i −0.0324932 0.0784455i 0.906800 0.421561i \(-0.138518\pi\)
−0.939293 + 0.343116i \(0.888518\pi\)
\(758\) 1513.99 + 301.151i 1.99734 + 0.397296i
\(759\) −25.7043 + 17.1751i −0.0338660 + 0.0226285i
\(760\) 0 0
\(761\) −173.164 + 173.164i −0.227548 + 0.227548i −0.811668 0.584120i \(-0.801440\pi\)
0.584120 + 0.811668i \(0.301440\pi\)
\(762\) −28.2282 18.8615i −0.0370449 0.0247526i
\(763\) 671.137 + 277.994i 0.879602 + 0.364343i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) −73.3731 + 177.138i −0.0956624 + 0.230950i
\(768\) 13.8148 20.6753i 0.0179880 0.0269210i
\(769\) 550.339 + 550.339i 0.715655 + 0.715655i 0.967712 0.252057i \(-0.0811072\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(770\) 0 0
\(771\) 4.74102 + 7.09544i 0.00614919 + 0.00920291i
\(772\) −14.4046 + 72.4170i −0.0186588 + 0.0938044i
\(773\) −399.534 + 165.492i −0.516861 + 0.214091i −0.625837 0.779953i \(-0.715243\pi\)
0.108976 + 0.994044i \(0.465243\pi\)
\(774\) 550.442 + 1328.89i 0.711166 + 1.71691i
\(775\) 0 0
\(776\) 391.361 261.499i 0.504331 0.336983i
\(777\) −46.0092 + 9.15179i −0.0592139 + 0.0117784i
\(778\) 443.266 443.266i 0.569751 0.569751i
\(779\) 653.397 + 436.586i 0.838764 + 0.560444i
\(780\) 0 0
\(781\) 846.408i 1.08375i
\(782\) 95.5146 480.184i 0.122141 0.614047i
\(783\) −95.9569 −0.122550
\(784\) 71.3878 172.345i 0.0910559 0.219828i
\(785\) 0 0
\(786\) 10.7800 + 10.7800i 0.0137150 + 0.0137150i
\(787\) 222.286 + 1117.51i 0.282447 + 1.41996i 0.817884 + 0.575383i \(0.195147\pi\)
−0.535437 + 0.844575i \(0.679853\pi\)
\(788\) 119.428 + 178.736i 0.151558 + 0.226822i
\(789\) −16.0029 + 80.4518i −0.0202824 + 0.101967i
\(790\) 0 0
\(791\) 157.601 + 380.481i 0.199242 + 0.481013i
\(792\) −894.537 177.934i −1.12947 0.224665i
\(793\) 466.336 311.595i 0.588065 0.392932i
\(794\) −268.177 + 53.3436i −0.337754 + 0.0671834i
\(795\) 0 0
\(796\) −157.954 105.541i −0.198434 0.132590i
\(797\) −104.084 43.1132i −0.130595 0.0540943i 0.316429 0.948616i \(-0.397516\pi\)
−0.447024 + 0.894522i \(0.647516\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 96.4946 + 232.959i 0.120769 + 0.291563i
\(800\) 0 0
\(801\) −437.775 + 1056.88i −0.546536 + 1.31945i
\(802\) −521.614 + 780.650i −0.650391 + 0.973379i
\(803\) −13.9147 13.9147i −0.0173284 0.0173284i
\(804\) −1.17274 5.89575i −0.00145863 0.00733302i
\(805\) 0 0
\(806\) 3.53507 17.7720i 0.00438594 0.0220496i
\(807\) −26.3178 + 10.9012i −0.0326119 + 0.0135083i
\(808\) 92.2520 + 222.716i 0.114173 + 0.275639i
\(809\) 638.126 + 126.931i 0.788783 + 0.156899i 0.573014 0.819546i \(-0.305774\pi\)
0.215769 + 0.976444i \(0.430774\pi\)
\(810\) 0 0
\(811\) −631.322 + 125.578i −0.778449 + 0.154843i −0.568294 0.822825i \(-0.692397\pi\)
−0.210154 + 0.977668i \(0.567397\pi\)
\(812\) 121.822 121.822i 0.150027 0.150027i
\(813\) 62.3868 + 41.6855i 0.0767366 + 0.0512737i
\(814\) 1379.10 + 571.243i 1.69423 + 0.701773i
\(815\) 0 0
\(816\) −42.5900 + 28.4577i −0.0521936 + 0.0348747i
\(817\) −1821.30 −2.22925
\(818\) −181.383 + 437.897i −0.221739 + 0.535326i
\(819\) 211.285 316.210i 0.257979 0.386093i
\(820\) 0 0
\(821\) −174.401 876.775i −0.212426 1.06794i −0.928902 0.370325i \(-0.879246\pi\)
0.716477 0.697611i \(-0.245754\pi\)
\(822\) 12.6013 + 18.8592i 0.0153300 + 0.0229430i
\(823\) −180.424 + 907.053i −0.219227 + 1.10213i 0.701723 + 0.712450i \(0.252414\pi\)
−0.920950 + 0.389680i \(0.872586\pi\)
\(824\) −971.901 + 402.575i −1.17949 + 0.488562i
\(825\) 0 0
\(826\) 380.476 + 75.6813i 0.460624 + 0.0916239i
\(827\) 704.948 471.032i 0.852417 0.569567i −0.0508208 0.998708i \(-0.516184\pi\)
0.903237 + 0.429141i \(0.141184\pi\)
\(828\) −96.2787 + 19.1510i −0.116279 + 0.0231292i
\(829\) 862.801 862.801i 1.04077 1.04077i 0.0416400 0.999133i \(-0.486742\pi\)
0.999133 0.0416400i \(-0.0132583\pi\)
\(830\) 0 0
\(831\) 26.3667 + 10.9215i 0.0317289 + 0.0131426i
\(832\) 309.729i 0.372271i
\(833\) −120.281 + 120.281i −0.144395 + 0.144395i
\(834\) −92.8715 −0.111357
\(835\) 0 0
\(836\) −169.327 + 253.416i −0.202545 + 0.303129i
\(837\) 2.49414 + 2.49414i 0.00297985 + 0.00297985i
\(838\) 266.908 + 1341.84i 0.318506 + 1.60124i
\(839\) −213.563 319.620i −0.254545 0.380954i 0.682085 0.731273i \(-0.261073\pi\)
−0.936631 + 0.350319i \(0.886073\pi\)
\(840\) 0 0
\(841\) 231.119 95.7324i 0.274814 0.113832i
\(842\) 43.2829 + 104.494i 0.0514048 + 0.124102i
\(843\) −63.3230 12.5957i −0.0751162 0.0149415i
\(844\) −5.61660 + 3.75289i −0.00665474 + 0.00444655i
\(845\) 0 0
\(846\) 206.961 206.961i 0.244634 0.244634i
\(847\) 479.215 + 320.201i 0.565779 + 0.378042i
\(848\) −89.0448 36.8836i −0.105006 0.0434948i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) 2.99375 7.22756i 0.00351380 0.00848305i
\(853\) 485.458 726.539i 0.569118 0.851745i −0.429566 0.903036i \(-0.641333\pi\)
0.998684 + 0.0512903i \(0.0163334\pi\)
\(854\) −802.404 802.404i −0.939583 0.939583i
\(855\) 0 0
\(856\) 36.8760 + 55.1888i 0.0430794 + 0.0644729i
\(857\) 262.053 1317.43i 0.305779 1.53726i −0.456332 0.889810i \(-0.650837\pi\)
0.762111 0.647446i \(-0.224163\pi\)
\(858\) 32.5429 13.4797i 0.0379288 0.0157106i
\(859\) −97.9655 236.510i −0.114046 0.275331i 0.856542 0.516077i \(-0.172608\pi\)
−0.970588 + 0.240745i \(0.922608\pi\)
\(860\) 0 0
\(861\) −26.3918 + 17.6344i −0.0306525 + 0.0204813i
\(862\) 1014.96 201.887i 1.17744 0.234208i
\(863\) 1137.90 1137.90i 1.31854 1.31854i 0.403612 0.914930i \(-0.367755\pi\)
0.914930 0.403612i \(-0.132245\pi\)
\(864\) 31.7825 + 21.2364i 0.0367853 + 0.0245791i
\(865\) 0 0
\(866\) 1415.19i 1.63417i
\(867\) 45.8102 9.11221i 0.0528376 0.0105100i
\(868\) −6.33287 −0.00729593
\(869\) 166.114 401.035i 0.191156 0.461490i
\(870\) 0 0
\(871\) 213.704 + 213.704i 0.245355 + 0.245355i
\(872\) −157.937 794.004i −0.181121 0.910555i
\(873\) 337.208 + 504.668i 0.386264 + 0.578085i
\(874\) 140.384 705.760i 0.160623 0.807505i
\(875\) 0 0
\(876\) 0.0696025 + 0.168035i 7.94550e−5 + 0.000191821i
\(877\) 483.538 + 96.1816i 0.551354 + 0.109671i 0.462902 0.886409i \(-0.346808\pi\)
0.0884519 + 0.996080i \(0.471808\pi\)
\(878\) −1512.85 + 1010.86i −1.72307 + 1.15132i
\(879\) −37.8854 + 7.53588i −0.0431006 + 0.00857324i
\(880\) 0 0
\(881\) −334.347 223.404i −0.379508 0.253579i 0.351155 0.936317i \(-0.385789\pi\)
−0.730663 + 0.682738i \(0.760789\pi\)
\(882\) 182.417 + 75.5597i 0.206822 + 0.0856686i
\(883\) 907.327i 1.02755i −0.857925 0.513775i \(-0.828246\pi\)
0.857925 0.513775i \(-0.171754\pi\)
\(884\) −36.8755 + 89.0253i −0.0417144 + 0.100707i
\(885\) 0 0
\(886\) −298.248 + 720.035i −0.336624 + 0.812681i
\(887\) 705.933 1056.50i 0.795866 1.19110i −0.182294 0.983244i \(-0.558352\pi\)
0.978160 0.207854i \(-0.0666478\pi\)
\(888\) 36.9665 + 36.9665i 0.0416290 + 0.0416290i
\(889\) −116.379 585.074i −0.130910 0.658127i
\(890\) 0 0
\(891\) 228.780 1150.16i 0.256768 1.29086i
\(892\) 37.8615 15.6828i 0.0424457 0.0175816i
\(893\) 141.825 + 342.395i 0.158818 + 0.383421i
\(894\) −41.2096 8.19710i −0.0460957 0.00916901i
\(895\) 0 0
\(896\) 936.988 186.379i 1.04575 0.208012i
\(897\) −10.1579 + 10.1579i −0.0113243 + 0.0113243i
\(898\) −1436.96 960.148i −1.60018 1.06921i
\(899\) −37.0564 15.3493i −0.0412195 0.0170737i
\(900\) 0 0
\(901\) 62.1448 + 62.1448i 0.0689732 + 0.0689732i
\(902\) 1010.03 1.11976
\(903\) 28.1522 67.9654i 0.0311763 0.0752663i
\(904\) 254.983 381.608i 0.282060 0.422133i
\(905\) 0 0
\(906\) 1.92002 + 9.65257i 0.00211922 + 0.0106541i
\(907\) −852.359 1275.64i −0.939756 1.40644i −0.913522 0.406788i \(-0.866649\pi\)
−0.0262336 0.999656i \(-0.508351\pi\)
\(908\) 27.3842 137.670i 0.0301588 0.151619i
\(909\) −287.197 + 118.961i −0.315948 + 0.130870i
\(910\) 0 0
\(911\) 359.228 + 71.4549i 0.394323 + 0.0784357i 0.388269 0.921546i \(-0.373073\pi\)
0.00605352 + 0.999982i \(0.498073\pi\)
\(912\) −62.5974 + 41.8262i −0.0686375 + 0.0458621i
\(913\) −965.523 + 192.054i −1.05753 + 0.210355i
\(914\) −505.549 + 505.549i −0.553117 + 0.553117i
\(915\) 0 0
\(916\) −95.8181 39.6892i −0.104605 0.0433288i
\(917\) 267.877i 0.292123i
\(918\) −60.3292 90.2891i −0.0657181 0.0983541i
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) 0 0
\(921\) 36.8099 55.0899i 0.0399673 0.0598153i
\(922\) 382.839 + 382.839i 0.415226 + 0.415226i
\(923\) 76.7316 + 385.756i 0.0831328 + 0.417937i
\(924\) −6.83940 10.2359i −0.00740195 0.0110778i
\(925\) 0 0
\(926\) 712.706 295.212i 0.769661 0.318804i
\(927\) −519.128 1253.29i −0.560009 1.35198i
\(928\) −426.312 84.7988i −0.459388 0.0913780i
\(929\) 807.914 539.831i 0.869660 0.581088i −0.0387126 0.999250i \(-0.512326\pi\)
0.908372 + 0.418162i \(0.137326\pi\)
\(930\) 0 0
\(931\) −176.785 + 176.785i −0.189887 + 0.189887i
\(932\) −245.195 163.834i −0.263085 0.175788i
\(933\) −32.3426 13.3967i −0.0346652 0.0143588i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) 229.656 554.438i 0.245097 0.591716i −0.752678 0.658389i \(-0.771238\pi\)
0.997775 + 0.0666728i \(0.0212384\pi\)
\(938\) 339.721 508.428i 0.362176 0.542034i
\(939\) 54.1023 + 54.1023i 0.0576170 + 0.0576170i
\(940\) 0 0
\(941\) 602.514 + 901.726i 0.640291 + 0.958263i 0.999686 + 0.0250777i \(0.00798332\pi\)
−0.359394 + 0.933186i \(0.617017\pi\)
\(942\) −5.48059 + 27.5528i −0.00581804 + 0.0292493i
\(943\) −380.563 + 157.634i −0.403566 + 0.167162i
\(944\) −201.562 486.613i −0.213519 0.515480i
\(945\) 0 0
\(946\) −1946.39 + 1300.54i −2.05750 + 1.37478i
\(947\) −683.372 + 135.931i −0.721618 + 0.143539i −0.542219 0.840237i \(-0.682416\pi\)
−0.179400 + 0.983776i \(0.557416\pi\)
\(948\) −2.83693 + 2.83693i −0.00299254 + 0.00299254i
\(949\) −7.60316 5.08027i −0.00801176 0.00535329i
\(950\) 0 0
\(951\) 41.4305i 0.0435651i
\(952\) −724.559 144.124i −0.761091 0.151390i
\(953\) 1779.95 1.86774 0.933868 0.357618i \(-0.116411\pi\)
0.933868 + 0.357618i \(0.116411\pi\)
\(954\) 39.0390 94.2485i 0.0409214 0.0987930i
\(955\) 0 0
\(956\) −121.972 121.972i −0.127586 0.127586i
\(957\) −15.2111 76.4716i −0.0158946 0.0799076i
\(958\) 613.843 + 918.681i 0.640754 + 0.958957i
\(959\) −77.7522 + 390.887i −0.0810763 + 0.407598i
\(960\) 0 0
\(961\) −367.195 886.486i −0.382096 0.922462i
\(962\) 680.322 + 135.324i 0.707195 + 0.140670i
\(963\) −71.1671 + 47.5523i −0.0739015 + 0.0493794i
\(964\) −235.945 + 46.9324i −0.244756 + 0.0486850i
\(965\) 0 0
\(966\) 24.1669 + 16.1478i 0.0250175 + 0.0167161i
\(967\) 558.012 + 231.136i 0.577055 + 0.239024i 0.652071 0.758158i \(-0.273901\pi\)
−0.0750154 + 0.997182i \(0.523901\pi\)
\(968\) 642.299i 0.663532i
\(969\) 67.3303 13.3928i 0.0694843 0.0138213i
\(970\) 0 0
\(971\) 421.281 1017.06i 0.433863 1.04744i −0.544168 0.838976i \(-0.683155\pi\)
0.978031 0.208461i \(-0.0668454\pi\)
\(972\) −18.1531 + 27.1681i −0.0186760 + 0.0279507i
\(973\) −1153.90 1153.90i −1.18592 1.18592i
\(974\) −108.013 543.017i −0.110896 0.557512i
\(975\) 0 0
\(976\) −300.579 + 1511.11i −0.307971 + 1.54827i
\(977\) −1012.20 + 419.266i −1.03603 + 0.429136i −0.834884 0.550426i \(-0.814465\pi\)
−0.201142 + 0.979562i \(0.564465\pi\)
\(978\) 7.55010 + 18.2276i 0.00771994 + 0.0186376i
\(979\) −1825.98 363.211i −1.86515 0.371002i
\(980\) 0 0
\(981\) 1023.88 203.663i 1.04372 0.207608i
\(982\) −351.948 + 351.948i −0.358399 + 0.358399i
\(983\) 1021.98 + 682.863i 1.03965 + 0.694673i 0.953433 0.301604i \(-0.0975219\pi\)
0.0862178 + 0.996276i \(0.472522\pi\)
\(984\) 32.6807 + 13.5368i 0.0332121 + 0.0137569i
\(985\) 0 0
\(986\) 1026.71 + 686.025i 1.04129 + 0.695766i
\(987\) −14.9694 −0.0151665
\(988\) −54.1984 + 130.847i −0.0548567 + 0.132436i
\(989\) 530.396 793.794i 0.536295 0.802623i
\(990\) 0 0
\(991\) −143.735 722.604i −0.145040 0.729167i −0.983025 0.183473i \(-0.941266\pi\)
0.837985 0.545694i \(-0.183734\pi\)
\(992\) 8.87670 + 13.2849i 0.00894829 + 0.0133921i
\(993\) −7.11841 + 35.7867i −0.00716859 + 0.0360389i
\(994\) 735.207 304.533i 0.739645 0.306371i
\(995\) 0 0
\(996\) 8.92400 + 1.77509i 0.00895984 + 0.00178222i
\(997\) −145.149 + 96.9855i −0.145586 + 0.0972774i −0.626230 0.779638i \(-0.715403\pi\)
0.480644 + 0.876916i \(0.340403\pi\)
\(998\) −465.511 + 92.5960i −0.466444 + 0.0927815i
\(999\) −95.4770 + 95.4770i −0.0955725 + 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.b.126.1 8
5.2 odd 4 425.3.t.c.24.1 8
5.3 odd 4 425.3.t.a.24.1 8
5.4 even 2 17.3.e.a.7.1 yes 8
15.14 odd 2 153.3.p.b.109.1 8
17.5 odd 16 inner 425.3.u.b.226.1 8
20.19 odd 2 272.3.bh.c.177.1 8
85.4 even 4 289.3.e.i.214.1 8
85.9 even 8 289.3.e.k.40.1 8
85.14 odd 16 289.3.e.i.131.1 8
85.19 even 8 289.3.e.d.249.1 8
85.22 even 16 425.3.t.a.124.1 8
85.24 odd 16 289.3.e.l.224.1 8
85.29 odd 16 289.3.e.c.158.1 8
85.39 odd 16 17.3.e.a.5.1 8
85.44 odd 16 289.3.e.k.224.1 8
85.49 even 8 289.3.e.b.249.1 8
85.54 odd 16 289.3.e.m.131.1 8
85.59 even 8 289.3.e.l.40.1 8
85.64 even 4 289.3.e.m.214.1 8
85.73 even 16 425.3.t.c.124.1 8
85.74 odd 16 289.3.e.b.65.1 8
85.79 odd 16 289.3.e.d.65.1 8
85.84 even 2 289.3.e.c.75.1 8
255.209 even 16 153.3.p.b.73.1 8
340.39 even 16 272.3.bh.c.209.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 85.39 odd 16
17.3.e.a.7.1 yes 8 5.4 even 2
153.3.p.b.73.1 8 255.209 even 16
153.3.p.b.109.1 8 15.14 odd 2
272.3.bh.c.177.1 8 20.19 odd 2
272.3.bh.c.209.1 8 340.39 even 16
289.3.e.b.65.1 8 85.74 odd 16
289.3.e.b.249.1 8 85.49 even 8
289.3.e.c.75.1 8 85.84 even 2
289.3.e.c.158.1 8 85.29 odd 16
289.3.e.d.65.1 8 85.79 odd 16
289.3.e.d.249.1 8 85.19 even 8
289.3.e.i.131.1 8 85.14 odd 16
289.3.e.i.214.1 8 85.4 even 4
289.3.e.k.40.1 8 85.9 even 8
289.3.e.k.224.1 8 85.44 odd 16
289.3.e.l.40.1 8 85.59 even 8
289.3.e.l.224.1 8 85.24 odd 16
289.3.e.m.131.1 8 85.54 odd 16
289.3.e.m.214.1 8 85.64 even 4
425.3.t.a.24.1 8 5.3 odd 4
425.3.t.a.124.1 8 85.22 even 16
425.3.t.c.24.1 8 5.2 odd 4
425.3.t.c.124.1 8 85.73 even 16
425.3.u.b.126.1 8 1.1 even 1 trivial
425.3.u.b.226.1 8 17.5 odd 16 inner